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Abstract

We review a method for inferring computational complexity bounds of imper-
ative programs automatically. This report is based on an article by Gulwani,
et al.. By instrumenting a program with multiple counter variables, one can es-
tablish a computational complexity bound, if bounds on those variables can be
inferred and composed appropriately. We discuss this approach in more detail
and comment its advantages and disadvantages.
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1 Introduction
In recent years, program analysis of imperative programs has received more
attention [19, 9, 4]. The automatic analysis of computational complexity seems
still to be a challenge. In this report, we review an article by Gulwani, et
al. [11], describing an approach for inferring computational complexity bounds
for C/C++ programs. The main idea is as follows: The program is instrumented
with multiple counter variables. This variables ought to count the number
of iterations of a while statement. Hence, back-edges of while statements are
instrumented with an increment by one. Standard techniques in static analysis
can be used to generate invariants on those variables. The technique used by
the authors is based on abstract interpretation. If an invariant represents a
bound on a counter variable, then it represents a bound on the number of
iterations of the while statement. By composing those bounds appropriately,
one can infer a bound on the total number of loop iterations of a program. To
analyze the iteration on data-structures, quantitative functions are introduced.
A quantitative function describes a property of a data-structure, for instance,
the length of a list. Furthermore, one have to describe the effect of a method
call on a quantitative function. The actual method calls in a program are
then replaced by the effect of the according call. For this reason, the invariant
generator has to be extended to support uninterpreted functions. A symbolic
complexity bound on a program is then specified in terms of its scalar input
and user-defined quantitative functions.
This report is structured as follows: In Section 2 we give an overview over

the theory of abstract interpretation. We recall the main approach for gener-
ating computational complexity bounds for imperative programs in Section 3.
The evaluation of our experiments are described in Section 4. We conclude in
Section 5.
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2 Abstract Interpretation

2 Abstract Interpretation

In this Section, we review the basic concepts of the theory of abstract inter-
pretation [6, 7, 16]. The framework introduced by P. Cousot and R. Cousot
is heavenly used in static analysis and plays an important role in the reviewed
approach. Though, this section gives just an overview over abstract interpre-
tation and is not important to understand the upcoming sections. The reader
may skip it.
Consider an arbitrary program where its state is defined by the valuation

of its variables. Suppose we could associate the set of states that are defined
at some program location with the program location itself. This would be
sufficient to analyze several static properties for a program, such as bound-
checks for arrays. Though in general this would require to inspect all possible
program executions and therefore is not computable. Abstract interpretation
allows to summarize the desired property in cost of accuracy. Therefore, it relies
on domains which may not be so concrete as the set of states itself. Abstract
interpretation is a very general concept. Similar to the set of states one may
consider all computation traces as basis for the analysis.
The underlying domain for abstract interpretation are lattices. Therefore, we

are going to present some concepts of the lattice theory [6, 16], before describing
important aspects of the theory of abstract interpretation [6, 7, 16] in more
detail.

2.1 Lattice Theory

Definition 2.1. A partially ordered set or poset is a set L equipped with a
partial ordering v. A partial ordering is a relation v that is reflexive, transitive
and anti-symmetric. Let l ∈ L and Y be a subset of L. Then l is an upper
bound (lower bound) of Y if for all l′ ∈ Y the relation l′ v l (l v l′) holds.
An upper bound l0 is a least upper bound (greatest lower bound) of Y if l0 v l
(l v l0) holds for all upper bounds (lower bounds) l of Y . We use

⊔
Y (

d
Y )

to denote the least upper bound (lowest greater bound) of Y . A subset Y of L
is a chain if for all l1, l2 ∈ Y the relation l1 v l2 or l2 v l1 holds. A partially
ordered set satisfies the ascending chain condition (descending chain condition)
iff any infinite sequence l0 v l1 v · · · v ln v · · · (l0 w l1 w · · · w ln w · · · ) is
not strictly increasing (decreasing).

Definition 2.2. A complete lattice L = (L,v,
d
,
⊔
,>,⊥) is a partially ordered

set (L,v) such that any subsets Y have least upper bounds (
⊔
Y ) and least

lower bounds (
d
Y ). Here, > =

⊔
L is the greatest element and ⊥ =

d
∅ is the

least element.

Example 2.3. Let S be an arbitrary set and ⊆ denote the subset relation.
Then L = (P(S),⊆,

⋃
,
⋂
, S,∅) is a complete lattice.

A more complex example is the complete lattice of integer intervals. Together
with abstract interpretation, it can be used for instance, for checking accessed
indices of arrays.
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2.2 Abstract Interpretation

Example 2.4. Let 6 denote the usual ordering on Z extended by −∞ 6 z,
z 6 ∞ and −∞ 6 ∞, for all z ∈ Z. The complete lattice of integer intervals
L = (Interval,v, sup, inf,>,⊥) is then defined as follows:

Interval = {⊥} ∪ {[z1, z2] | z1 6 z2, z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {∞}}

inf(int) =
{
∞ if int = ⊥
z1 if int = [z1, z2]

sup(int) =
{
−∞ if int = ⊥
z2 if int = [z1, z2]

int1 v int2 iff inf(int2) 6 inf(int1) ∧ sup(int1) 6 sup(int2)

Here, ⊥ denotes the empty interval and > the interval [−∞,∞].

Definition 2.5. Let f : L→ L be a monotone function on a complete Lattice
(L,v,

d
,
⊔
,>,⊥). A fixed point of f is an element l ∈ L such that f(l) = l. A

fixed point l0 is the least fixed point (greatest fixed point) if l0 v l (l v l0) holds
for all fixed points l of L.

Let L be a poset and f be a monotone function. Due to Tarski’s fixed point
theorem [20] we know that the set of all fixed points of f forms a complete
lattice with respect to v. Therefore, f has a least fixed point and a greatest
fixed point.

2.2 Abstract Interpretation

Usually, we are interested in the least fixed point of a monotone function f . This
can be obtained in an iterative manner, applying Kleene’s sequence fn(⊥).

Example 2.6. This example shows the control flow graph of a single while
statement. We obtain the system of equations C1, . . . , C5. The fixed point of
this system of equations represents the values x can be mapped to at Ci.

x=1

x<=100

x=x+1

C0

C1 C2

trueC3
C4

C5 false
C0 = ⊥
C1 = [1, 1]
C2 = C1 ∪ C4

C3 = C2 ∩ [−∞, 100]
C4 = C3 + [1, 1]
C5 = C2 ∩ [101,∞]

This process may not terminate if for example the sequence does not satisfy
the ascending chain condition. Therefore, a widening operator is used, which
on the one hand accelerates the computation of the fixed point and the other
hand ensures convergence of the computation. Though widening may lead to
inaccurate results.

Definition 2.7. An operator O : L× L→ L is a widening operator if:

(i) for all l1, l2 ∈ L we have l1 v l1 O l2 and l2 v l1 O l2, and
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2 Abstract Interpretation

(ii) every infinite sequence k0, . . . , kn, . . . with k0 = l0, . . . , kn = kn−1 O ln is
not strictly increasing, i.e., admits the ascending chain condition.

Example 2.8. (Continued from 2.4). We define the widening int1 O int2 for
the lattice Interval as follows:
(i) if int1 = ⊥ then int2 ,

(ii) if int2 = ⊥ then int1 ,

(iii) otherwise, if int1 = [i, j] and int2 = [k, l] then

[if k < i then −∞ else i, if l > j then ∞ else j ] .

The relation of the concrete domain to an abstract domain is often described
by a galois connection. For example, a galois connection allows us to relate the
lattice of the powerset of integers with the lattice of intervals. Likewise, we can
say that we relate the concrete valuation of an integer variable to an interval
over-approximating its domain.
Definition 2.9. A galois connection between complete lattices is a quadruple
(L,α, γ,M) such that L andM are complete lattices, α : L→M and γ : M → L
are monotone functions, satisfying

∀l ∈ L, : l v γ(α(l)) , and ∀m ∈M : m w α(γ(m)) .

Functions α, γ are usually called abstraction function and concretisation func-
tion, respectively.
The first condition implies that we may lose precision if we abstract an ele-

ment of the concrete domain and then concretize it again. The second condition
implies that there are no new elements if we concretize an element of the ab-
stract domain and then abstract it again.
Example 2.10. Let L be the lattice of the powerset of integers, M be the
lattice of integer interval and α, γ be defined as follows:

α(l) = [min(l),max(l)] γ(m) = {x | x ∈ [z1, z2]}

Then (L,α, γ,M) is a galois connection and γ(α({2, 3, 7})) = {2, 3, 4, 5, 6, 7}
and α(γ([2, 7])) = [2, 7].
For the analysis of numerical properties different abstract domains have been

established. We already have described the integer interval domain. A more
sophisticated domain is the abstract domain of the convex polyhedra [8]. A
closed convex polyhedron is the solution of a set of linear inequalities c1 ∗ x1 +
· · ·+ cn ∗ xn 6 b. Intuitively the variables x1, . . . , xn, b represent variables of a
program. The solution of a set of linear inequalities represents the domain of
the variables. In comparison to the interval domain the polyhedra domain is
more precise and allows us to relate the variables to each other. Though the
analysis is not as efficient as for other domains.
The polyhedra domain is often used in static analysis and allows to generate

invariants of the domains of the variables. We will see in the next chapter, how
this can be exploited to infer upper bounds of the computational complexity of
a program.

4



3 The Speed Method
In this section, we recall the main concepts and definitions of [11]. The ideas
have been implemented in the SPEED tool, as a plug-in for the Microsoft
Phoenix compiler infrastructure [1]. The tool computes symbolic complexity
bounds for C/C++ programs. As a preprocessing step the tool extracts a slice
of the program of interest with respect to statements affecting the number of
loop iterations.

3.1 Introduction

Already in [7] P. Cousot and R. Cousot state that abstract interpretation can
be used for analyzing the complexity of a program using an imaginary counter.
The idea is very simple: We take a single counter which is initialized to zero
at the beginning of a procedure and incremented by one at every program
location describing a back-edge of a loop. If we can compute the final value
of the counter due to abstract interpretation, we obtain a bound on the total
number of loop iterations. Using the polyhedra domain, as introduced in the
previous section, seems reasonable. If we can generate an invariant d1 ∗ x1 +
· · ·+ dnxn > c, where x1, . . . , xm represents the input parameter of a program
and c the counter variable, then we obtain an upper bound on c in terms of the
program’s input. The process of adding such a counter variable is called counter
instrumentation. In general, computing non-trivial bounds for an arbitrary
program is not possible. Gulwani, et al. developed some strategies to obtain a
more practical analysis. They identify and address four general problems for
inferring complexity bounds of a program:

(i) The presence of disjunctive and non-linear bounds,

(ii) the fact that for many problems even termination is hard to prove,

(iii) precise bounds are desired, and

(iv) the iteration over user defined data-structures.

Note that abstract interpretation used together with the polyhedra domain is
a well-researched technique in static analysis. The first problem is strongly
related to the use of the polyhedra domain since polyhedra are defined by con-
junctions of linear inequalities. Though it seems to be a general challenge in
program analysis to handle disjunctive invariants [18]. It seems quite sensible
considering a simple program consisting of a while loop with an additional if-
statement in its body. In static analysis it may require that both the execution
of the then branch and the execution of the then branch have to be described
using a single property. In case of the polyhedra domain, a conjunction of linear
inequalities. The authors handle the first two problems by instrumenting the
program with multiple counters. These counters can be initialized and incre-
mented at different program locations. If the invariant generator is capable of
inferring linear bounds for each counter then the total number of loop iterations
can be inferred by composing the bounds appropriately.
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3 The Speed Method

The SPEED tool was designed to establish precise bounds. Here, precise
means that both the computational complexity as well as the constant factors
are of interest. The bounds can vary depending on the instrumentation of
the counter variables. The authors developed and implemented an algorithm
returning an “optimal” complexity bound.
The fourth problem addresses the problem of inferring bounds on iterations

over data-structures, such as lists and trees. Instead of analyzing the programs
directly, the tool requires the user to define quantitative functions, which are
numeric functions describing properties of the data-structure, together with
annotations, which describe the effect on a quantitative function calling a data-
structure method. By extending the invariant generator to support uninter-
preted functions, the SPEED tool is capable of describing linear bounds on
data-structure iterations in terms of quantitative functions.
If the analysis of a program is successful, we obtain a bound on the total

number of loop iterations in terms of its scalar input and quantitative functions.

3.2 Proof-Structure
In this subsection we are going to present the overall methodology of [11]. In
the following let

• S denote a set of counter variables c1, . . . , cn ,

• M denote a mapping from back-edges q1, . . . , qm to variables in S,

• G denote a directed acyclic graph (DAG) ranging over S ∪ {r}, where r
denotes a dedicated root node, and

• B denote a mapping from back-edges to bounds.

Instrumentation is the process of adding the counter variables to a program
P . The instrumentation of a program P is formally defined as follows:

Definition 3.1. Let P a program. Then Instrument(P, (S,M,G)) denotes the
program obtained from P and instrumenting

• back-edge q of P with an increment by one of counter c, if M(q) = c,

• back-edge q of P with an initialization to zero of counter variable c′, if
(c, c′) ∈ G and M(q) = c,

• the procedure entry of P with an initialization to zero of counter variable
c, if (r, c) ∈ G.

If (c, c′) ∈ G, c′ is initialized to zero when c is incremented. We say that
counter c′ depends on counter c. By initializing c′ to zero, the problem for the
invariant generator is simplified. This have to be considered when computing
the bounds. Intuitively, the bound associated to c′ represents a bound for a
single iteration with respect to the back-edge associated with c. This can be
compared with a nested for statement, where the inner loop is initialized in
each iteration of the outer loop.
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3.2 Proof-Structure

Example 3.2. Let P be the program depicted in Figure 1a and let S,M and
G be defined as follows:

S = {c, d} M = {q 7→ c, r 7→ d} G = {(r, c), (r, d)} .

The program obtained by Instrument(P, (S,M,G)) is depicted in 1b.

disjunctive (int x0 ,z0 ,n)

int x=x0; int z=z0;
while (x<n)

if(z>x)
x++;

else
z++;

(a) disjunctive.c

cdisjunctive (int x0 ,z0 ,n)
int c=0; int d=0;
int x=x0; int z=z0;
while (x<n)

if(z>x)
x++;

q c++;
else

z++;
r d++;

(b) cdisjunctive.c

Figure 1: The instrumentation of disjunctive.c.

Definition 3.3. Let P be a program and (P, (S,M,G)) define its instrumented
version. A proof-structure for P is a quadruple (S,M,G,B), such that the
invariant generation tool can establish a bound B(q) on counter variable M(q)
at back-edge q in instrumentation (P, (S,M,G)) for all back-edges q in P .

Given some program instrumentation, the proof-structure associates a bound
on each back-edge q with respect to the counter which is incremented at q. Note
that the bounds on the counter variables are linear. If a proof-structure can be
established, we can compute a bound on the total number of loop iterations.

Example 3.4. (Continued from Example 3.2). The invariant generator tool
can establish following invariants:

B = {q 7→ n− x0, q2 7→ n− y0} .

Therefore, (S,M,G,B) is a proof-structure of P .

Definition 3.5. Let (S,M,G,B) be a proof-structure for P . The upper bound
on the total number of loop iterations U is then defined as follows:

U :=
∑
c∈S

totalbound(c) (1)

totalbound(r) := 0 (2)

totalbound(c) := max
(
{0}

⋃
{B(q) |M(q) = c}

)
×1 +

∑
(c′,c)∈G

totalbound(c′)

 (3)
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3 The Speed Method

Equation (1) states that we sum up the total bounds of all counter variables.
Equation (2) represents the base-case of the recursive call to totalbound. Note
that a single counter variable can be incremented at multiple back-edges. For
example, if we consider two sequent while statements. In this case, the in-
variant generator may be able to relate the bounds for those back-edges itself.
Taking the maximum of those bounds is a safe approximation. This behavior
is represented by the first factor of equation (3). The second factor sums up
the total bounds for all counters on which the corresponding counter depends,
in a recursive manner. Recall that if (c′, c) ∈ G, then counter c depends on c′.
Per definition c is initialized to zero on a back-edge q, whereas c′ is incremented
at q. Thus multiplying the bound generated in the first part with the total
bound generated in the second part safely approximates the total number of
loop iterations of the corresponding counter variable.

Example 3.6. (Continued from Example 3.4). Since, (S,M,G,B) is a proof-
structure of P we can compute an upper bound U on the total number of loop
iterations of P .

U =totalbound(c) + totalbound(d)
=max(0, n− x0)× (1 + totalbound(r))+

max(0, n− y0)× (1 + totalbound(r))
=max(0, n− x0) + max(0, n− y0)

We refer to Section 4 to present how this construction handles disjunctive
and non-linear bounds in more detail.

3.3 Counter-Optimal Proof-Structure

Given a program P . In the general case, a proof-structure and thus the upper
bound U for P may not be unique. For example, given two sequent while state-
ments we may be able to infer a bound using a single counter. If this is the
case, we could also infer a bound using two counters. This raises the question,
how a “optimal” proof-structure can be obtained. The authors observed that
a minimal number of counters and a minimal number of dependencies leads
usually to better results. The observations are not surprising when inspect-
ing Definition 3.5 for computing upper bounds. Though, it may be the case
that an invariant generation tool could generate better bounds using additional
counters and dependencies for an arbitrary program. The authors developed an
algorithm to construct a counter-optimal proof-structure, i.e., a proof-structure
with a minimal number of counter variables and dependencies. Here, we restrict
to the general idea of the algorithm. For more details see [11]:
Let S,M,G and B be empty. As long as a bound for some back-edge q,

undefined in M , can be inferred, the following steps are performed: First, the
algorithm tries to re-use an existing counter variable c in S for some back-
edge q that is undefined in M . Therefore the algorithm instruments P with an
increment of c at back-edge q. S,M,G and B are updated correspondingly, if
the invariant generation tool can infer bounds for all defined back-edges in M

8



3.4 Iteration over Data-Structures

and q. Otherwise, a fresh counter variable c′ with respect to S is introduced
and P instrumented with an increment of c′ at back-edge q. Furthermore,
dependencies to all other variables in S and the root node r are added. The
algorithm fails here, if the invariant tool can not infer bounds for all defined
back-edges inM . If this is not the case, then all dependencies of c′ are removed
that preserve the generation of the already established bounds. If the algorithm
does not fail, it returns a counter-optimal proof-structure (P, (S,M,G,B)).

3.4 Iteration over Data-Structures
We already have addressed three of the four problems introduced in Section 3.1.
The last one remaining is how to handle iterations over data-structures such
as lists and trees. Gulwani, et al. have chosen an indirect way to address the
problem. They do not perform an analysis of the heap but require the user
to define quantitative functions and the effects of method calls on it. A quan-
titative function represents a numerical property of the data-structure. For
example the length of the list. It is also possible to define multiple quanti-
tative functions such as the height of the tree and the number of its nodes.
Additionally, the user defines the effects on the numerical properties in terms
of a linear expression for each method manipulating the data. The quantita-
tive functions are treated as uninterpreted functions. Therefore, it is necessary
to extend the linear invariant generation tool with support for uninterpreted
functions. In [12] Gulwani and Tiwari have described how to combine abstract
interpreters automatically. The method is based on the article of Nelson and
Oppen for combining decision procedures [15].

Example 3.7. This example displays how quantitative functions for a single-
linked list can be defined. The example is taken from [11]. First, we define
some quantitative functions on lists:

Len(L) := length of list L
Pos(e, L) := position of element e in list L

Next, we define effects on the quantitative functions for some list operations:

e = L.Head() := Assume(e = null⇒ Len(L) = 0);
Assume(e 6= null⇒ Len(L) > 0); Pos(e, L)

b = L.IsEmpty() := Assume(t = true⇒ Len(L) = 0);
Assume(t = false⇒ Len(L) > 0)

e = L.GetNext(f) := Pos(e, L) = Pos(f, L) + 1;
Assume(0 6 Pos(f, L) < Len(L))

L.RemoveHead() := if(Len(L) > 0){Len(L) = Len(L)− 1;
Pos(e′, L) = Pos(e′, L)− 1}

Here e′ is a free variable and is used to represent the new positions of the
elements of list L after calling method L.RemoveHead().
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3 The Speed Method

We consider a program iterating over a list:

for(e = f ; e 6= null; e = L.GetNext(e));

The invariant generator of the SPEED tool can establish following invariant:
c = Pos(e, L) − Pos(f, L) ∧ Pos(e, L) 6 Len(L). Simplifying it, returns c 6
Len(L)− Pos(f, L).
Similarly we can describe a program deleting all entries of a list:

for(; !L.IsEmpty();L.RemoveHead());

We obtain, c = Old(Len(L))−Len(L)∧Len(L) > 0 and c 6 Old(Len(L)). Here,
Old is used to represent the original length of the list.

In the extended version of the paper the authors provide the quantitative
functions and the annotations for lists, list of lists, trees and bit-vectors [10].
An important property of this approach is that you do not have to analyze

heap operations directly in terms of heap size or heap shapes. Moreover, since
the result is returned in terms of quantitative functions, one circumvents to
define the notion of complexity for heap operations. The approach seems to be
very flexible and intuitive since multiple quantitative functions can be defined.
For example, the complexity for traversing a tree can be defined with respect
to the number of nodes whereas the complexity for searching an element can be
defined with respect to the height of the tree. The biggest disadvantage may
be that the analysis is not fully automatic anymore. One have to define its own
quantitative functions for a new data-type. This may not be possible if the
source code is not available. Furthermore, results are obtained in terms of the
provided specification. This may be an additional source of an error.

3.5 Inter-Procedural Analysis

Until now, we have only considered the analysis of a single procedure. The
method presented in [11] also allows to establish bounds when considering pro-
cedure calls. We assume that a procedure call does not have any effect on the
procedure calling it.
First, we consider the non-recursive case. In the non-recursive case there are

two main challenges to handle:

(i) the bound or the cost of calling a procedure have to be considered when
computing the bounds of the calling procedure, and

(ii) the bound of the called procedure have to be related to the input.

Challenge (i) is managed in a very general way. The method described in
Section 3.2 is used to infer the total number of loop iterations. This can be
generalized for inferring the total cost of a procedure given a cost metric map-
ping atomic statements, such as procedure-calls, to a cost. This way, a bound
for the total number of executed instructions or the total resource consumption
can be inferred. Let q be a back-edge at location l and M(q) = c. The cost for

10



3.5 Inter-Procedural Analysis

q, denoted ||q||, is then defined by the maximum of the costs of any path that
ends in l and starts from any counter initialization location l′ of c, where c is
not initialized between l′ and l. The cost of a path is the sum of the costs of all
statements and the cost for calling procedures. The cost of a program P can
then be computed as follows:

||P || :=
∑
c∈S

(1 + totalbound(c))×max {||q|| |M(q) = c} .

Challenge (ii) addresses the problem that the arguments of the called proce-
dures have to be related with the input of the calling procedure. LetQ(y1, . . . , yn)
be a program, and ||Q|| be its cost in terms of its parameters yn, . . . , yn. Let
P (x1, . . . , xm) be the procedure invoking Q(v1, . . . , vn). The cost of calling Q,
denoted ||call Q(v1, . . . , vn)||, can be obtained by existential elimination of the
formula

∃V : t 6 e ∧ φ ,

where e is obtained by replacing parameters y1, . . . , yn with arguments v1, . . . , vn

in ||Q||, φ is an invariant generated relating arguments v1, . . . , vn with input
x1, . . . , xn, V are the variables occurring in e and φ but not occurring in P , and
t is a fresh variable.
Note that totalbound(c) is computed independently from its cost for some

counter variable c. This provides some modularity for the analysis of the non-
recursive case. For example, a different cost may be obtained replacing proce-
dure calls within a program. Though it may be necessary to compute a bound
with respect to the programs input as addressed in challenge (ii).

Example 3.8. Suppose ||double(n)|| = max(0, 2 ∗ n), our cost function mea-
sures the total number of loop iterations and we want to compute the cost of
the loop program:

loop(int n)
int c=0;
int x=0;
while (x<n)

x++;
double (x);
c++;

Then we obtain:

||call double(x)|| = ∃x : t 6 max(0, 2 ∗ x) ∧ x 6 n

= t 6 max(0, 2 ∗ n)
||loop|| = (1 + totalbound(c))× (max(0, 2 ∗ n))

= (1 + max(0, n))×max(0, 2 ∗ n)

Second, we consider the recursive case. The general idea is to use a global
counter to count the number of recursive calls. Only a few changes have to
be made to adapt the overall methodology for recursive calls. Let P1, . . . , Pn
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3 The Speed Method

be mutually recursive procedures. For each Pi a procedure P ′i is defined. Pro-
cedure P ′i serves as entry point and is obtained by copying the parameter of
Pi (x1, . . . , xn) into global parameters (x′1, . . . , x′n) and then calling Pi. Now
all procedures Pi and P ′i are put together in a module. The definitions for
instrumentation and proof-structure as introduced in Section 3.2 have to be
modified slightly. If (r, c) ∈ G, then c is initialized at the entry point of P ′i .
Furthermore, the proof-structure now requires that M map back-edges in all
the procedures and the locations immediately before any recursive procedure
call to some global counter variable. The invariant generator is supposed to
generate invariant in terms of global parameter (x′1, . . . , x′n). Using the same
process as for the non-recursive calls, the costs for the recursive calls can be
obtained after computing a proof-structure. Note that the invariant generator
has to provide support for inter-procedural analysis. This is usually established
by a two phased approach. In the first phase a summary of a procedure is gen-
erated, relating the inputs of a procedure to the outputs. In the second phase
this summary can be used as transfer functions for procedure calls.

12



4 Experimental Evaluation

In this section, we are going to present the evaluation of our experiments. The
main goal of the experiments are to get a better understanding of the invariant
generation and the concepts presented in Section 3. The SPEED tool is part of
the Microsoft Phoenix compiler infrastructure [1], which was nowhere to find for
download. Therefore, a different invariant generator have been chosen for the
experiments. Since we have not found another tool that provides support for
uninterpreted functions, we restrict our experiments to the numerical examples
of [11].
We decided to use the InvGen [13] tool, an automatic linear arithmetic in-

variant generator for imperative programs: The InvGen tool is easy to use and
provides everything to analyze programs written in the C language. Similar
to other tools, e.g. StInG [2], InvGen operates on an intermediate representa-
tion rather than on the source code directly. Fortunately, the tool provides a
front-end that takes a procedure written in the C language and returning the
transition relation of the program. In comparison to the SPEED tool InvGen
uses a constraint-based approach to generate invariants [5], combining it with
static and dynamic program analysis. Figure 2 depicts a C program with a single
loop instruction and its instrumented version. Running the invariant generator

simple (int n)

int x=0;
while (x<n)

x=x+2;

(a) simple.c

csimple (int n)
int c=0;
int x=0;
while (x<n)

x=x+2;
c++;

(b) csimple.c

Figure 2: The simple.c program and its instrumented version csimple.c .

on its instrumented version returns the invariant x = 2∗ c∧ c > 0. Though, the
result is obviously correct it does not return a bound on the counter variable
c. In fact, we can not establish a bound on the counter variable with respect
to the input. Consider input n to be a negative integer. Then n can not be
a bound for the counter variable c, since c is at least zero. In this case, we
have to strengthen the assumptions for the invariant generator. We know that
the counter variable is only incremented if the loop condition holds. Therefore,
we assume that the condition x < n holds, when entering the loop. This is
illustrated in Figure 3. Now, we obtain n−2∗ c > −2∧n > 1∧x = 2∗ c∧ c > 0
as invariant. Reformulating the first constraint yields the desired bound on
the counter variable: 1/2 ∗ n + 1 > c. Recall Definition 3.5 for computing an
upper bound on the total number of loop iterations. Making this assumption
corresponds of using the max operator when computing the bound. We obtain
max(0, 1/2 ∗ n+ 1).
Recall the program in Figure 1b depicting the instrumented version of a

program with a disjunctive invariant. Using a single counter variable, we will

13



4 Experimental Evaluation

csimple2 (int n)
int c=0;
int x=0;
assume (x<n);
while (x<n)

x=x+2;
c++;

Figure 3: The augmented version of csimple.c .

fail to establish a bound, since we can not establish a bound on variable z.
The key observation of the program is, that the body of the then branch and
the body of the else branch does not affect each other. In this case, we can
analyze the bounds separately. Once assuming the condition x < n does hold,
and once assuming the condition does not hold during the execution of the
program. Figure 4 depicts the case where the condition holds. We obtain

cdisjunctive (int x0 ,z0 ,n)
int c=0; int d=0;
int x=x0; int z=z0;
assume (x<n);
while (x<n)

assume (z>x);
if(z>x)

x++;
c++;

else
z++;
d++;

Figure 4: The analysis of the cdisjunctive.c program.

following invariants: x − n 6 1 ∧ x0 − n 6 0 ∧ c = −(x0) + x ∧ x0 − x 6 0
and x − n 6 1 ∧ x0 − n 6 0 ∧ z0 = z − d ∧ x0 − x 6 0 ∧ d > 0. Taking the
assumptions into account and reformulating the constraints appropriately, we
obtain c < n− x0 and d < n− z0.
Our next example shows, that we have to be careful when adding additional

assumptions. Consider Figure 5 depicting a program with a non-linear bound.
It looks tempting to use the same approach as for the previous example. But,
here the variable y is modified in both branches and we are not allowed to
consider the branches separately. Here, we can simplify the problem for the
invariant generation tool by initializing counter variable c to zero in the else
branch. We obtain following invariant: n−d > −1∧n > 1∧x = d∧d > 0∧y =
c ∧ c > 0. The first constraint already defines the bound for counter variable
d. To obtain a bound for c we take the assumption y < m into account. This
is now valid since setting c to zero in the else branch allows us to analyze the
then branch with respect to the analysis of counter variable c separately. We
obtain max(0, n) + max(0,m)×max(0, n) as upper bound.
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simplemultipledep (int n,m)

int x = 0; int y = 0;

while (x<n)
if(y<m)

y++;

else
y=0;
x++;

(a) simplemultipledep.c

csimplemultipledep (int n,m)
int c=0; int d=0;
int x=0; int y=0;
assume (x<n);
while (x<n)

if(y<m)
y++;
c++;

else
y=0;
x++;
d++; c=0;

(b) csimplemultipledep.c

Figure 5: The analysis of the simplemultipledep.c program.

The results for all examples from [11], including only numerical expressions,
could be reproduced using InvGen. Though, it was necessary to induce and ap-
ply additional assumptions. As explained above, these introduced assumptions
are strongly related to the method of computing the bounds as presented in
Section 3. It is not totally clear how this is actually handled by the invariant
generator of the SPEED tool. But, as already the first examples in our experi-
ments (cf. Figure 2) shows, it is necessary to introduce additional assumptions.
All the examples in [11] consider only constants or input arguments as bounds

within the while condition. Therefore, the question arises how the invariant
generator behaves when a condition is described by a variable which has been
altered by side conditions. This quested scenario is depicted in Figure 6a. It

sequent (int n)
int x=0; int y=0;
while (x<n)

x++;
y+=2;
c++;

x=0;
while (x<y)

x++;
c++;

(a) sequent.c

exp(int x)
int y=0; int r=1;
while (x >0)

y=r;
r=0;
while (y >0)

r+=2;
y--;

x--;

(b) exp.c

Figure 6: The sequent.c and exp.c program.

turns out that the InvGen invariant generator is able to find bounds if two
counter variables are used. We obtain max(0, n) + max(0, 2 ∗ n).
The program depicted in Figure 6b has an exponential complexity behavior.

Not surprising, we could not establish a bound using this method.
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5 Conclusion and Future Work

5 Conclusion and Future Work
In this report we have reviewed an approach by Gulwani, et al., for inferring
computational complexity bounds for imperative programs. The experiments
with the InvGen invariant generator tool have shown that additional reasoning
and therefore some experience with invariant generation is necessary to use this
approach to the fullest extent. In comparison to other methods, e.g. [21], the
one described here is one of the few methods that addresses the analysis of user
defined data-structures. Therefore, the notion of quantitative functions were
introduced. Due to this additional requirement, the method is not fully au-
tomatic anymore. Furthermore, sophisticated invariant generators supporting
uninterpreted functions and inter-procedural analysis are necessary.
Falke and Kapur have used a term rewriting approach for termination anal-

ysis of imperative programs [9]. Therefore, they introduced the notion of a
PA-based term rewriting system (TRS). A PA-based TRS is a constrained
TRS, where constraints are quantifier free formula from Presburger arithmetic
expressing relations on program variables. This extension seems reasonable for
the analysis of imperative programs, since arithmetic expressions in the program
can be transformed directly using constraints. Results in complexity analysis
of TRSs show that the complexity of TRSs can be related to the computational
complexity of the functions computed by the corresponding TRSs [3]. At the
moment it is not clear how the extension affects the results. Moreover, the
analysis is restricted to programs without user defined data-structures. It is
not trivial to transform heap operations in term rewriting rules. Therefore an
additional abstraction layer as presented in [4, 17, 14] seems necessary.
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