

Confluence of Root-E-overlapping Term Rewrite Systems

Bertram Felgenhauer

Computational Logic Institute of Computer Science University of Innsbruck

2012-04-18

Contents

- Introduction
- E-overlaps and Main Result
- E-Peak Elimination
- A Decidable Criterion
- Conclusion

Literature

Gomi, H., Oyamaguchi, M., Ohta, Y.:

On the Church-Rosser property of root-E-overlapping and strongly depth-preserving term rewriting systems. Trans. IPSJ 39(4), 992–1005 (1998)

Motivation

Example

The following TRS (due to Barendregt) is not confluent:

$$\mathcal{R}_B = \{ \mathsf{f}(x,x)
ightarrow \mathsf{a}, \mathsf{g}(x)
ightarrow \mathsf{f}(x,\mathsf{g}(x)), \mathsf{c}
ightarrow \mathsf{g}(\mathsf{c}) \}$$

But the following TRS is:

$$\mathcal{R}_M = \{f(x, x) \rightarrow a, h(x) \rightarrow f(x, g(x)), c \rightarrow g(c)\}$$

- · confluence for non-terminating, non-left-linear systems is hard
- E-overlaps yield direct confluence criterion for such systems
- decidable approximation \rightarrow can be implemented (e.g., ACP)

Introduction

- E-overlaps and Main Result
- E-Peak Elimination
- A Decidable Criterion
- Conclusion

Main theorem

Theorem

Every strongly depth-preserving, root-E-closed TRS is confluent.

Strongly depth-preserving TRSs

Definition

A rule $\ell \to r$ is strongly depth-preserving iff for all $v \in \mathcal{V}ar(\ell)$, there is some $p \in \mathcal{P}os_{\{v\}}(\ell)$ such that $|p| \ge |q|$ for all $q \in \mathcal{P}os_{\{v\}}(r)$. A TRS is strongly depth-preserving iff all its rules are.

Example

The following TRS is strongly depth-preserving:

$$\mathcal{R}_2 = \{f(g(x), g(g(x))) \rightarrow h(g(x), g(c)), c \rightarrow g(c)\}$$

But \mathcal{R}_B is not:

$$\mathcal{R}_B = \{ \mathsf{f}(x,x)
ightarrow \mathsf{a}, \mathsf{g}(x)
ightarrow \mathsf{f}(x,\mathsf{g}(x)), \mathsf{c}
ightarrow \mathsf{g}(\mathsf{c}) \}$$

Parallel reduction sequences (Proofs)

- \Leftrightarrow is defined by $\leftrightarrow^{=} \subseteq \Leftrightarrow$ and $f(\Leftrightarrow, \ldots, \Leftrightarrow) \subseteq \Leftrightarrow$ for $f \in \mathcal{F}$.
- $\alpha : t_0 \Leftrightarrow t_1 \dots t_{n-1} \Leftrightarrow t_n$ is a proof of length n:
- $\operatorname{height}(\alpha) = \max\{\operatorname{height}(t_0), \ldots, \operatorname{height}(t_n)\}$
- cut proof: If $\alpha = f(\alpha_1, \ldots, \alpha_m)$, then $\alpha|_i = \alpha_i$. (also $\alpha|_p$)

E-overlaps

Definition

Rules $\ell \to r$ and $\ell' \to r'$ have an E-overlap at $p \in \mathcal{P}os_{\mathcal{F}}(\ell')$ iff there are substitutions σ , σ' such that

$$\ell\sigma \Leftrightarrow^*_{>\epsilon} (\ell'|_p)\sigma'.$$

If $p = \epsilon$ (a root E-overlap) we require $\ell \to r \neq \ell' \to r'$.

Example

$$\mathcal{R}_3 = \{\mathsf{f}(x,x) \rightarrow \mathsf{h}(x,x), \mathsf{f}(\mathsf{g}(x),x) \rightarrow \mathsf{a}, \mathsf{c} \rightarrow \mathsf{g}(\mathsf{c}), \mathsf{h}(\mathsf{g}(x),x) \rightarrow \mathsf{a}\}$$

The first two rules are root-E-overlapping:

$$h(\mathsf{c},\mathsf{c}) \leftarrow \mathsf{f}(\mathsf{c},\mathsf{c}) \rightarrow_{>\epsilon} \mathsf{f}(\mathsf{g}(\mathsf{c}),\mathsf{c}) \rightarrow \mathsf{a}$$

Root-E-closed TRSs

Definition

A TRS \mathcal{R} is called root-E-closed if

- every E-overlap is a root E-overlap
- 2 for $\gamma : r\sigma \leftarrow l\sigma \Leftrightarrow_P^* l'\sigma' \rightarrow r'\sigma'$ with $P \cap \mathcal{P}os_{\mathcal{F}}(l) \cap \mathcal{P}os_{\mathcal{F}}(l') = \emptyset$, there is $\delta : r\sigma \Leftrightarrow_P^* r'\sigma'$ with $\delta \preceq \gamma$ and
 - one of the comparisons 2 or 3 of \preceq (see below) is strict, or

•
$$\delta \neq \leftarrow_{\epsilon} \cdot \circledast^*$$
, or

• $\delta = \leftarrow_{\epsilon} \cdot \bigoplus_{>\epsilon}^{*}$

where $\delta : t_0 \oplus^* t_n \leq \gamma : s_0 \oplus^* s_m$ iff with mh(T) = max(height(T)),

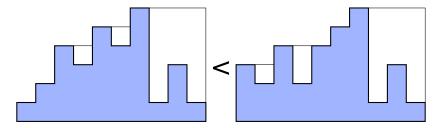
1
$$n = m$$
,

2
$$t_i = t_{i+1}$$
 no more often than $s_i = s_{i+1}$

- 3 $\{ mh\{t_0 \dots t_i\} \mid 0 \le i \le n \} \le_{mul} \{ mh\{s_0 \dots s_i\} \mid 0 \le j \le n \}$, and
- 4 $\{ \mathsf{mh}\{t_i \dots t_n\} \mid 0 \le i \le n \} \le_{\mathrm{mul}} \{ \mathsf{mh}\{s_i \dots s_n\} \mid 0 \le j \le n \}.$

Mountains

$\{\mathsf{mh}\{t_0 \dots t_i\} \mid 0 \le i \le n\} \le_{\mathrm{mul}} \{\mathsf{mh}\{s_0 \dots s_i\} \mid 0 \le j \le n\}$



Main theorem

Theorem

Every strongly depth-preserving, root-E-closed TRS is confluent.

Example

$$\mathcal{R}_3 = \{\mathsf{f}(x,x) \rightarrow \mathsf{h}(x,x), \mathsf{f}(\mathsf{g}(x),x) \rightarrow \mathsf{a}, \mathsf{c} \rightarrow \mathsf{g}(\mathsf{c}), \mathsf{h}(\mathsf{g}(x),x) \rightarrow \mathsf{a}\}$$

Consider a root E-overlap

$$\mathsf{h}(\sigma(x),\sigma(x)) \gets \mathsf{f}(\sigma(x),\sigma(x)) \twoheadrightarrow^*_{>\epsilon} \mathsf{f}(\mathsf{g}(\sigma'(x)),\sigma'(x)) \to \mathsf{a}.$$

It can be closed by

$$\mathsf{h}(\sigma(x),\sigma(x)) \circledast \mathsf{h}(\sigma(x),\sigma(x)) \circledast^*_{>\epsilon} \mathsf{h}(\mathsf{g}(\sigma'(x)),\sigma'(x)) \to \mathsf{a}.$$

So \mathcal{R}_3 is root-E-closed and strongly depth-preserving, hence confluent.

- Introduction
- E-overlaps and Main Result
- E-Peak Elimination
- A Decidable Criterion
- Conclusion

Definition

An E-peak is a proof of the form $\leftarrow_{\epsilon} \cdot \bigoplus_{>\epsilon}^* \cdot \rightarrow_{\epsilon}$.

Lemma (E-peak elimination)

Every proof $\gamma : s \bigoplus^* t$ has an equivalent proof $\delta : s \bigoplus^* t$ without *E*-peaks (even nested), such that $\delta \preceq \gamma$.

E-Peak elimination

Proof sketch.

Use induction on length(γ) and γ ordered by \prec . **Key case:** $\delta = \delta_{\wedge} \cdot \delta'$, where δ_{\wedge} is an E-peak. So let

$$\delta_{\wedge}: \mathbf{s} = \mathbf{r}\sigma \leftarrow \mathbf{I}\sigma \Leftrightarrow^*_{>\epsilon} \mathbf{I}'\sigma' \to \mathbf{r}'\sigma',$$

where $\bigoplus_{>\epsilon}^*$ has no peaks by IH.

Only root-E-overlaps: All $\underset{r \neq s}{\oplus} = are below \mathcal{P}os_{\mathcal{F}}(l') \cap \mathcal{P}os_{\mathcal{F}}(l)$. Strong depth decrease: If $l \to r = l' \to r'$, then $\delta_* : s = r\sigma \Leftrightarrow r\sigma \Leftrightarrow^* r\sigma' \Leftrightarrow r\sigma' has \delta_* \prec \delta_{\wedge}$. Root-E-closedness: If $l \to r \neq l' \to r'$, we obtain $\delta_* \preceq \delta_{\wedge}$ by assumption. In both cases, we continue the proof with $\delta_* \cdot \delta'$.

. . .

- Introduction
- E-overlaps and Main Result
- E-Peak Elimination
- A Decidable Criterion
- Conclusion

Approximating E-overlaps

Definition

The rules $l \to r$, $l' \to r'$ strongly overlap at $p \in \mathcal{P}os_{\mathcal{F}}(l')$ if l and $l'|_p$ unify after linearization (i.e., making all variables distinct). If $p = \epsilon$, we require the rules to be distinct.

Example

$$\mathcal{R}_3 = \{\mathsf{f}(x,x) \to \mathsf{h}(x,x), \mathsf{f}(\mathsf{g}(x),x) \to \mathsf{a}, \mathsf{c} \to \mathsf{g}(\mathsf{c}), \mathsf{h}(\mathsf{g}(x),x) \to \mathsf{a}\}$$

has a strong root-overlap between the first two rules.

Lemma

The Main Theorem remains valid if we require that all strong overlaps are root-overlaps rather than using E-overlaps in condition 1 of root-E-closedness.

Approximating root-E-closedness

Lemma

Let \mathcal{R} be a strongly root-overlapping (overlay) TRS. If for any strongly overlapping, variable disjoint rules $I \rightarrow r$, $I' \rightarrow r'$, we have either

$$r \oplus t \Rightarrow r'$$
 or $r \Rightarrow t \oplus r'$,

then \mathcal{R} is root-E-closed, where \Rightarrow replaces (some) subterms that equal $||_p$ by $|'|_p$ for all $p \in \min(\mathcal{P}os_{\mathcal{V}}(I) \cup \mathcal{P}os_{\mathcal{V}}(r))$.

Note that if we have an root E-overlap

$$r\sigma \leftarrow l\sigma \Leftrightarrow^*_{>\epsilon} l'\sigma' \rightarrow r'\sigma'$$

then \Rightarrow can be replaced by some proofs from the \bigoplus_{ϵ}^{*} part.

Final example

Example

The strong root-overlap between the first two rules in

$$\mathcal{R}_3 = \{\mathsf{f}(x_1, x_1) \rightarrow \mathsf{h}(x_1, x_1), \mathsf{f}(\mathsf{g}(x_2), x_2) \rightarrow \mathsf{a}, \mathsf{c} \rightarrow \mathsf{g}(\mathsf{c}), \mathsf{h}(\mathsf{g}(x_3), x_3) \rightarrow \mathsf{a}\}$$

can be joined by $h(x_1, x_1) \Rightarrow h(g(x_2), x_2) \rightarrow a$. Since \mathcal{R}_3 is also strongly depth-preserving, it is confluent.

Progress

- Introduction
- E-overlaps and Main Result
- E-Peak Elimination
- A Decidable Criterion
- Conclusion

Summary

- strongly depth-preserving, root-E-closed TRSs are confluent
- key ingredient: parallel reductions
- decidable criterion based on strong overlaps
- in particular: strongly depth-preserving, strongly non-overlapping TRSs are confluent

Outlook

• extension: strongly weight-preserving TRSs. This covers

$$\mathcal{R}_M = \{f(x,x) \rightarrow a, h(x) \rightarrow f(x,g(x)), c \rightarrow g(c)\}$$

(weight generalizes height)

- technical proofs—can they be generalized or simplified?
- can the root-E-closedness condition be made symmetric?

Outlook

• extension: strongly weight-preserving TRSs. This covers

$$\mathcal{R}_M = \{f(x,x) \rightarrow a, h(x) \rightarrow f(x,g(x)), c \rightarrow g(c)\}$$

(weight generalizes height)

- technical proofs—can they be generalized or simplified?
- can the root-E-closedness condition be made symmetric?

Thank you!