

Proving Confluence of TRSs with AC-Rules Seminar Report

Computational Logic Institute of Computer Science University of Innsbruck

June 20, 2012

Overview

• Literature

- Motivation
- Confluence including AC-Rules
 - Confluence Criterion
 - Improvements
 - Confluence Criterion using Parallel Critical Pairs
 - Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Literature

- TAKAHITO AOTO AND YOSHIHITO TOYAMA A reduction-preserving completion for proving confluence of non-terminating Term Rewriting Systems, 22nd International Conference on Rewriting Techniques and Applications (RTA'11), pp. 91–106, 2011
- TAKAHITO AOTO AND YOSHIHITO TOYAMA A reduction-preserving completion for proving confluence of non-terminating Term Rewriting Systems, Logical Methods in Computer Science, 2012

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Implementation challenges
- Summary

Confluence:

 $\forall a, b, c \exists d$

Horizontal notation: $\stackrel{*}{\leftarrow} \circ \stackrel{*}{\rightarrow} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$

Confluence:

 $\forall a, b, c \exists d$

Horizontal notation: $\stackrel{*}{\leftarrow} \circ \stackrel{*}{\rightarrow} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$

Confluence:

 $\forall a, b, c \exists d$

How can we prove confluence?

- Newman's Lemma is often used
- = termination + local confluence

Horizontal notation:
$$\stackrel{*}{\leftarrow} \circ \stackrel{*}{\rightarrow} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$$

Confluence:

 $\forall a, b, c \exists d$

How can we prove confluence?

- Newman's Lemma is often used
- = termination + local confluence
- But: What about non-terminating TRSs?

Horizontal notation:
$$\stackrel{*}{\leftarrow} \circ \stackrel{*}{\rightarrow} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$$

Exam	ple (TRS R)		
1:	$x * 1 \rightarrow x$	2 :	$x * y \rightarrow y * x$
3 :	$x * 0 \rightarrow 0$	4 :	$(x*y)*z \to x*(y*z)$

Example (TRS R)	
$egin{array}{rll} 1:&x*1 ightarrow x\ 3:&x*0 ightarrow 0 \end{array}$	$x * y \to y * x$ $(x * y) * z \to x * (y * z)$

Maybe someone can give me a termination proof?

Example (TRS R)				
	$\begin{array}{c} x*1 \rightarrow x \\ x*0 \rightarrow 0 \end{array}$		$x * y \to y * x$ $(x * y) * z \to x * (y * z)$	

Maybe someone can give me a termination proof?

Newman's Lemma fails, because of AC-Rules. **But:** *R* is confluent as we see later

Overview

- Literature
- Motivation
- Confluence including AC-Rules
 - Confluence Criterion
 - Improvements
 - Confluence Criterion using Parallel Critical Pairs
 - Confluence Criterion on linear TRS
- Implementation challenges

• Summary

Preliminaries

Let R, S be TRSs and s, t two terms:

- $s \xrightarrow{!}_{R} t$ if $s \xrightarrow{*}_{R} t$ and $t \in NF(R)$
- $s \leftrightarrow_R t$ denotes a parallel *R*-step from *s* to *t*
- $s \leftrightarrow_{R \cup S} t$ if $s \leftrightarrow_R t$ or $s \leftrightarrow_S t$
- *R* is reversible if for all rewrite rules $I \rightarrow r \in R$: $r \stackrel{*}{\rightarrow}_{R} I$ holds
- $CP_{out}(CP_{in})$ is the set of critical pairs on position = ϵ (> ϵ)

Overview

- Literature
- Motivation
- Confluence including AC-Rules
 - Confluence Criterion
 - Improvements
 - Confluence Criterion using Parallel Critical Pairs
 - Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Theorem 1

Theorem (Confluence Criterion)

Let S, P be TRSs such that S is left-linear and terminating and P is reversible. Suppose

(i)
$$CP(S,S) \subseteq \stackrel{*}{\rightarrow}_{S} \circ \underset{P \cup P^{-1}}{\overset{*}{\rightarrow}_{S}} \circ \underset{P \to P^{-1}}{\overset{*}{\rightarrow}_{S}} \circ \underset{P \to P^{-1}}{\overset{*}{\rightarrow}_{S}} \circ \underset{P \to P^{-1}}{\overset{*}{\rightarrow}_{S}} \circ \underset{P \to P^{-1}}{\overset$$

then $S \cup P$ is confluent.

Step by step procedure

Input: TRS *R* Output: *Success* or *Failure*

Step 1: Set $R_0 := R$ and i := 0.

Step 2: Choose $S_i \cup P_i = R_i$ such that S_i is left-linear and terminating, P_i is reversible and $CP_{in}(P_i \cup P_i^{-1}, S_i) = \emptyset$. If S_i and P_i do not exist return *Failure*. **Step 3:** Let $U := \emptyset$. For each $\langle p, q \rangle \in CP(S_i, P_i \cup P_i^{-1})$ perform $p \stackrel{!}{\to}_{S_i} p'$ and $q \stackrel{!}{\to}_{S_i} q'$. If $p' \nleftrightarrow_{P \cup P^{-1}} q'$ does not hold, set $U := U \cup \{q \to p'\}$. If $U \neq \emptyset$ choose non-empty $U' \subseteq U$ and continue with Step 2 with $R_{i+1} := R_i \cup U'$ and i := i + 1. **Step 4:** Let $U := \emptyset$. For each $\langle p, q \rangle \in CP(S_i, S_i)$ perform $p \stackrel{!}{\to}_{S_i} p'$ and $q \stackrel{!}{\to}_{S_i} q'$. If $p' \nleftrightarrow_{P \cup P^{-1}} q'$ does not hold, set $U := U \cup \{p' \approx q'\}$. If $U = \emptyset$ return *Success*. Otherwise choose at least one rewrite rule of $U' \subseteq (U \cup U^{-1})$ $\cap \stackrel{\leftrightarrow}{\to}_{P_i}$ and continue with Step 2 with $R_{i+1} := R_i \cup U'$ and i := i + 1.

Example (TRS R)

1:	$x * 1 \rightarrow x$	2 :	$x * y \rightarrow y * x$
3 :	$x * 0 \rightarrow 0$	4 :	$(x * y) * z \rightarrow x * (y * z)$

Step 1: Set $R_0 = R$ and i = 0.

Example (TRS R)

1:	$x * 1 \rightarrow x$	2 :	$x * y \rightarrow y * x$
3 :	$x * 0 \rightarrow 0$	4 :	$(x * y) * z \to x * (y * z)$

Step 1: Set $R_0 = R$ and i = 0. Step 2: $S_0 = \{1, 3\}, P_0 = \{2, 4\}$ and $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$.

Example (TRS R)				
1:	$x * 1 \rightarrow x$	2 :	$x * y \rightarrow y * x$	
3 :	$x * 0 \rightarrow 0$	4 :	$(x * y) * z \rightarrow x * (y * z)$	

Step 1: Set $R_0 = R$ and i = 0. Step 2: $S_0 = \{1,3\}, P_0 = \{2,4\}$ and $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$. Step 3: Four critical pairs of $CP(S_0, P_0 \cup P_0^{-1}) = \{ \langle x, 1 * x \rangle, \langle 0, 0 * x \rangle, \langle x * z, x * (1 * z) \rangle, \langle x * y, x * (y * 1) \rangle, \langle x * y, (x * y) * 1 \rangle, \langle 0 * z, x * (0 * z) \rangle, \langle 0, x * (y * 0) \rangle, \langle x * 0, (x * y) * 10 \rangle \}$ are joinable and four are not joinable \rightarrow add two new rules. Set $R_1 = R_0 \cup \{5,6\}$ and i = 1.

Example (TRS R)				
1:	$x * 1 \rightarrow x$	2 :	$x * y \rightarrow y * x$	
3 :	$x * 0 \rightarrow 0$	4 :	$(x * y) * z \to x * (y * z)$	
5 :	$1 * x \rightarrow x$	6 :	$0 * x \rightarrow 0$	

Step 2: $S_1 = \{1, 3, 5, 6\}$, $P_1 = \{2, 4\}$ and $CP_{in}(P_1 \cup P_1^{-1}, S_1) = \emptyset$.

Example (TRS R)				
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$0 \rightarrow 0$	4 :	$x * y \to y * x$ (x * y) * z $\to x * (y * z)$ 0 * x $\to 0$	

Step 2: $S_1 = \{1, 3, 5, 6\}$, $P_1 = \{2, 4\}$ and $CP_{in}(P_1 \cup P_1^{-1}, S_1) = \emptyset$. Step 3: All critical pairs of $CP(S_1, P_1 \cup P_1^{-1})$ are joinable.

Example (TRS R)				
1:	$x * 1 \rightarrow x$	2 :	$x * y \rightarrow y * x$	
3 :	$x * 0 \rightarrow 0$	4 :	$(x * y) * z \to x * (y * z)$	
5:	$1 * x \rightarrow x$	6 :	$0 * x \rightarrow 0$	

Step 2: $S_1 = \{1, 3, 5, 6\}, P_1 = \{2, 4\} \text{ and } CP_{in}(P_1 \cup P_1^{-1}, S_1) = \emptyset.$

Step 3: All critical pairs of $CP(S_1, P_1 \cup P_1^{-1})$ are joinable.

Step 4: All critical pairs of $CP(S_1, S_1)$ are joinable. So starting TRS R is confluent.

Overview

- Literature
- Motivation
- Confluence including AC-Rules
 - Confluence Criterion
 - Improvements
 - Confluence Criterion using Parallel Critical Pairs
 - Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Step 2a: If
$$CP_{in}(P_i \cup P_i^{-1}, S_i) \neq \emptyset$$
 and $\exists l \to r \in S_i$ with $CP_{in}(P_i \cup P_i^{-1}, \{l \to r\}) \neq \emptyset$ and $\exists r'$ with $r \leftrightarrow_{P_i} r'$, we set $R_{i+1} := (R_i \setminus \{l \to r\}) \cup \{l \to r'\}$ and $i := i + 1$.

-

Step 2a: If
$$CP_{in}(P_i \cup P_i^{-1}, S_i) \neq \emptyset$$
 and $\exists I \to r \in S_i$ with $CP_{in}(P_i \cup P_i^{-1}, \{I \to r\}) \neq \emptyset$ and $\exists r'$ with $r \leftrightarrow_{P_i} r'$, we set $R_{i+1} := (R_i \setminus \{I \to r\}) \cup \{I \to r'\}$ and $i := i + 1$.
Step 2b: Let $\langle p, q \rangle \in CP_{in}(P_i \cup P_i^{-1}, S_i)$ and perform $q \stackrel{!}{\to}_{S_i} q'$.
We set $R_{i+1} := R_i \cup \{p \to q'\}$ and $i := i + 1$.

Step 2a: If $CP_{in}(P_i \cup P_i^{-1}, S_i) \neq \emptyset$ and $\exists I \to r \in S_i$ with $CP_{in}(P_i \cup P_i^{-1}, \{I \to r\}) \neq \emptyset$ and $\exists r'$ with $r \leftrightarrow_{P_i} r'$, we set $R_{i+1} := (R_i \setminus \{I \to r\}) \cup \{I \to r'\}$ and i := i + 1. **Step 2b:** Let $\langle p, q \rangle \in CP_{in}(P_i \cup P_i^{-1}, S_i)$ and perform $q \stackrel{!}{\to}_{S_i} q'$. We set $R_{i+1} := R_i \cup \{p \to q'\}$ and i := i + 1. **Step 3a:** We set $S_i := S_{i-1}$ and $P_i := P_{i-1}$. If $\exists r'$ with $r \leftrightarrow_{P_i} r'$ and a critical pair $\langle p, q \rangle \in CP(\{I \to r\}, P_i \cup P_i^{-1})$ we perform $p \stackrel{!}{\to}_{S_i} p'$ and $q \stackrel{!}{\to}_{S_i} q'$. If $p' \nleftrightarrow_{P \cup P^{-1}} q'$ does not hold, we set $R_{i+1} := (R_i \setminus \{I \to r\} \cup \{I \to r'\})$ and i := i + 1.

Step 2a: If $CP_{in}(P_i \cup P_i^{-1}, S_i) \neq \emptyset$ and $\exists I \rightarrow r \in S_i$ with $CP_{in}(P_i \cup P_i^{-1}, \{I \to r\}) \neq \emptyset$ and $\exists r'$ with $r \leftrightarrow_{P_i} r'$, we set $R_{i+1} := (R_i \setminus \{l \to r\}) \cup \{l \to r'\}$ and i := i+1. **Step 2b:** Let $\langle p, q \rangle \in CP_{in}(P_i \cup P_i^{-1}, S_i)$ and perform $q \xrightarrow{!}_{S_i} q'$. We set $R_{i+1} := R_i \cup \{p \to q'\}$ and i := i + 1. **Step 3a:** We set $S_i := S_{i-1}$ and $P_i := P_{i-1}$. If $\exists r'$ with $r \leftrightarrow_{P_i} r'$ and a critical pair $\langle p, q \rangle \in CP(\{I \rightarrow r\}, P_i \cup P_i^{-1})$ we perform $p \xrightarrow{!} \varsigma_{\cdot} p'$ and $q \xrightarrow{!} \varsigma_{\cdot} q'$. If $p' \nleftrightarrow_{P \sqcup P^{-1}} q'$ does not hold, we set $R_{i+1} := (R_i \setminus \{l \rightarrow r\} \cup \{l \rightarrow r'\} \text{ and } i := i+1.$ **Step 4a:** We set $S_i := S_{i-1}$ and $P_i := P_{i-1}$. If $\exists r'$ with $r \leftrightarrow_{P_i} r'$ and a critical pair $\langle p, q \rangle \in CP(\{l \rightarrow r\}, S_i) \cup CP(S_i, \{l \rightarrow r\})$ we perform $p \xrightarrow{!}{\to}_{S_{r}} p'$ and $q \xrightarrow{!}{\to}_{S_{r}} q'$. If $p' \nleftrightarrow_{P \sqcup P^{-1}} q'$ does not hold, we set $R_{i+1} := (R_i \setminus \{I \rightarrow r\} \cup \{I \rightarrow r'\}$ and i := i+1.

Example (TRS R)

- 1: $1 * y \rightarrow y$ 2: $x * y \rightarrow y * x$
- $3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$

Step 2: $S_0 = \{1,3\}$ and $P_0 = \{2,4\}$ $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Example (TRS R)

1:
$$1 * y \rightarrow y$$
 2: $x * y \rightarrow y * x$

$$3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$

Example (TRS R)

- 1: $1 * y \to y$ 2: $x * y \to y * x$
- $3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$ Add rules: $5: y * 1 \rightarrow y$, $6: f(y) * x \rightarrow f(x * y)$, $7: x * (f(y) * z) \rightarrow f(x * y) * z$

Example (TRS R)

- $1: \quad 1 * y \to y \qquad \qquad 2: \quad x * y \to y * x$
- $3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$

Step 2:
$$S_0 = \{1, 3\}$$
 and $P_0 = \{2, 4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$ Add rules: $5 : y * 1 \rightarrow y$, $6 : f(y) * x \rightarrow f(x * y)$, $7 : x * (f(y) * z) \rightarrow f(x * y) * z$ Step 2: $S_1 = \{1, 3, 5, 6, 7\}$ and $P_1 = \{2, 4\}$

Example (TRS R)

1: $1 * y \to y$ 2: $x * y \to y * x$

$$3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$
Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$
Add rules: $5: y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y),$
 $7: x * (f(y) * z) \rightarrow f(x * y) * z$
Step 2: $S_1 = \{1,3,5,6,7\}$ and $P_1 = \{2,4\}$
 $CP_{in}(P_1 \cup P_1^{-1}, S_1) \neq \emptyset$, so we get no confluence for starting TRS *R*.

Example (TRS R)

1:
$$1 * y \rightarrow y$$
 2: $x * y \rightarrow y * x$

$$3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$

Example (TRS R)

1:
$$1 * y \rightarrow y$$
 2: $x * y \rightarrow y * x$

$$3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$ Add rules: $5: y * 1 \rightarrow y$, $6: f(y) * x \rightarrow f(x * y)$

Example (TRS R)

1:
$$1 * y \rightarrow y$$
 2: $x * y \rightarrow y * x$

$$3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$ Add rules: $5: y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$ Improvement 3a: change 6 to $7: (f(y) * x \rightarrow f(y * x))$ Possible because rule in $P_1: f(x * y) \rightarrow_{P_1} f(y * x)$

Example (TRS R)

1:
$$1 * y \rightarrow y$$
 2: $x * y \rightarrow y * x$

$$3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$ Add rules: $5: y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$ Improvement 3a: change 6 to $7: (f(y) * x \rightarrow f(y * x))$ Possible because rule in $P_1: f(x * y) \rightarrow_{P_1} f(y * x)$ Step 2: $S_2 = \{1, 3, 5, 7\}$ and $P_2 = \{2, 4\}$

Example with Improvements

Example (TRS R)

1:
$$1 * y \rightarrow y$$
 2: $x * y \rightarrow y * x$

$$3: \quad x * f(y) \to f(x * y) \qquad \qquad 4: \quad (x * y) * z \to x * (y * z)$$

Step 2:
$$S_0 = \{1,3\}$$
 and $P_0 = \{2,4\}$
 $CP_{in}(P_0 \cup P_0^{-1}, S_0) = \emptyset$

Step 3: Four non-joinable critical pairs in $CP(S_0, P_0 \cup P_0^{-1})$ Add rules: $5: y * 1 \rightarrow y$, $6: f(y) * x \rightarrow f(x * y)$ Improvement 3a: change 6 to $7: (f(y) * x \rightarrow f(y * x))$ Possible because rule in $P_1: f(x * y) \rightarrow_{P_1} f(y * x)$

Step 2: $S_2 = \{1, 3, 5, 7\}$ and $P_2 = \{2, 4\}$

CP_{in}(P₂ ∪ P₂⁻¹, S₂) = Ø, all critical pairs of CP(S₂, P₂ ∪ P₂⁻¹) and CP(S₂, S₂) are joinable. So starting TRS R is confluent.

Overview

• Literature

Motivation

• Confluence including AC-Rules

- Confluence Criterion
- Improvements

• Confluence Criterion using Parallel Critical Pairs

- Confluence Criterion on linear TRS
- Implementation challenges

• Summary

 $a \rightarrow d$

Limitation of Theorem 1

Example (TRS R)

$$\begin{array}{ll} 1: & f(a,a,a) \to f(c,c,c) & 2: \\ 3: & d \to a & \end{array}$$

• Only possible combination $S_0 = \{1\}$ and $P_0 = \{2,3\}$

Example (TRS R)

$$\begin{array}{ll} 1: & f(a,a,a) \rightarrow f(c,c,c) \\ 3: & d \rightarrow a \end{array}$$

2:
$$a \rightarrow d$$

- Only possible combination $S_0 = \{1\}$ and $P_0 = \{2,3\}$
- But $CP_{in}(P_0 \cup P_0^{-1}, S_0)$ not empty
- Theorem 1 does not help us to show confluence of R.

Definition

Parallel critical pairs originate from parallel overlaps between left-hand sides of n + 1 rewrite rules. Let $l_1 \rightarrow r_1, ..., l_n \rightarrow r_n$ (from a TRS S) and $l' \rightarrow r'$ (from a TRS T) be n + 1 rewrite rules without any common variables and suppose $l_1, ..., l_n$ has a parallel overlap on l' at parallel positions $p_1, ..., p_n$. The mgu for $l_1, ..., l_n$ and $l'|_{p_1}, ..., l'|_{p_n}$ is called σ . The parallel critical pair is the following:

$$\langle I'[r_1,...,r_n]_{p_1,...,p_n}\sigma,r'\sigma\rangle$$

- The set of all parallel critical pairs is written as PCP
- $\langle l'[r_1,...,r_n]_{p_1...,p_n}\sigma,r'\sigma\rangle_X$ if $X = \bigcup_{1 \le i \le n} \mathcal{V}ar(l'\sigma|_{p_i})$

Theorem 2

Theorem (Confluence Criterion using Parallel Critical Pairs)

Let P, S be TRSs such that S is left-linear and terminating and P is reversible. Suppose

(i)
$$CP(S,S) \subseteq \stackrel{*}{\rightarrow}_{S} \circ \iff_{P \cup P^{-1}} \circ \stackrel{*}{\leftarrow}_{S}$$

(ii) for all $\langle u, v \rangle_X \in PCP_{in}(P \cup P^{-1}, S), u \xrightarrow{*}_S u' \nleftrightarrow_{V,P \cup P^{-1}}$ $v' \xleftarrow{*}_S v$ for some u', v' and V satisfying $\bigcup_{q \in V} \mathcal{V}ar(v'|_q) \subseteq X$ (iii) $CP(S, P \cup P^{-1}) \subseteq \xleftarrow{*}_S \circ \Downarrow_{P \cup P^{-1}} \circ \xleftarrow{*}_S$

then $S \cup P$ is confluent.

Example (TRS R)

$$\begin{array}{ll} 1: & f(a,a,a) \rightarrow f(c,c,c) \\ 3: & d \rightarrow a \end{array}$$

2: $a \rightarrow d$

Step 1: Set $R_0 = R$ and i = 0. Step 2: $S_0 = \{1\}$ and $P_0 = \{2,3\}$

Example (TRS R)

 $\begin{array}{lll} 1: & f(a,a,a) \to f(c,c,c) & 2: & a \to d \\ 3: & d \to a & \end{array}$

Step 1: Set $R_0 = R$ and i = 0.

- Step 2: $S_0 = \{1\}$ and $P_0 = \{2,3\}$
- Step 3: The seven elements of $PCP_{in}(P_0 \cup P_0^{-1}, S_0)$ are not joinable. Add all seven new rules and set $R_1 = R_0 \cup \{4, 5, 6, 7, 8, 9, 10\}$ and i = 1.

Example (TRS R)

Step 2: $S_1 = \{1, 4, 5, 6, 7, 8, 9, 10\}$ and $P_1 = \{2, 3\}$

Example (TRS R)

Step 2: $S_1 = \{1, 4, 5, 6, 7, 8, 9, 10\}$ and $P_1 = \{2, 3\}$ Step 3: All pairs in $PCP_{in}(P_1 \cup P_1^{-1}, S_1)$ are joinable.

Example (TRS R)

Step 2: $S_1 = \{1, 4, 5, 6, 7, 8, 9, 10\}$ and $P_1 = \{2, 3\}$ Step 3: All pairs in $PCP_{in}(P_1 \cup P_1^{-1}, S_1)$ are joinable. Step 4: $CP(S_1, P_1 \cup P_1^{-1}) = \emptyset$

Example (TRS R)

$$\begin{array}{lll} 1: & f(a,a,a) \rightarrow f(c,c,c) & 2: & a \rightarrow d \\ 4: & f(a,a,d) \rightarrow f(c,c,c) & 3: & d \rightarrow a \\ 5: & f(a,d,a) \rightarrow f(c,c,c) & 6: & f(d,a,d) \rightarrow f(c,c,c) \\ 7: & f(d,a,a) \rightarrow f(c,c,c) & 8: & f(a,d,d) \rightarrow f(c,c,c) \\ 9: & f(d,d,a) \rightarrow f(c,c,c) & 10: & f(d,d,d) \rightarrow f(c,c,c) \end{array}$$

Step 2: $S_1 = \{1, 4, 5, 6, 7, 8, 9, 10\}$ and $P_1 = \{2, 3\}$ Step 3: All pairs in $PCP_{in}(P_1 \cup P_1^{-1}, S_1)$ are joinable. Step 4: $CP(S_1, P_1 \cup P_1^{-1}) = \emptyset$ Step 5: $CP(S_1, S_1) = \emptyset$ so starting TRS *R* is confluent.

Overview

- Literature
- Motivation

• Confluence including AC-Rules

- Confluence Criterion
- Improvements
- Confluence Criterion using Parallel Critical Pairs
- Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Example (TRS R)

$$1: \quad f(g(x), y) \to g(f(x, y))$$

$$3: \quad f(x, g(y)) \to g(f(x, y))$$

$$\begin{array}{ll} 2: & g(x) \to g(g(x)) \\ 4: & g(g(x)) \to g(x) \end{array}$$

$$5: \quad f(x,y) \to f(y,x)$$

• Only possible combination $S_0 = \{1,3\}$ and $P_0 = \{2,4,5\}$

Example (TRS R)

- 1: $f(g(x), y) \rightarrow g(f(x, y))$ 2: $g(x) \rightarrow g(g(x))$ 4: $g(x) \rightarrow g(g(x))$
- 3: $f(x,g(y)) \rightarrow g(f(x,y))$ 4: $g(g(x)) \rightarrow g(x)$
- $5: \quad f(x,y) \to f(y,x)$
 - (,,,)) / (,,,)
 - Only possible combination $S_0 = \{1,3\}$ and $P_0 = \{2,4,5\}$
 - But: problem occurs in $PCP_{in}(P_0 \cup P_0^{-1}, S_0)$
 - One problematic critical pair $\langle f(g(g(x)), y), g(f(x, y)) \rangle_X$ with $X = \{x\}$
 - Still joinable but harms variable condition $\{x, y\} \nsubseteq \{x\}$

Example (TRS R)

- 1: $f(g(x), y) \rightarrow g(f(x, y))$ 2: $g(x) \rightarrow g(g(x))$ 4: $g(x) \rightarrow g(g(x))$
- 3: $f(x,g(y)) \rightarrow g(f(x,y))$ 4: $g(g(x)) \rightarrow g(x)$
- 5: $f(x,y) \rightarrow f(y,x)$
 - Only possible combination $S_0 = \{1, 3\}$ and $P_0 = \{2, 4, 5\}$
 - But: problem occurs in $PCP_{in}(P_0 \cup P_0^{-1}, S_0)$
 - One problematic critical pair $\langle f(g(g(x)), y), g(f(x, y)) \rangle_X$ with $X = \{x\}$
 - Still joinable but harms variable condition $\{x, y\} \nsubseteq \{x\}$
 - Adding rule $f(g(g(x)), y) \to g(f(x, y))$ not helpful \to looping problem with incremental g's

Theorem 3

Theorem (Confluence Criterion on linear TRSs)

Let P, S be TRSs such that S is linear and terminating and P is reversible. Suppose

(i)
$$CP(S,S) \subseteq \stackrel{*}{\rightarrow}_{S} \circ \stackrel{=}{\leftarrow}_{P \cup P^{-1}} \circ \stackrel{*}{\leftarrow}_{S}$$

(ii) $CP(P \cup P^{-1}, S) \subseteq \stackrel{*}{\rightarrow}_{S} \circ \stackrel{=}{\leftarrow}_{P \cup P^{-1}} \circ \stackrel{*}{\leftarrow}_{S}$
(iii) $CP(S, P \cup P^{-1}) \subseteq \stackrel{*}{\rightarrow}_{S} \circ \stackrel{=}{\rightarrow}_{P \cup P^{-1}} \circ \stackrel{*}{\leftarrow}_{S}$

then $S \cup P$ is confluent.

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Implementation challenges
- Summary

Two main challenges

1. How to find $S_i \cup P_i$ efficiently?

Two main challenges

1. How to find $S_i \cup P_i$ efficiently?

2. How to find the 'best' subset of U?

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Implementation challenges
- Summary

Summary

Figure: Relationship between theorems

• Theorems are useful for proving confluence of TRSs with AC-Rules

Summary

Figure: Relationship between theorems

- Theorems are useful for proving confluence of TRSs with AC-Rules
- Theorems do not cover all confluent TRSs with AC-Rules