Proving Confluence of TRSs with AC-Rules Seminar Report

Benjamin Höller, BSc

Computational Logic Institute of Computer Science

University of Innsbruck

June 20, 2012

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Confluence Criterion
- Improvements
- Confluence Criterion using Parallel Critical Pairs
- Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Literature

目
Takahito Aoto and Yoshinito Toyama
A reduction-preserving completion for proving confluence of non-terminating Term Rewriting Systems, 22nd International Conference on Rewriting Techniques and Applications (RTA'11), pp. 91-106, 2011

图 Takahito Aoto and Yoshinito Toyama
A reduction-preserving completion for proving confluence of non-terminating Term Rewriting Systems, Logical Methods in Computer Science, 2012
－Literature
－Motivation
－Implemence including AC－Rules
－Motion challenges
－Literature
－Confluence including AC－Rules
Implementation challenges
－Literature
－Confluence including AC－Rules
Implementation challenges
－Literature
－Confluence including AC－Rules
Implementation challenges

Literature


```
<2
```

\qquad
\qquad

| 1 |
| :---: | :---: |
| 1 |

－Literature
－Confluence including AC－Rules
Implementation challenges
－Literature
Motivation
Implementation challenges
號

\qquad

\qquad
\qquad
\qquad

Motivation

Confluence:

$\forall a, b, c \exists d$

Horizontal notation: $\stackrel{*}{\leftarrow} \circ \xrightarrow{*} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$

Motivation

Confluence:

$\forall a, b, c \exists d$
How can we prove confluence?

Horizontal notation: $\stackrel{*}{\leftarrow} \circ \xrightarrow{*} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$

Motivation

Confluence:

$\forall a, b, c \exists d$
How can we prove confluence?

- Newman's Lemma is often used
- = termination + local confluence

Horizontal notation: $\stackrel{*}{\leftarrow} \circ \xrightarrow{*} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$

Motivation

Confluence:

$\forall a, b, c \exists d$
How can we prove confluence?

- Newman's Lemma is often used
- = termination + local confluence
- But: What about non-terminating TRSs?

Horizontal notation: $\stackrel{*}{\leftarrow} \circ \xrightarrow{*} \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{*}{\leftarrow}$

Motivation

Example (TRS R)

$$
\begin{array}{lll}
1: & x * 1 \rightarrow x & 2: \\
3: & x * 0 \rightarrow 0 & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Motivation

Example (TRS R)

$$
\begin{array}{lll}
1: & x * 1 \rightarrow x & 2: \\
3: & x * 0 \rightarrow 0 & 4 * y \rightarrow y * x \\
3: & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Maybe someone can give me a termination proof?

Motivation

Example (TRS R)
1: $\quad x * 1 \rightarrow x$
2: $\quad x * y \rightarrow y * x$
3: $\quad x * 0 \rightarrow 0$
4: $\quad(x * y) * z \rightarrow x *(y * z)$

Maybe someone can give me a termination proof?
Newman's Lemma fails, because of AC-Rules. But: R is confluent as we see later

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Confluence Criterion
- Improvements
- Confluence Criterion using Parallel Critical Pairs
- Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Preliminaries

Let R, S be TRSs and s, t two terms:

- $s \stackrel{!}{\rightarrow}_{R} t$ if $s \xrightarrow{*}_{R} t$ and $t \in N F(R)$
- $s \omega_{R} t$ denotes a parallel R-step from s to t
- $s \#_{R}$ US t if $s \prod_{R} t$ or $s \prod_{s} t$
- R is reversible if for all rewrite rules $I \rightarrow r \in R: r \xrightarrow{*}_{R} /$ holds
- $C P_{\text {out }}\left(C P_{\text {in }}\right)$ is the set of critical pairs on position $=\epsilon(>\epsilon)$

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Confluence Criterion
- Improvements
- Confluence Criterion using Parallel Critical Pairs
- Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Theorem 1

Theorem (Confluence Criterion)

Let S, P be TRSs such that S is left-linear and terminating and P is reversible. Suppose
(i) $C P(S, S) \subseteq \xrightarrow{*} S \circ \stackrel{+T}{P \cup P-1 \circ \stackrel{*}{\leftarrow} S}$
(ii) $C P_{\text {in }}\left(P \cup P^{-1}, S\right)=\emptyset$
(iii) $C P\left(S, P \cup P^{-1}\right) \subseteq \stackrel{*}{\rightarrow} S \circ H_{P \cup P-1} \circ \stackrel{*}{\leftarrow} S$
then $S \cup P$ is confluent.

Step by step procedure

Input: TRS R
Output: Success or Failure

Step 1: Set $R_{0}:=R$ and $i:=0$.
Step 2: Choose $S_{i} \cup P_{i}=R_{i}$ such that S_{i} is left-linear and terminating, P_{i} is reversible and $C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right)=\emptyset$. If S_{i} and P_{i} do not exist return Failure.
Step 3: Let $U:=\emptyset$. For each $\langle p, q\rangle \in C P\left(S_{i}, P_{i} \cup P_{i}^{-1}\right)$ perform $p \xrightarrow{!} s_{i} p^{\prime}$ and $q \xrightarrow{!} s_{i} q^{\prime}$. If $p^{\prime} \rightarrow p_{p \cup P-1} q^{\prime}$ does not hold, set $U:=U \cup\left\{q \rightarrow p^{\prime}\right\}$. If $U \neq \emptyset$ choose non-empty $U^{\prime} \subseteq U$ and continue with Step 2 with $R_{i+1}:=R_{i} \cup U^{\prime}$ and $i:=i+1$.
Step 4: Let $U:=\emptyset$. For each $\langle p, q\rangle \in C P\left(S_{i}, S_{i}\right)$ perform $p \xrightarrow{!} s_{i} p^{\prime}$ and $q \xrightarrow{!} s_{i} q^{\prime}$. If p^{\prime} सr $_{p \cup p-1} q^{\prime}$ does not hold, set $U:=U \cup\left\{p^{\prime} \approx q^{\prime}\right\}$. If $U=\emptyset$ return Success. Otherwise choose at least one rewrite rule of $U^{\prime} \subseteq\left(U \cup U^{-1}\right)$ $\cap \stackrel{*}{\leftrightarrow} P_{i}$ and continue with Step 2 with $R_{i+1}:=R_{i} \cup U^{\prime}$ and $i:=i+1$.

Example for Theorem 1

Example (TRS R)

$$
\begin{array}{lll}
1: & x * 1 \rightarrow x & 2: \\
3: & x * 0 \rightarrow 0 & 4: \\
\hline: & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 1: Set $R_{0}=R$ and $i=0$.

Example for Theorem 1

Example (TRS R)

$$
\begin{array}{lll}
1: & x * 1 \rightarrow x & 2: \\
3: & x * 0 \rightarrow 0 & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 1: Set $R_{0}=R$ and $i=0$.
Step 2: $S_{0}=\{1,3\}, P_{0}=\{2,4\}$ and $C P_{\text {in }}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset$.

Example for Theorem 1

Example (TRS R)

$$
\begin{array}{lll}
1: & x * 1 \rightarrow x & 2: \\
3: & x * 0 \rightarrow 0 & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 1: Set $R_{0}=R$ and $i=0$.
Step 2: $S_{0}=\{1,3\}, P_{0}=\{2,4\}$ and $C P_{\text {in }}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset$.
Step 3: Four critical pairs of $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)=\{$
$\langle x, 1 * x\rangle,\langle 0,0 * x\rangle,\langle x * z, x *(1 * z)\rangle,\langle x * y, x *(y * 1)\rangle$, $\langle x * y,(x * y) * 1\rangle,\langle 0 * z, x *(0 * z)\rangle,\langle 0, x *(y * 0)\rangle$, $\langle x * 0,(x * y) * 10\rangle\}$ are joinable and four are not joinable \rightarrow add two new rules. Set $R_{1}=R_{0} \cup\{5,6\}$ and $i=1$.

Example for Theorem 1

Example (TRS R)

$$
\begin{array}{llll}
1: & x * 1 \rightarrow x & 2: & x * y \rightarrow y * x \\
3: & x * 0 \rightarrow 0 & 4: & (x * y) * z \rightarrow x *(y * z) \\
5: & 1 * x \rightarrow x & 6: & 0 * x \rightarrow 0
\end{array}
$$

Step 2: $S_{1}=\{1,3,5,6\}, P_{1}=\{2,4\}$ and $C P_{\text {in }}\left(P_{1} \cup P_{1}^{-1}, S_{1}\right)=\emptyset$.

Example for Theorem 1

Example (TRS R)

$$
\begin{array}{llll}
1: & x * 1 \rightarrow x & 2: & x * y \rightarrow y * x \\
3: & x * 0 \rightarrow 0 & 4: & (x * y) * z \rightarrow x *(y * z) \\
5: & 1 * x \rightarrow x & 6: & 0 * x \rightarrow 0
\end{array}
$$

Step 2: $S_{1}=\{1,3,5,6\}, P_{1}=\{2,4\}$ and $C P_{\text {in }}\left(P_{1} \cup P_{1}^{-1}, S_{1}\right)=\emptyset$. Step 3: All critical pairs of $C P\left(S_{1}, P_{1} \cup P_{1}^{-1}\right)$ are joinable.

Example for Theorem 1

Example (TRS R)

$$
\begin{array}{llll}
1: & x * 1 \rightarrow x & 2: & x * y \rightarrow y * x \\
3: & x * 0 \rightarrow 0 & 4: & (x * y) * z \rightarrow x *(y * z) \\
5: & 1 * x \rightarrow x & 6: & 0 * x \rightarrow 0
\end{array}
$$

Step 2: $S_{1}=\{1,3,5,6\}, P_{1}=\{2,4\}$ and $C P_{\text {in }}\left(P_{1} \cup P_{1}^{-1}, S_{1}\right)=\emptyset$.
Step 3: All critical pairs of $C P\left(S_{1}, P_{1} \cup P_{1}^{-1}\right)$ are joinable.
Step 4: All critical pairs of $C P\left(S_{1}, S_{1}\right)$ are joinable. So starting TRS R is confluent.

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Confluence Criterion
- Improvements
- Confluence Criterion using Parallel Critical Pairs
- Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Improvements of step by step procedure

Step 2a: If $C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right) \neq \emptyset$ and $\exists I \rightarrow r \in S_{i}$ with $C P_{i n}\left(P_{i} \cup P_{i}^{-1},\{l \rightarrow r\}\right) \neq \emptyset$ and $\exists r^{\prime}$ with $r \leftrightarrow P_{i} r^{\prime}$, we set $R_{i+1}:=\left(R_{i} \backslash\{I \rightarrow r\}\right) \cup\left\{I \rightarrow r^{\prime}\right\}$ and $i:=i+1$.

Improvements of step by step procedure

Step 2a: If $C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right) \neq \emptyset$ and $\exists I \rightarrow r \in S_{i}$ with $C P_{i n}\left(P_{i} \cup P_{i}^{-1},\{I \rightarrow r\}\right) \neq \emptyset$ and $\exists r^{\prime}$ with $r \leftrightarrow P_{i} r^{\prime}$, we set $R_{i+1}:=\left(R_{i} \backslash\{I \rightarrow r\}\right) \cup\left\{I \rightarrow r^{\prime}\right\}$ and $i:=i+1$.
Step 2b: Let $\langle p, q\rangle \in C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right)$ and perform $q \xrightarrow{!} s_{i} q^{\prime}$. We set $R_{i+1}:=R_{i} \cup\left\{p \rightarrow q^{\prime}\right\}$ and $i:=i+1$.

Improvements of step by step procedure

Step 2a: If $C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right) \neq \emptyset$ and $\exists I \rightarrow r \in S_{i}$ with $C P_{i n}\left(P_{i} \cup P_{i}^{-1},\{I \rightarrow r\}\right) \neq \emptyset$ and $\exists r^{\prime}$ with $r \leftrightarrow P_{P_{i}} r^{\prime}$, we set $R_{i+1}:=\left(R_{i} \backslash\{I \rightarrow r\}\right) \cup\left\{I \rightarrow r^{\prime}\right\}$ and $i:=i+1$.
Step 2b: Let $\langle p, q\rangle \in C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right)$ and perform $q \stackrel{!}{\rightarrow} S_{i} q^{\prime}$. We set $R_{i+1}:=R_{i} \cup\left\{p \rightarrow q^{\prime}\right\}$ and $i:=i+1$.
Step 3a: We set $S_{i}:=S_{i-1}$ and $P_{i}:=P_{i-1}$. If $\exists r^{\prime}$ with $r \leftrightarrow p_{i} r^{\prime}$ and a critical pair $\langle p, q\rangle \in C P\left(\{I \rightarrow r\}, P_{i} \cup P_{i}^{-1}\right)$ we perform $p \xrightarrow{!} s_{i} p^{\prime}$ and $q \xrightarrow{!} s_{i} q^{\prime}$. If $p^{\prime} \rightarrow P \cup P^{-1} q^{\prime}$ does not hold, we set $R_{i+1}:=\left(R_{i} \backslash\{I \rightarrow r\} \cup\left\{I \rightarrow r^{\prime}\right\}\right.$ and $i:=i+1$.

Improvements of step by step procedure

Step 2a: If $C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right) \neq \emptyset$ and $\exists I \rightarrow r \in S_{i}$ with $C P_{i n}\left(P_{i} \cup P_{i}^{-1},\{l \rightarrow r\}\right) \neq \emptyset$ and $\exists r^{\prime}$ with $r \leftrightarrow P_{i} r^{\prime}$, we set $R_{i+1}:=\left(R_{i} \backslash\{I \rightarrow r\}\right) \cup\left\{I \rightarrow r^{\prime}\right\}$ and $i:=i+1$.
Step 2b: Let $\langle p, q\rangle \in C P_{i n}\left(P_{i} \cup P_{i}^{-1}, S_{i}\right)$ and perform $q \stackrel{!}{\rightarrow} S_{i} q^{\prime}$. We set $R_{i+1}:=R_{i} \cup\left\{p \rightarrow q^{\prime}\right\}$ and $i:=i+1$.
Step 3a: We set $S_{i}:=S_{i-1}$ and $P_{i}:=P_{i-1}$. If $\exists r^{\prime}$ with $r \leftrightarrow p_{i} r^{\prime}$ and a critical pair $\langle p, q\rangle \in C P\left(\{I \rightarrow r\}, P_{i} \cup P_{i}^{-1}\right)$ we perform $p \xrightarrow{!} s_{i} p^{\prime}$ and $q \xrightarrow{!} s_{i} q^{\prime}$. If $p^{\prime} \rightarrow P_{P \cup P^{-1}} q^{\prime}$ does not hold, we set $R_{i+1}:=\left(R_{i} \backslash\{I \rightarrow r\} \cup\left\{I \rightarrow r^{\prime}\right\}\right.$ and $i:=i+1$.
Step 4a: We set $S_{i}:=S_{i-1}$ and $P_{i}:=P_{i-1}$. If $\exists r^{\prime}$ with $r \leftrightarrow p_{i} r^{\prime}$ and a critical pair $\langle p, q\rangle \in C P\left(\{I \rightarrow r\}, S_{i}\right) \cup C P\left(S_{i},\{I \rightarrow r\}\right)$ we perform $p \xrightarrow{!} s_{i} p^{\prime}$ and $q \stackrel{!}{\rightarrow} s_{i} q^{\prime}$. If p^{\prime} सr $p \cup P-1 q^{\prime}$ does not hold, we set $R_{i+1}:=\left(R_{i} \backslash\{I \rightarrow r\} \cup\left\{I \rightarrow r^{\prime}\right\}\right.$ and $i:=i+1$.

Example without Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
3: & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

$$
\begin{aligned}
\text { Step 2: } & S_{0}=\{1,3\} \text { and } P_{0}=\{2,4\} \\
& C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
\end{aligned}
$$

Example without Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
3: & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$

$$
C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
$$

Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$

Example without Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
3:(x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$

$$
C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
$$

Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$
Add rules: $5: y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$, $7: x *(f(y) * z) \rightarrow f(x * y) * z$

Example without Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$

$$
C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
$$

Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$
Add rules: $5: y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$, $7: x *(f(y) * z) \rightarrow f(x * y) * z$
Step 2: $S_{1}=\{1,3,5,6,7\}$ and $P_{1}=\{2,4\}$

Example without Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
3: & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$
$C P_{\text {in }}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset$
Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$
Add rules: $5: y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$,
$7: x *(f(y) * z) \rightarrow f(x * y) * z$
Step 2: $S_{1}=\{1,3,5,6,7\}$ and $P_{1}=\{2,4\}$
$C P_{\text {in }}\left(P_{1} \cup P_{1}^{-1}, S_{1}\right) \neq \emptyset$, so we get no confluence for starting TRS R.

Example with Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$

$$
C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
$$

Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$

Example with Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
3: & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$

$$
C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
$$

Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$
Add rules: $5: y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$

Example with Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$

$$
C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
$$

Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$
Add rules: 5: $y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$ Improvement 3a: change 6 to $7:(f(y) * x \rightarrow f(y * x))$ Possible because rule in $P_{1}: f(x * y) \rightarrow_{P_{1}} f(y * x)$

Example with Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$ $C P_{\text {in }}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset$
Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$
Add rules: 5: $y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$ Improvement 3a: change 6 to $7:(f(y) * x \rightarrow f(y * x))$
Possible because rule in $P_{1}: f(x * y) \rightarrow_{P_{1}} f(y * x)$
Step 2: $S_{2}=\{1,3,5,7\}$ and $P_{2}=\{2,4\}$

Example with Improvements

Example (TRS R)

$$
\begin{array}{lll}
1: & 1 * y \rightarrow y & 2: \\
3: & x * f(y) \rightarrow f(x * y) & 4: \\
\hline & (x * y) * z \rightarrow x *(y * z)
\end{array}
$$

Step 2: $S_{0}=\{1,3\}$ and $P_{0}=\{2,4\}$

$$
C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)=\emptyset
$$

Step 3: Four non-joinable critical pairs in $C P\left(S_{0}, P_{0} \cup P_{0}^{-1}\right)$
Add rules: 5: $y * 1 \rightarrow y, 6: f(y) * x \rightarrow f(x * y)$ Improvement 3a: change 6 to $7:(f(y) * x \rightarrow f(y * x))$ Possible because rule in $P_{1}: f(x * y) \rightarrow_{P_{1}} f(y * x)$
Step 2: $S_{2}=\{1,3,5,7\}$ and $P_{2}=\{2,4\}$

- $C P_{\text {in }}\left(P_{2} \cup P_{2}^{-1}, S_{2}\right)=\emptyset$, all critical pairs of $C P\left(S_{2}, P_{2} \cup P_{2}^{-1}\right)$ and $C P\left(S_{2}, S_{2}\right)$ are joinable. So starting TRS R is confluent.

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Confluence Criterion
- Improvements
- Confluence Criterion using Parallel Critical Pairs
- Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Limitation of Theorem 1

Example (TRS R)

$$
\begin{array}{ll}
1: & f(a, a, a) \rightarrow f(c, c, c) \\
3: & d \rightarrow a
\end{array} \quad 2: \quad a \rightarrow d
$$

- Only possible combination $S_{0}=\{1\}$ and $P_{0}=\{2,3\}$

Limitation of Theorem 1

Example (TRS R)

$$
\begin{array}{ll}
1: & f(a, a, a) \rightarrow f(c, c, c) \\
3: & d \rightarrow a
\end{array} \quad 2: \quad a \rightarrow d
$$

- Only possible combination $S_{0}=\{1\}$ and $P_{0}=\{2,3\}$
- But $C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)$ not empty
- Theorem 1 does not help us to show confluence of R.

Parallel critical pairs

Definition

Parallel critical pairs originate from parallel overlaps between left-hand sides of $n+1$ rewrite rules. Let $l_{1} \rightarrow r_{1}, \ldots, I_{n} \rightarrow r_{n}$ (from a TRS S) and $I^{\prime} \rightarrow r^{\prime}$ (from a TRS T) be $n+1$ rewrite rules without any common variables and suppose I_{1}, \ldots, I_{n} has a parallel overlap on I^{\prime} at parallel positions p_{1}, \ldots, p_{n}. The mgu for l_{1}, \ldots, I_{n} and $\left.I^{\prime}\right|_{p_{1}}, \ldots,\left.I^{\prime}\right|_{p_{n}}$ is called σ. The parallel critical pair is the following:

$$
\left\langle I^{\prime}\left[r_{1}, \ldots, r_{n}\right]_{p_{1}, \ldots, p_{n}} \sigma, r^{\prime} \sigma\right\rangle
$$

Parallel critical pairs

- The set of all parallel critical pairs is written as $P C P$
- $\left\langle I^{\prime}\left[r_{1}, \ldots, r_{n}\right]_{p_{1} \ldots, p_{n}} \sigma, r^{\prime} \sigma\right\rangle_{X}$ if $X=\bigcup_{1 \leq i \leq n} \operatorname{Var}\left(\left.I^{\prime} \sigma\right|_{p_{i}}\right)$

Theorem 2

Theorem (Confluence Criterion using Parallel Critical Pairs)

Let P, S be TRSs such that S is left-linear and terminating and P is reversible. Suppose
(i) $C P(S, S) \subseteq \xrightarrow{*} S \circ \quad$ + $P \cup P-1 \circ \stackrel{*}{\leftarrow} s$
(ii) for all $\langle u, v\rangle_{X} \in P C P_{i n}\left(P \cup P^{-1}, S\right), u \xrightarrow{*} S u^{\prime} \quad+1 v, P \cup P^{-1}$ $v^{\prime} \stackrel{*}{\leftarrow} s v$ for some u^{\prime}, v^{\prime} and V satisfying $\bigcup_{q \in V} \operatorname{Var}\left(\left.v^{\prime}\right|_{q}\right) \subseteq X$
(iii) $C P\left(S, P \cup P^{-1}\right) \subseteq \stackrel{*}{\rightarrow} S \circ \quad \boxplus P \cup P-1 \circ \stackrel{*}{\leftarrow} S$
then $S \cup P$ is confluent.

Example for Theorem 2

Example (TRS R)

$$
\begin{array}{ll}
1: & f(a, a, a) \rightarrow f(c, c, c) \\
3: & d \rightarrow a
\end{array}
$$

Step 1: Set $R_{0}=R$ and $i=0$.
Step 2: $S_{0}=\{1\}$ and $P_{0}=\{2,3\}$

Example for Theorem 2

Example (TRS R)

$$
\begin{array}{ll}
1: & f(a, a, a) \rightarrow f(c, c, c) \\
3: & d \rightarrow a
\end{array}
$$

Step 1: Set $R_{0}=R$ and $i=0$.
Step 2: $S_{0}=\{1\}$ and $P_{0}=\{2,3\}$
Step 3: The seven elements of $P C P_{\text {in }}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)$ are not joinable. Add all seven new rules and set $R_{1}=R_{0} \cup\{4,5,6,7,8,9,10\}$ and $i=1$.

Example for Theorem 2

Example (TRS R)

$$
\begin{array}{llll}
1: & f(a, a, a) \rightarrow f(c, c, c) & 2: & a \rightarrow d \\
4: & f(a, a, d) \rightarrow f(c, c, c) & 3: & d \rightarrow a \\
5: & f(a, d, a) \rightarrow f(c, c, c) & 6: & f(d, a, d) \rightarrow f(c, c, c) \\
7: & f(d, a, a) \rightarrow f(c, c, c) & 8: & f(a, d, d) \rightarrow f(c, c, c) \\
9: & f(d, d, a) \rightarrow f(c, c, c) & 10: & f(d, d, d) \rightarrow f(c, c, c)
\end{array}
$$

Step 2: $S_{1}=\{1,4,5,6,7,8,9,10\}$ and $P_{1}=\{2,3\}$

Example for Theorem 2

Example (TRS R)

1: $\quad f(a, a, a) \rightarrow f(c, c, c)$
2: $\quad a \rightarrow d$
4: $\quad f(a, a, d) \rightarrow f(c, c, c)$
3: $\quad d \rightarrow a$
5: $\quad f(a, d, a) \rightarrow f(c, c, c)$
6: $\quad f(d, a, d) \rightarrow f(c, c, c)$
7: $\quad f(d, a, a) \rightarrow f(c, c, c)$
8: $\quad f(a, d, d) \rightarrow f(c, c, c)$
9: $\quad f(d, d, a) \rightarrow f(c, c, c)$
10: $f(d, d, d) \rightarrow f(c, c, c)$

Step 2: $S_{1}=\{1,4,5,6,7,8,9,10\}$ and $P_{1}=\{2,3\}$
Step 3: All pairs in $P C P_{\text {in }}\left(P_{1} \cup P_{1}^{-1}, S_{1}\right)$ are joinable.

Example for Theorem 2

Example (TRS R)

1: $\quad f(a, a, a) \rightarrow f(c, c, c)$
2: $\quad a \rightarrow d$
4: $\quad f(a, a, d) \rightarrow f(c, c, c)$
3: $\quad d \rightarrow a$
5: $\quad f(a, d, a) \rightarrow f(c, c, c)$
6: $\quad f(d, a, d) \rightarrow f(c, c, c)$
7: $\quad f(d, a, a) \rightarrow f(c, c, c)$
8: $\quad f(a, d, d) \rightarrow f(c, c, c)$
9: $\quad f(d, d, a) \rightarrow f(c, c, c)$
10: $f(d, d, d) \rightarrow f(c, c, c)$

Step 2: $S_{1}=\{1,4,5,6,7,8,9,10\}$ and $P_{1}=\{2,3\}$
Step 3: All pairs in $P C P_{\text {in }}\left(P_{1} \cup P_{1}^{-1}, S_{1}\right)$ are joinable.
Step 4: $C P\left(S_{1}, P_{1} \cup P_{1}^{-1}\right)=\emptyset$

Example for Theorem 2

Example (TRS R)

1: $\quad f(a, a, a) \rightarrow f(c, c, c)$
2: $\quad a \rightarrow d$
4: $\quad f(a, a, d) \rightarrow f(c, c, c)$
3: $\quad d \rightarrow a$
5: $\quad f(a, d, a) \rightarrow f(c, c, c)$
6: $\quad f(d, a, d) \rightarrow f(c, c, c)$
7: $\quad f(d, a, a) \rightarrow f(c, c, c)$
8: $\quad f(a, d, d) \rightarrow f(c, c, c)$
9: $\quad f(d, d, a) \rightarrow f(c, c, c)$
10: $f(d, d, d) \rightarrow f(c, c, c)$

Step 2: $S_{1}=\{1,4,5,6,7,8,9,10\}$ and $P_{1}=\{2,3\}$
Step 3: All pairs in $P C P_{\text {in }}\left(P_{1} \cup P_{1}^{-1}, S_{1}\right)$ are joinable.
Step 4: $C P\left(S_{1}, P_{1} \cup P_{1}^{-1}\right)=\emptyset$
Step 5: $C P\left(S_{1}, S_{1}\right)=\emptyset$ so starting TRS R is confluent.

Overview

- Literature
- Motivation
- Confluence including AC-Rules
- Confluence Criterion
- Improvements
- Confluence Criterion using Parallel Critical Pairs
- Confluence Criterion on linear TRS
- Implementation challenges
- Summary

Limitation of Theorem 2

Example (TRS R)

$$
\begin{array}{lll}
1: & f(g(x), y) \rightarrow g(f(x, y)) & 2: \\
3: & f(x, g(y)) \rightarrow g(x) \rightarrow g(x(x)) \\
5: & f(x, y) \rightarrow f(y, x) & 4: \\
\hline & & g(g(x)) \rightarrow g(x) \\
\end{array}
$$

- Only possible combination $S_{0}=\{1,3\}$ and $P_{0}=\{2,4,5\}$

Limitation of Theorem 2

Example (TRS R)

$\begin{array}{lll}1: & f(g(x), y) \rightarrow g(f(x, y)) & 2: \\ 3: & f(x, g(y)) \rightarrow g(f(x, y)) & 4: \\ 5: & f(x, y) \rightarrow f(y, x) & g(g(x)) \rightarrow g(x) \\ & & \end{array}$

- Only possible combination $S_{0}=\{1,3\}$ and $P_{0}=\{2,4,5\}$
- But: problem occurs in $P C P_{\text {in }}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)$
- One problematic critical pair $\langle f(g(g(x)), y), g(f(x, y))\rangle_{X}$ with $X=\{x\}$
- Still joinable but harms variable condition $\{x, y\} \nsubseteq\{x\}$

Limitation of Theorem 2

Example (TRS R)

$\begin{array}{lll}1: & f(g(x), y) \rightarrow g(f(x, y)) & 2: \\ 3: & f(x, g(y)) \rightarrow g(f(x, y)) & 4: \\ 5: & f(x, y) \rightarrow f(y, x) & g(g(x)) \rightarrow g(x(x)) \\ & & \end{array}$

- Only possible combination $S_{0}=\{1,3\}$ and $P_{0}=\{2,4,5\}$
- But: problem occurs in $P C P_{i n}\left(P_{0} \cup P_{0}^{-1}, S_{0}\right)$
- One problematic critical pair $\langle f(g(g(x)), y), g(f(x, y))\rangle_{X}$ with $X=\{x\}$
- Still joinable but harms variable condition $\{x, y\} \nsubseteq\{x\}$
- Adding rule $f(g(g(x)), y) \rightarrow g(f(x, y))$ not helpful \rightarrow looping problem with incremental $g^{\prime} s$

Theorem 3

Theorem (Confluence Criterion on linear TRSs)

Let P, S be TRSs such that S is linear and terminating and P is reversible. Suppose
(i) $C P(S, S) \subseteq \stackrel{*}{\rightarrow} S \circ \stackrel{=}{\leftarrow}_{P \cup P-1} \circ \stackrel{*}{\leftarrow} S$
(ii) $C P\left(P \cup P^{-1}, S\right) \subseteq \stackrel{*}{\rightarrow} S \circ \stackrel{=}{\leftarrow} P \cup P-1 \circ \stackrel{*}{\leftarrow} S^{\leftarrow}$
(iii) $C P\left(S, P \cup P^{-1}\right) \subseteq \stackrel{*}{\rightarrow} \circ \stackrel{=}{=}_{P \cup P-1} \circ \stackrel{*}{\leftarrow}_{\leftarrow} S$
then $S \cup P$ is confluent.

- Literature
- Implivation
Confluence including AC-Rules
Benijmin Höler, BSC (CL © ICS © UIBK) Proving Confluence of TRSs with

Literature
Motivation
Implementation challenges
Summary
Benjamin Höller, BSc (CL © ICS © UIBK) Proving Confluence of TRSs with AC

Abstract

 $+$ \square

Literature

- Implivation
Sonfluence including AC-Rules
Benjiamin Höller, BSC (CL © ICS © UIBK) Proving Confluence of TRSs with AC-Rules

ure ence including AC-Rules nentation challenges ary CL @ ICS © UIBK) Proving Confluence of TRSs with AC-Rules

 ence including AC-Rules
 ©

\qquad

-

\qquad
\qquad

- Literature

- Literature

\title{ \qquad

 \qquad

 - Motivation Confluence including AC-Rules
 - Motivation Confluence including AC-Rules
 - Motivation Confluence including AC-Rules
 }

Two main challenges

1. How to find $S_{i} \cup P_{i}$ efficiently?

Two main challenges

1. How to find $S_{i} \cup P_{i}$ efficiently?
2. How to find the 'best' subset of U ?
（
相
\qquad
\qquad
\qquad
\qquad

都

\qquad號

\begin{abstract}
Literature Motivation Confluence including AC－Rules
Literature
Motivation
－Implemfluence including AC－Rules
－Summary

\qquad

\author{

\qquad

}

－Literature
－Confluence including AC－Rules
－Implementation challenges
－Summary

\author{

eratur

 －

 ire
 are cion $\begin{aligned} & \text { once including AC－Rules } \\ & \text { mentation challenges } \\ & \text { ry }\end{aligned}$

 erature
 }
verview

 Cw
overview
verview
View
View
View

\qquad

Abstract

-2

Abstract

\qquad

 ＿
\end{abstract}

A
 2

Summary

Figure: Relationship between theorems

- Theorems are useful for proving confluence of TRSs with AC-Rules

Summary

Figure: Relationship between theorems

- Theorems are useful for proving confluence of TRSs with AC-Rules
- Theorems do not cover all confluent TRSs with AC-Rules

