Reasoning about constants in Nominal Isabelle

Formalizing the Second Fixed Point Theorem

24 April, Seminar 3

Outline

- Nominal Logic
- Nominal Isabelle and Reasoning
- Defining nominal constants and functions
- Possible approaches
- Second Fixed Point Theorem
- Book Statement
- Second Fixed Point Theorem
- Conclusion

Nominal Isabelle

- Framework for constructing α-equated terms

$$
\mathrm{t}::=\mathrm{x}|\mathrm{tt}| \lambda \mathrm{x} . \mathrm{t}
$$

- Definitional extension of Isabelle/HOL
- Automatically derives a reasoning infrastructure
- free variables (support and freshness)
- renaming
- strong induction principle

Nominal Isabelle (history)

Nominal has been used successfully in formalisations of:

- π-calculus, ψ-calculus, spi-calculus
[BengtsonParow07, BengtsonParow09, KahsaiMiculan]
- Typed Scheme
[TobinHochstadtFelleisen08]
- Equivalence checking algorithm for LF
[UrbanCheneyBerghofer08]
- Strong normalisation of cut-elimination in classical logic
[UrbanZhu08]
- Formalizations in the locally-nameless approach to binding
[SatoPollack10]
- Compiler Verification
[HellerPhd10]
- Mini X-Query
nominal_datatype lam =
Var name
App lam lam
Lam x::name l::lam binds x in I ($\left.\left.\lambda_{-}.\right)^{\prime}\right)$

```
nominal_primrec
    height :: lam }=>\mathrm{ int
where
    height (Var x) = 1
| height (App t1 t2) = max (height t1) (height t2) +1
height ( }\lambda\textrm{x}.\textrm{t})=\mathrm{ height t +1
```

nominal_primrec
subst :: lam \Rightarrow narne $\Rightarrow \operatorname{lam} \Rightarrow \operatorname{lam} \quad(\ldots[\because=])$
where
$(\operatorname{Var} x)[y::=s]=($ if $x=y$ then s else $(\operatorname{Var} x))$
$\mid(\operatorname{App} t 1 \mathrm{t} 2)[\mathrm{y}::=\mathrm{s}]=\operatorname{App}(\mathrm{t} 1[\mathrm{y}::=\mathrm{s}])(\mathrm{t} 2[\mathrm{y}::=\mathrm{s}])$
| atom $x \sharp(y, s) \Longrightarrow(\lambda x . t)[y::=s]=\lambda x$. $(t[y::=s])$

```
nominal_datatype lam =
    Var name
    App lam lam
    Lam x::name l::lam binds x in I (\lambda_._)
nominal_primrec
    height :: lam = int
where
    height (Var x) = 1
| height (App t1 t2) = max (height t1) (height t2) + 1
| height ( }\lambda\textrm{x}.\textrm{t})=\mathrm{ height t + 1
nominal_primrec
    subst :: lam }=>\mathrm{ name }=>\mathrm{ lam }=>\mathrm{ lam }\quad(_[_::= ]
where
    (Var x)[y ::= s] = (if x = y then s else (Var x))
| (App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])
| atom x # (y,s)\Longrightarrow(\lambdax.t)[y ::= s] = \lambdax. (t[y ::= s])
```

nominal_datatype lam =
Var name
App lam lam
Lam x::name l::lam binds x in $\left.1 \quad\left(\lambda_{-} \cdot\right)^{\prime}\right)$
nominal_primrec
height :: lam \Rightarrow int
where
height $(\operatorname{Var} x)=1$
\mid height $($ App t1 t2 $)=\max ($ height t 1$)($ height t 2$)+1$
\mid height $(\lambda \mathrm{x} . \mathrm{t})=$ height $\mathrm{t}+1$
nominal_primrec

$$
\text { subst }:: \text { lam } \Rightarrow \text { name } \Rightarrow \text { lam } \Rightarrow \text { lam } \quad\left(__{-}\left[:==_{-}\right]\right)
$$

where
$(\operatorname{Var} x)[y::=\mathrm{s}]=($ if $\mathrm{x}=\mathrm{y}$ then s else $(\operatorname{Var} \mathrm{x})$)
$\mid($ App t 1 t 2$)[\mathrm{y}::=\mathrm{s}]=\operatorname{App}(\mathrm{t} 1[\mathrm{y}::=\mathrm{s}])(\mathrm{t} 2[\mathrm{y}::=\mathrm{s}])$
\mid atom $x \sharp(y, s) \Longrightarrow(\lambda x . t)[y::=s]=\lambda x .(t[y::=s])$

```
lemma height_ge_one: 1 \ (height e)
    by (induct e rule: lam.induct) (simp_all)
```

theorem height $(\mathrm{e}[\mathrm{x}::=\mathrm{e}$ ' $]) \leq$ height e-1 + height e '
proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have $1 \leq$ height e' using height_ge_one by simp
then show height (Var y[x::=e']) \leq height (Var y$)-1+$ height e' by simp
next
case (App e1 e2)
have ih1: height $\left(e 1\left[x::=e^{\prime}\right]\right) \leq\left(\right.$ height e1) $-1+$ height e^{\prime}
and ih2: height $(\mathrm{e} 2[\mathrm{x}::=\mathrm{e} \cdot]) \leq($ height e 2$)-1+$ height e' by fact+
then show height $((A p p e 1$ e2) $[\mathrm{x}::=\mathrm{e} ']) \leq$ height (App e1 e2) $-1+$ height e'
by simp
next
case (Lam y e1)
have ih: height $\left(e 1\left[x::=e^{\prime}\right]\right) \leq$ height e1-1 + height e^{\prime} by fact
have vc: atom $y \sharp x$ atom $y \sharp e^{\prime}$ by fact+
show height $\left((\lambda y . e 1)\left[x::=e^{\prime}\right]\right) \leq$ height $(\lambda y . e 1)-1+$ height e^{\prime}
using ih vc by simp
qed
lemma height_ge_one: $1 \leq$ (height e)
by (induct e rule: lam.induct) (simp_all)
theorem height $\left(e\left[x::=e^{\prime}\right]\right) \leq$ height e $-1+$ height e^{\prime} proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have $1 \leq$ height e' using height_ge_one by simp
then show height (Var y[x::=e']) \leq height (Var y) - $1+$ height e' by simp next
case (App e1 e2)
have ih1: height $\left(e 1\left[x::=e^{\prime}\right]\right) \leq$ (height e1) $-1+$ height e^{\prime}
and ih2: height $\left(e 2\left[x::=e^{\prime}\right]\right) \leq(h e i g h t ~ e 2)-1+$ height e^{\prime} by fact+
then show height ((App e1 e2)[x::=e']) \leq height (App e1 e2) - $1+$ height e'
by simp

next

case (Lam y e1)
have ih: height $\left(e 1\left[x::=e^{\prime}\right]\right) \leq$ height e1-1 + height e' by fact
show height $\left((\lambda y . e 1)\left[x::=e^{\prime}\right]\right) \leq$ height $(\lambda y . e 1)-1+$ height e^{\prime} qed
lemma height_ge_one: $1 \leq$ (height e)
by (induct e rule: lam.induct) (simp_all)
theorem height $\left(e\left[x::=e^{\prime}\right]\right) \leq$ height e $-1+$ height e^{\prime} proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have $1 \leq$ height e' using height_ge_one by simp
then show height (Var y[x::=e']) \leq height (Var y) - $1+$ height e' by simp next
case (App e1 e2)
have ih1: height $\left(e 1\left[x::=e^{\prime}\right]\right) \leq$ (height e1) $-1+$ height e^{\prime}
and ih2: height $\left(e 2\left[x::=e^{\prime}\right]\right) \leq($ height e2) $-1+$ height e' by fact+
then show height ((App e1 e2)[x::=e']) \leq height (App e1 e2) - $1+$ height e'
by simp

next

case (Lam y e1)
have ih: height ($\left.e 1\left[x::=e^{\prime}\right]\right) \leq$ height e1-1 + height e' by fact
have vc: atom $y \sharp x$ atom $y \sharp e$ ' by fact +
show height $\left((\lambda y . e 1)\left[x::=e^{\prime}\right]\right) \leq$ height $\left(\lambda y\right.$. e1) $-1+$ height e^{\prime} using ih vc by simp
qed

Outline

- Nominal Logic
- Nominal Isabelle and Reasoning
- Defining nominal constants and functions
- Possible approaches
- Second Fixed Point Theorem
- Book Statement
- Second Fixed Point Theorem
- Conclusion

Defining Constants and Functions

- Nominal Primrec
- primitive recursion, well understood, no new vars
- Fresh Fun
- reasoning about the term and freshness together
- Isabelle/HOL function package
- non-injective datatypes - completeness and compatibility
- mutually recursive functions, non-primitive-recursive functions, or even functions on datatypes which abstract multiple binders
- Quotients
- Use fixed new names
- convertibility to statments with assumptions

Outline

- Nominal Logic
- Nominal Isabelle and Reasoning
- Defining nominal constants and functions
- Possible approaches
- Second Fixed Point Theorem
- Book Statement
- Second Fixed Point Theorem
- Conclusion

Scan

65.9. SECOND FIXED POINT THEOREM.

6x:

$$
\forall F \exists X \quad F^{\ulcorner } X^{\urcorner}=X
$$

Roof. By the effectiveness of $\#$, there are recursive functions Ap and Num such that $\operatorname{Ap}(\# M, \# N)=\sharp M N$ and $\operatorname{Num}(n)=\#\ulcorner n\urcorner$. Let Ap and tim be λ-defined by Ap and Num $\in \Lambda^{0}$. Then

$$
\text { Ap }{ }^{\ulcorner } M^{\urcorner}\ulcorner N\urcorner=\left\ulcornerM N ^ { \urcorner } , \quad \text { Num } \left\ulcorner n^{\urcorner}=\left\ulcorner\left\ulcorner n^{\urcorner}\right\urcorner ;\right.\right.\right.
$$

mee in particular

$$
\text { Num }{ }^{\ulcorner } M^{\urcorner}=\left\ulcorner\left\ulcorner M^{\urcorner\urcorner}\right.\right.
$$

define

$$
W \equiv \lambda x . F(\mathbf{A p} x(\mathbf{N u m} x)), \quad X \equiv W^{\ulcorner } W^{\urcorner}
$$

Then

$$
\begin{aligned}
X & \equiv W^{\ulcorner } W^{\urcorner}=F\left(\mathbf { A } \mathbf { p } \left\ulcornerW^{\urcorner}\left(\mathbf{N u m}\left\ulcorner W^{\urcorner}\right)\right)\right.\right. \\
& \left.=F^{\ulcorner } W^{\ulcorner } W^{\urcorner}\right\urcorner \equiv F^{\ulcorner } X^{\urcorner} . \square
\end{aligned}
$$

Second Fixed Point Theorem

```
Notations:
nominal_datatype \(\mathrm{t}=\)
\(\bar{v}\)
| \(\mathrm{t} \cdot \mathrm{t}\)
\(\mid \lambda \mathrm{x} . \mathrm{t}\) bind x in t
Term encoding (Böhm trees):
\[
\left\ulcorner_{\mathrm{t}}\right\urcorner
\]
```


Substitution and Convertibility

Substituting a variable y for a term S in term M is defined by:

$$
T[y:=S]= \begin{cases}\text { if } x=y \text { then } S \text { else } \bar{x} & \text { if } T=\bar{x} \\ \left(T_{1}[y:=S]\right) \cdot\left(T_{2}[y:=S]\right) & \text { if } T=T_{1} \cdot T_{2} \\ \lambda x . U[y:=S] & \text { if } T=\lambda x . U \\ & \text { and } x \#(y, S)\end{cases}
$$

Convertibility is an inductively defined relation axiomatized by the following (note: no =):

$$
\begin{aligned}
& (\lambda x . M) \cdot N \approx M[x:=N] \\
& M \approx M \\
& M \approx N \Longrightarrow N \approx M \\
& M \approx N \Longrightarrow N \approx L \Longrightarrow M \approx L \\
& M \approx N \Longrightarrow Z \cdot M \approx Z \cdot N \\
& M \approx N \Longrightarrow M \cdot Z \approx N \cdot Z \\
& M \approx N \Longrightarrow(\lambda x \cdot M) \approx(\lambda x \cdot N)
\end{aligned}
$$

Initial Functions

Assuming $\mathrm{x} \neq \mathrm{y}, \mathrm{y} \neq \mathrm{z}$ and $\mathrm{z} \neq \mathrm{x}$:

$$
\begin{aligned}
U_{0}^{2} & =\lambda x \cdot \lambda y \cdot \lambda z \cdot \bar{z} \\
U_{1}^{2} & =\lambda x \cdot \lambda y \cdot \lambda z \cdot \bar{y} \\
U_{2}^{2} & =\lambda x \cdot \lambda y \cdot \lambda z \cdot \bar{x}
\end{aligned}
$$

Assuming $x \neq y, x \neq e$ and $y \neq e$:

$$
\begin{aligned}
\text { Var } & =\lambda x \cdot \lambda e \cdot \overline{\mathrm{e}} \cdot U_{2}^{2} \cdot \overline{\mathrm{x}} \cdot \overline{\mathrm{e}} \\
\mathrm{App} & =\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \lambda \mathrm{e} \cdot \overline{\mathrm{e}} \cdot U_{1}^{2} \cdot \overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{e}} \\
\mathrm{Abs} & =\lambda \mathrm{x} \cdot \lambda \mathrm{e} \cdot \overline{\mathrm{e}} \cdot U_{0}^{2} \cdot \overline{\mathrm{x}} \cdot \overline{\mathrm{e}}
\end{aligned}
$$

Böhm Encoding (1/2)

For a given λ-term t , its Böhm encoding $\ulcorner\mathrm{t}\urcorner$ is is defined by:

$$
\ulcorner\mathrm{t}\urcorner= \begin{cases}\text { Var } \cdot \overline{\mathrm{x}} & \text { provided } \mathrm{t}=\overline{\mathrm{x}} \\ \text { App } \cdot\ulcorner\mathrm{M}\urcorner \cdot\ulcorner\mathrm{N}\urcorner & \text { provided } \mathrm{t}=\mathrm{M} \cdot \mathrm{~N} \\ \text { Abs } \cdot(\lambda \mathrm{x} .\ulcorner\mathrm{M}\urcorner) & \text { provided } \mathrm{t}=(\lambda \mathrm{x} . \mathrm{M})\end{cases}
$$

Böhm Encoding (1/2)

For a given λ-term t , its Böhm encoding $\ulcorner\mathrm{t}\urcorner$ is is defined by:

$$
\ulcorner\mathrm{t}\urcorner= \begin{cases}\text { Var } \cdot \overline{\mathrm{x}} & \text { provided } \mathrm{t}=\overline{\mathrm{x}} \\ \text { App } \cdot\ulcorner\mathrm{M}\urcorner \cdot\ulcorner\mathrm{N}\urcorner & \text { provided } \mathrm{t}=\mathrm{M} \cdot \mathrm{~N} \\ \text { Abs } \cdot(\lambda \mathrm{x} .\ulcorner\mathrm{M}\urcorner) & \text { provided } \mathrm{t}=(\lambda \mathrm{x} . \mathrm{M})\end{cases}
$$

But we also need a λ-term that represents the Böhm encoding!

Böhm Encoding (2/2)

Don't try to understand!

Assuming $a \neq b, b \neq c$ and $c \neq a$:

$$
\begin{aligned}
& \mathrm{F}_{1}=(\lambda a . \operatorname{App} \cdot\ulcorner\operatorname{Var}\urcorner \cdot(\operatorname{Var} \cdot \overline{\mathrm{a}})) \\
& \mathrm{F}_{2}=(\lambda a \cdot \lambda \mathrm{~b} \cdot \lambda c \cdot \mathrm{App} \cdot(\operatorname{App} \cdot\ulcorner\mathrm{App}\urcorner \cdot(\overline{\mathrm{c}} \cdot \overline{\mathrm{a}})) \cdot(\overline{\mathrm{c}} \cdot \overline{\mathrm{~b}})) \\
& \mathrm{F}_{3}=(\lambda a \cdot \lambda \mathrm{~b} \cdot \mathrm{App} \cdot\ulcorner\mathrm{Abs}\urcorner \cdot(\operatorname{Abs} \cdot(\lambda c \cdot \overline{\mathrm{~b}} \cdot(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})))) \\
& \mathrm{A}_{1}=\left(\lambda a \cdot \lambda \mathrm{~b} \cdot \mathrm{~F}_{1} \cdot \overline{\mathrm{a}}\right) \\
& \mathrm{A}_{2}=\left(\lambda a \cdot \lambda \mathrm{~b} \cdot \lambda c \cdot \mathrm{~F}_{2} \cdot \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}} \cdot[\bar{c}]\right) \\
& \mathrm{A}_{3}=\left(\lambda a \cdot \lambda \mathrm{~b} \cdot \mathrm{~F}_{3} \cdot \overline{\mathrm{a}} \cdot[\overline{\mathrm{~b}}]\right) \\
& {[\mathrm{M}] \cdot \mathrm{N} \approx \mathrm{~N} \cdot \mathrm{M}} \\
& {[\mathrm{M}, \mathrm{~N}, \mathrm{P}] \cdot \mathrm{R} \approx \mathrm{R} \cdot \mathrm{M} \cdot \mathrm{~N} \cdot \mathrm{P}} \\
& \mathrm{NUM} \stackrel{\text { def }}{=}\left[\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right]\right]
\end{aligned}
$$

lemma NUM $\cdot\ulcorner\mathrm{M}\urcorner \approx\ulcorner\ulcorner\mathrm{M}\urcorner\urcorner$ proof (induct M)
case \bar{n}
have NUM $\cdot\ulcorner(\bar{n})\urcorner=$ NUM $\cdot($ Var $\cdot \bar{n})$ by simp
also have $\ldots=\left[\left[\mathrm{A}_{1}, \mathrm{~A}_{\mathbf{2}}, \mathrm{A}_{\mathbf{3}}\right]\right] \cdot(\mathrm{Var} \cdot \overline{\mathrm{n}})$ by simp
also have $\ldots \approx \operatorname{Var} \cdot \bar{n} \cdot\left[\mathrm{~A}_{1}, \mathrm{~A}_{\mathbf{2}}, \mathrm{A}_{\mathbf{3}}\right]$ using 8.
also have $\ldots \approx\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right] \cdot U_{2}^{2} \cdot \overline{\mathrm{n}} \cdot\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right]$ using 5 .
also have $\ldots \approx A_{1} \cdot \bar{n} \cdot\left[A_{1}, A_{2}, A_{3}\right]$ using 9 by simp
also have... $\approx \mathrm{F}_{\mathbf{1}} \cdot \overline{\mathrm{n}}$ using 13 .
also have $\ldots \approx \operatorname{App} \cdot\ulcorner\mathrm{Var}\urcorner \cdot(\mathrm{Var} \cdot \overline{\mathrm{n}})$ using 10 .
also have $\ldots=\ulcorner\ulcorner(\bar{n})\urcorner\urcorner$ by simp
finally show NUM $\cdot \Gamma(\bar{n})\urcorner \approx \Gamma\ulcorner(\bar{n})\urcorner\urcorner$.
next case M . N
assume IH: NUM $\cdot\ulcorner M\urcorner \approx\ulcorner\ulcorner M\urcorner\urcorner$ NUM $\cdot\ulcorner N\urcorner \approx\ulcorner\ulcorner N\urcorner\urcorner$
have NUM $\cdot\ulcorner(\mathrm{M} \cdot \mathrm{N})\urcorner=$ NUM $\cdot(\mathrm{App} \cdot\ulcorner\mathrm{M}\urcorner \cdot\ulcorner\mathrm{N}\urcorner)$ by simp
also have $\ldots=\left[\left[\mathrm{A}_{\mathbf{1}}, \mathrm{A}_{\mathbf{2}}, \mathrm{A}_{\mathbf{3}}\right]\right] \cdot(\mathrm{App} \cdot\ulcorner\mathrm{M}\urcorner \cdot\ulcorner\mathrm{N}\urcorner)$ by simp
also have $\ldots \approx A p p \cdot\ulcorner M\urcorner \cdot\ulcorner N\urcorner \cdot\left[A_{1}, A_{2}, A_{3}\right]$ using 8 .
also have $\ldots \approx\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right] \cdot U_{1}^{2} \cdot\ulcorner\mathrm{M}\urcorner \cdot\ulcorner\mathrm{N}\urcorner \cdot\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right]$ using 6.
also have $\ldots \approx A_{2} \cdot\ulcorner M\urcorner \cdot\ulcorner N\urcorner \cdot\left[A_{1}, A_{2}, A_{3}\right]$ using 9 by simp
also have... $\approx \mathrm{F}_{\mathbf{2}} \cdot\ulcorner\mathrm{M}\urcorner \cdot\ulcorner\mathrm{N}\urcorner$. NUM using 14 by simp

also have... \approx App • (App $\cdot\ulcorner A p p\urcorner \cdot\ulcorner\ulcorner M\urcorner\urcorner) \cdot(N U M \cdot\ulcorner N\urcorner)$ using IH by simp
also have... $\approx\ulcorner\Gamma(M \cdot N)\urcorner\urcorner$ using IH by simp
finally show NUM $\cdot\ulcorner(\mathrm{M} \cdot \mathrm{N})\urcorner \approx\ulcorner\ulcorner(\mathrm{M} \cdot \mathrm{N})\urcorner\urcorner$.
next case $\lambda \mathrm{x}$. P
assume IH: NUM . $\ulcorner\mathrm{P}\urcorner \approx\ulcorner\ulcorner\mathrm{P}\urcorner\urcorner$
have NUM $\cdot\ulcorner(\lambda x . P)\urcorner=$ NUM $\cdot($ Abs $\cdot(\lambda x .\ulcorner P\urcorner))$ by simp
also have $\ldots=\left[\left[A_{1}, A_{2}, A_{3}\right]\right] \cdot(A b s \cdot(\lambda \times .\ulcorner P\urcorner))$ by simp
also have $\ldots \approx$ Abs $\cdot(\lambda x .\ulcorner P\urcorner) \cdot\left[A_{1}, A_{2}, A_{3}\right]$ using 8 .
also have $\ldots \approx\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right] \cdot U_{0}^{2} \cdot(\lambda \times\ulcorner\mathrm{P}\urcorner) \cdot\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right]$ using 7 .
also have $\ldots \approx A_{3} \cdot(\lambda \times .\ulcorner P\urcorner) \cdot\left[A_{1}, A_{2}, A_{3}\right]$ using 9 by simp
also have $\ldots \approx \mathrm{F}_{\mathbf{3}} \cdot(\lambda \times .\ulcorner\mathrm{P}\urcorner) \cdot\left[\left[\mathrm{A}_{1}, \mathrm{~A}_{\mathbf{2}}, \mathrm{A}_{3}\right]\right]$ using 15 .
also have $\ldots=F_{3} \cdot(\lambda x .\ulcorner P\urcorner) \cdot$ NUM by simp
also have $\ldots \approx$ App • \ulcorner Abs $\urcorner \cdot($ Abs $\cdot(\lambda x$. NUM $\cdot((\lambda x .\ulcorner P\urcorner) \cdot \bar{x}))$) by (rule 12) simp_all
also have ... $\approx A p p \cdot\ulcorner A b s\urcorner \cdot(A b s \cdot(\lambda x$. NUM $\cdot\ulcorner P\urcorner))$ using 4 by simp
also have... \approx App • $\ulcorner A b s\urcorner \cdot(A b s \cdot(\lambda \times .\ulcorner\ulcorner P\urcorner\urcorner))$ using IH by simp
also have $\ldots=\ulcorner\ulcorner(\lambda x . P)\urcorner\urcorner$ by simp

Second Fixed Point Theorem

theorem
fixes F :: t
shows $\exists X . X \approx F \cdot\ulcorner X\urcorner$
proof -
$\operatorname{def} W \stackrel{\text { def }}{=} \lambda x . F \cdot(A p p \cdot \bar{x} \cdot(N U M \cdot \bar{x}))$
$\operatorname{def} X \stackrel{\text { def }}{=} W \cdot\ulcorner W\urcorner$
have a: $\mathrm{X}=\mathrm{W} \cdot\ulcorner\mathrm{W}\urcorner$ unfolding X _def ..
also have $\ldots=(\lambda x . F \cdot(\operatorname{App} \cdot \bar{x} \cdot($ NUM $\cdot \bar{x}))) \cdot\ulcorner W\urcorner .$.
also have $\ldots \approx \mathrm{F} \cdot(\mathrm{App} \cdot\ulcorner\mathrm{W}\urcorner \cdot(\mathrm{NUM} \cdot\ulcorner\mathrm{W}\urcorner))$ by simp
also have $\ldots \approx \mathrm{F} \cdot(\mathrm{App} \cdot\ulcorner\mathrm{W}\urcorner \cdot\ulcorner\ulcorner\mathrm{W}\urcorner\urcorner)$ by simp
also have $\ldots \approx \mathrm{F} \cdot\ulcorner(\mathrm{W} \cdot\ulcorner\mathrm{W}\urcorner)\urcorner$ by simp
also have $\ldots=F \cdot\ulcorner X\urcorner$ unfolding $X _d e f .$.
finally show $X \approx F \cdot\ulcorner X\urcorner$..
qed

Second Fixed Point Theorem

theorem
fixes F :: t
shows $\exists X . X \approx F \cdot\ulcorner X\urcorner$
proof -
obtain x :: var where \times \# F using obtain_fresh by blast
$\operatorname{def} W \stackrel{\text { def }}{=} \lambda x . F \cdot(A p p \cdot \bar{x} \cdot(N U M \cdot \bar{x}))$
$\operatorname{def} X \stackrel{\text { def }}{=} W \cdot\ulcorner W\urcorner$
have a: $\mathrm{X}=\mathrm{W} \cdot\ulcorner\mathrm{W}\urcorner$ unfolding X _def ..
also have $\ldots=(\lambda x . F \cdot(A p p \cdot \bar{x} \cdot(N U M \cdot \bar{x}))) \cdot\ulcorner W\urcorner .$.
also have $\ldots \approx \mathrm{F} \cdot(\mathrm{App} \cdot\ulcorner\mathrm{W}\urcorner \cdot(\mathrm{NUM} \cdot\ulcorner\mathrm{W}\urcorner))$ by simp
also have $\ldots \approx \mathrm{F} \cdot(\mathrm{App} \cdot\ulcorner\mathrm{W}\urcorner \cdot\ulcorner\ulcorner\mathrm{W}\urcorner\urcorner)$ by simp
also have $\ldots \approx \mathrm{F} \cdot\ulcorner(\mathrm{W} \cdot\ulcorner\mathrm{W}\urcorner)\urcorner$ by simp
also have $\ldots=F \cdot\ulcorner X\urcorner$ unfolding $X _d e f .$.
finally show $X \approx F \cdot\ulcorner X\urcorner$..
qed

Outline
 Outline

Outline
Nominal Logic
Nominal Isabelle and Reasoning
Defining nominal constants and functions
Possible approaches
Second Fixed Point Theorem
Book Statement
Second Fixed Point Theorem
Conclusion
（ \quad（ 19

Nine
Nine
aNiline
Nominal Logic
－Nominal Isabelle and Reasoning
Defining nominal constants and functions
－Possible approaches
Second Fixed Point Theorem
• Book Statement
Conclusion Fixed Point Theorem
tine
Nominal Logic
－Nominal Isabelle and Reasoning
Defining nominal constants and functions
－Possible approaches
Second Fixed Point Theorem
Book Statement
－Second Fixed Point Theorem
Conclusion
tine
Nominal Logic
－Nominal Isabelle and Reasoning
Defining nominal constants and functions
－Possible approaches
Second Fixed Point Theorem
Book Statement
－Second Fixed Point Theorem
Conclusion
Nine
Nominal Logic
Nominal Isabelle and Reasoning
Defining nominal constants and functions
Second Fixed Point Theorem
Book Statement
－Second Fixed Point Theorem
Conclusion

tine
Nominal Logic
－Nominal Isabelle and Reasoning
Defining nominal constants and functions
－Possible approaches
Second Fixed Point Theorem
Book Statement
Conclusion
Second Fixed Point Theorem

Nne
Nominal Logic
Nominal Isabelle and Reasoning
Defining nominal constants and functions
Second Fixed Point Theorem
Book Statement
Second Fixed Point Theorem
Conclusion
Caches
Noble \qquad
路

．

```
```

minal Logic

```
```

```
minal Logic
```



```
Nominglinallsabelle and Reasoning
```

```
```

Nominglinallsabelle and Reasoning

```
```


－Conclusion \qquad

Conclusion

- Constants and Functions in Nominal Isabelle
- Nominal primrec / Function package
- CPS
- Formalizing λ-calculus
- More use of quotients

