
Reasoning about constants in Nominal
Isabelle

Formalizing the Second Fixed Point Theorem

Cezary Kaliszyk Henk Barendregt
University of Innsbruck Radboud University Nijmegen

24 April, Seminar 3

http://cl-informatik.uibk.ac.at

Nominal Logic

Outline

Nominal Logic
Nominal Isabelle and Reasoning

De�ning nominal constants and functions
Possible approaches

Second Fixed Point Theorem
Book Statement
Second Fixed Point Theorem

Conclusion

2 / 19

Nominal Logic Nominal Isabelle and Reasoning

Nominal Isabelle

• Framework for constructing α-equated terms

t ::= x | t t | λx. t

• De�nitional extension of Isabelle/HOL

• Automatically derives a reasoning infrastructure
• free variables (support and freshness)

• renaming

• strong induction principle

3 / 19

Nominal Logic Nominal Isabelle and Reasoning

Nominal Isabelle (history)

Nominal has been used successfully in formalisations of:

• π-calculus, ψ-calculus, spi-calculus
[BengtsonParow07, BengtsonParow09, KahsaiMiculan]

• Typed Scheme
[TobinHochstadtFelleisen08]

• Equivalence checking algorithm for LF
[UrbanCheneyBerghofer08]

• Strong normalisation of cut-elimination in classical logic
[UrbanZhu08]

• Formalizations in the locally-nameless approach to binding
[SatoPollack10]

• Compiler Veri�cation
[HellerPhd10]

• Mini X-Query
[Cheney11] 4 / 19

Nominal Logic Nominal Isabelle and Reasoning

nominal_datatype lam =
Var name

| App lam lam
| Lam x::name l::lam binds x in l (λ_. _)

nominal_primrec
height :: lam ⇒ int

where
height (Var x) = 1

| height (App t1 t2) = max (height t1) (height t2) + 1
| height (λx. t) = height t + 1

nominal_primrec
subst :: lam ⇒ name ⇒ lam ⇒ lam (_ [_ ::= _])

where
(Var x)[y ::= s] = (if x = y then s else (Var x))

| (App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])

| atom x] (y, s) =⇒ (λx. t)[y ::= s] = λx. (t[y ::= s])

5 / 19

Nominal Logic Nominal Isabelle and Reasoning

nominal_datatype lam =
Var name

| App lam lam
| Lam x::name l::lam binds x in l (λ_. _)

nominal_primrec
height :: lam ⇒ int

where
height (Var x) = 1

| height (App t1 t2) = max (height t1) (height t2) + 1
| height (λx. t) = height t + 1

nominal_primrec
subst :: lam ⇒ name ⇒ lam ⇒ lam (_ [_ ::= _])

where
(Var x)[y ::= s] = (if x = y then s else (Var x))

| (App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])

| atom x] (y, s) =⇒ (λx. t)[y ::= s] = λx. (t[y ::= s])

5 / 19

Nominal Logic Nominal Isabelle and Reasoning

nominal_datatype lam =
Var name

| App lam lam
| Lam x::name l::lam binds x in l (λ_. _)

nominal_primrec
height :: lam ⇒ int

where
height (Var x) = 1

| height (App t1 t2) = max (height t1) (height t2) + 1
| height (λx. t) = height t + 1

nominal_primrec
subst :: lam ⇒ name ⇒ lam ⇒ lam (_ [_ ::= _])

where
(Var x)[y ::= s] = (if x = y then s else (Var x))

| (App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])

| atom x] (y, s) =⇒ (λx. t)[y ::= s] = λx. (t[y ::= s])

5 / 19

Nominal Logic Nominal Isabelle and Reasoning

lemma height_ge_one: 1 ≤ (height e)
by (induct e rule: lam.induct) (simp_all)

theorem height (e[x::=e']) ≤ height e - 1 + height e'
proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have 1 ≤ height e' using height_ge_one by simp
then show height (Var y[x::=e']) ≤ height (Var y) - 1 + height e' by simp

next
case (App e1 e2)
have ih1: height (e1[x::=e']) ≤ (height e1) - 1 + height e'
and ih2: height (e2[x::=e']) ≤ (height e2) - 1 + height e' by fact+
then show height ((App e1 e2)[x::=e']) ≤ height (App e1 e2) - 1 + height e'
by simp

next
case (Lam y e1)
have ih: height (e1[x::=e']) ≤ height e1 - 1 + height e' by fact
have vc: atom y] x atom y] e' by fact+
show height ((λy. e1)[x::=e']) ≤ height (λy. e1) - 1 + height e'
using ih vc by simp

qed

6 / 19

Nominal Logic Nominal Isabelle and Reasoning

lemma height_ge_one: 1 ≤ (height e)
by (induct e rule: lam.induct) (simp_all)

theorem height (e[x::=e']) ≤ height e - 1 + height e'
proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have 1 ≤ height e' using height_ge_one by simp
then show height (Var y[x::=e']) ≤ height (Var y) - 1 + height e' by simp

next
case (App e1 e2)
have ih1: height (e1[x::=e']) ≤ (height e1) - 1 + height e'
and ih2: height (e2[x::=e']) ≤ (height e2) - 1 + height e' by fact+
then show height ((App e1 e2)[x::=e']) ≤ height (App e1 e2) - 1 + height e'
by simp

next
case (Lam y e1)
have ih: height (e1[x::=e']) ≤ height e1 - 1 + height e' by fact
have vc: atom y] x atom y] e' by fact+
show height ((λy. e1)[x::=e']) ≤ height (λy. e1) - 1 + height e'
using ih vc by simp

qed

6 / 19

Nominal Logic Nominal Isabelle and Reasoning

lemma height_ge_one: 1 ≤ (height e)
by (induct e rule: lam.induct) (simp_all)

theorem height (e[x::=e']) ≤ height e - 1 + height e'
proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have 1 ≤ height e' using height_ge_one by simp
then show height (Var y[x::=e']) ≤ height (Var y) - 1 + height e' by simp

next
case (App e1 e2)
have ih1: height (e1[x::=e']) ≤ (height e1) - 1 + height e'
and ih2: height (e2[x::=e']) ≤ (height e2) - 1 + height e' by fact+
then show height ((App e1 e2)[x::=e']) ≤ height (App e1 e2) - 1 + height e'
by simp

next
case (Lam y e1)
have ih: height (e1[x::=e']) ≤ height e1 - 1 + height e' by fact
have vc: atom y] x atom y] e' by fact+
show height ((λy. e1)[x::=e']) ≤ height (λy. e1) - 1 + height e'
using ih vc by simp

qed

6 / 19

De�ning nominal constants and functions

Outline

Nominal Logic
Nominal Isabelle and Reasoning

De�ning nominal constants and functions
Possible approaches

Second Fixed Point Theorem
Book Statement
Second Fixed Point Theorem

Conclusion

7 / 19

De�ning nominal constants and functions Possible approaches

De�ning Constants and Functions

• Nominal Primrec
• primitive recursion, well understood, no new vars

• Fresh Fun
• reasoning about the term and freshness together

• Isabelle/HOL function package
• non-injective datatypes - completeness and compatibility
• mutually recursive functions, non-primitive-recursive

functions, or even functions on datatypes which abstract
multiple binders

• Quotients

• Use �xed new names
• convertibility to statments with assumptions

8 / 19

Second Fixed Point Theorem

Outline

Nominal Logic
Nominal Isabelle and Reasoning

De�ning nominal constants and functions
Possible approaches

Second Fixed Point Theorem
Book Statement
Second Fixed Point Theorem

Conclusion

9 / 19

Second Fixed Point Theorem Book Statement

Scan

10 / 19

Second Fixed Point Theorem Book Statement

Second Fixed Point Theorem

Notations:
nominal_datatype t =
v

| t · t
| λx. t bind x in t

Term encoding (Böhm trees):

ptq

11 / 19

Second Fixed Point Theorem Book Statement

Substitution and Convertibility

Substituting a variable y for a term S in term M is de�ned by:

T [y := S] =


if x = y then S else x if T = x

(T1 [y := S]) · (T2 [y := S]) if T = T1 · T2

λx. U [y := S] if T = λx. U

and x # (y, S)

Convertibility is an inductively de�ned relation axiomatized by the
following (note: no =):

(λx. M) · N ≈ M [x := N]
M ≈ M
M ≈ N =⇒ N ≈ M
M ≈ N =⇒ N ≈ L =⇒ M ≈ L
M ≈ N =⇒ Z · M ≈ Z · N
M ≈ N =⇒ M · Z ≈ N · Z
M ≈ N =⇒ (λx. M) ≈ (λx. N)

12 / 19

Second Fixed Point Theorem Book Statement

Initial Functions

Assuming x 6= y, y 6= z and z 6= x:

U
2
0 = λx. λy. λz. z

U
2
1 = λx. λy. λz. y

U
2
2 = λx. λy. λz. x

Assuming x 6= y, x 6= e and y 6= e:

Var = λx. λe. e · U22 · x · e

App = λx. λy. λe. e · U21 · x · y · e

Abs = λx. λe. e · U20 · x · e

13 / 19

Second Fixed Point Theorem Book Statement

Böhm Encoding (1/2)

For a given λ-term t, its Böhm encoding ptq is is de�ned by:

ptq =


Var · x provided t = x

App · pMq · pNq provided t = M · N
Abs · (λx. pMq) provided t = (λx. M)

14 / 19

Second Fixed Point Theorem Book Statement

Böhm Encoding (1/2)

For a given λ-term t, its Böhm encoding ptq is is de�ned by:

ptq =


Var · x provided t = x

App · pMq · pNq provided t = M · N
Abs · (λx. pMq) provided t = (λx. M)

But we also need a λ-term that represents the Böhm encoding!

14 / 19

Second Fixed Point Theorem Book Statement

Böhm Encoding (2/2)

Don't try to understand!
Assuming a 6= b, b 6= c and c 6= a:

F1 = (λa. App · pVarq · (Var · a))
F2 = (λa. λb. λc. App · (App · pAppq · (c · a)) · (c · b))
F3 = (λa. λb. App · pAbsq · (Abs · (λc. b · (a · c))))
A1 = (λa. λb. F1 · a)
A2 = (λa. λb. λc. F2 · a · b · [c])
A3 = (λa. λb. F3 · a · [b])
[M] · N ≈ N · M
[M, N, P] · R ≈ R · M · N · P
NUM

def
= [[A1, A2, A3]]

15 / 19

Second Fixed Point Theorem Book Statement

lemma NUM · pMq ≈ ppMqq proof (induct M)
case n
have NUM · p(n)q = NUM · (Var · n) by simp
also have . . . = [[A1, A2, A3]] · (Var · n) by simp
also have . . . ≈ Var · n · [A1, A2, A3] using 8 .

also have . . . ≈ [A1, A2, A3] · U22 · n · [A1, A2, A3] using 5 .

also have . . . ≈ A1 · n · [A1, A2, A3] using 9 by simp
also have . . . ≈ F1 · n using 13 .
also have . . . ≈ App · pVarq · (Var · n) using 10 .
also have . . . = pp(n)qq by simp
�nally show NUM · p(n)q ≈ pp(n)qq .

next case M · N
assume IH: NUM · pMq ≈ ppMqq NUM · pNq ≈ ppNqq
have NUM · p(M · N)q = NUM · (App · pMq · pNq) by simp
also have . . . = [[A1, A2, A3]] · (App · pMq · pNq) by simp
also have . . . ≈ App · pMq · pNq · [A1, A2, A3] using 8 .

also have . . . ≈ [A1, A2, A3] · U21 · pMq · pNq · [A1, A2, A3] using 6 .

also have . . . ≈ A2 · pMq · pNq · [A1, A2, A3] using 9 by simp
also have . . . ≈ F2 · pMq · pNq · NUM using 14 by simp
also have . . . ≈ App · (App · pAppq · (NUM · pMq)) · (NUM · pNq) using 11 .
also have . . . ≈ App · (App · pAppq · ppMqq) · (NUM · pNq) using IH by simp
also have . . . ≈ pp(M · N)qq using IH by simp
�nally show NUM · p(M · N)q ≈ pp(M · N)qq .

next case λx. P
assume IH: NUM · pPq ≈ ppPqq
have NUM · p(λx. P)q = NUM · (Abs · (λx. pPq)) by simp
also have . . . = [[A1, A2, A3]] · (Abs · (λx. pPq)) by simp
also have . . . ≈ Abs · (λx. pPq) · [A1, A2, A3] using 8 .

also have . . . ≈ [A1, A2, A3] · U20 · (λx. pPq) · [A1, A2, A3] using 7 .

also have . . . ≈ A3 · (λx. pPq) · [A1, A2, A3] using 9 by simp
also have . . . ≈ F3 · (λx. pPq) · [[A1, A2, A3]] using 15 .
also have . . . = F3 · (λx. pPq) · NUM by simp
also have . . . ≈ App · pAbsq · (Abs · (λx. NUM · ((λx. pPq) · x))) by (rule 12) simp_all
also have . . . ≈ App · pAbsq · (Abs · (λx. NUM · pPq)) using 4 by simp
also have . . . ≈ App · pAbsq · (Abs · (λx. ppPqq)) using IH by simp
also have . . . = pp(λx. P)qq by simp
�nally show NUM · p(λx. P)q ≈ pp(λx. P)qq .

qed

16 / 19

Second Fixed Point Theorem Second Fixed Point Theorem

Second Fixed Point Theorem

theorem
�xes F :: t
shows ∃X. X ≈ F · pXq

proof -

obtain x :: var where x # F using obtain_fresh by blast

def W
def
= λx. F · (App · x · (NUM · x))

def X
def
= W · pWq

have a: X = W · pWq unfolding X_def ..
also have . . . = (λx. F · (App · x · (NUM · x))) · pWq ..
also have . . . ≈ F · (App · pWq · (NUM · pWq)) by simp
also have . . . ≈ F · (App · pWq · ppWqq) by simp
also have . . . ≈ F · p(W · pWq)q by simp
also have . . . = F · pXq unfolding X_def ..
�nally show X ≈ F · pXq ..

qed
17 / 19

Second Fixed Point Theorem Second Fixed Point Theorem

Second Fixed Point Theorem

theorem
�xes F :: t
shows ∃X. X ≈ F · pXq

proof -
obtain x :: var where x # F using obtain_fresh by blast

def W
def
= λx. F · (App · x · (NUM · x))

def X
def
= W · pWq

have a: X = W · pWq unfolding X_def ..
also have . . . = (λx. F · (App · x · (NUM · x))) · pWq ..
also have . . . ≈ F · (App · pWq · (NUM · pWq)) by simp
also have . . . ≈ F · (App · pWq · ppWqq) by simp
also have . . . ≈ F · p(W · pWq)q by simp
also have . . . = F · pXq unfolding X_def ..
�nally show X ≈ F · pXq ..

qed
17 / 19

Conclusion

Outline

Nominal Logic
Nominal Isabelle and Reasoning

De�ning nominal constants and functions
Possible approaches

Second Fixed Point Theorem
Book Statement
Second Fixed Point Theorem

Conclusion

18 / 19

Conclusion

Conclusion

• Constants and Functions in Nominal Isabelle
• Nominal primrec / Function package
• CPS

• Formalizing λ-calculus

• More use of quotients

19 / 19

	Nominal Logic
	Nominal Isabelle and Reasoning

	Defining nominal constants and functions
	Possible approaches

	Second Fixed Point Theorem
	Book Statement
	Second Fixed Point Theorem

	Conclusion

