ogic

Reasoning about constants in Nominal
Isabelle

Formalizing the Second Fixed Point Theorem

Cezary Kaliszyk Henk Barendregt
University of Innsbruck  Radboud University Nijmegen

24 April, Seminar 3


http://cl-informatik.uibk.ac.at

Nominal Logic

@ Nominal Logic
e Nominal Isabelle and Reasoning

2/19



Nominal Logic Nominal Isabelle and Reasoning

Nominal Isabelle

e Framework for constructing a-equated terms
to=x|tt] Axt

e Definitional extension of Isabelle/HOL

e Automatically derives a reasoning infrastructure
e free variables (support and freshness)

e renaming

e strong induction principle



Nominal Logic Nominal Isabelle and Reasoning

Nominal Isabelle (history)

Nominal has been used successfully in formalisations of:

e m-calculus, 1)-calculus, spi-calculus
[BengtsonParow07, BengtsonParow09, KahsaiMiculan]

Typed Scheme
[ TobinHochstadtFelleisen08]

e Equivalence checking algorithm for LF
[UrbanCheneyBerghofer08]

e Strong normalisation of cut-elimination in classical logic

[UrbanZhu08]
e Formalizations in the locally-nameless approach to binding
[SatoPollack10]
e Compiler Verification
[HellerPhd10]
e Mini X-Query

[Cheneyll] a/19



Nominal Logic Nominal Isabelle and Reasoning

nominal _datatype lam =
Var name

App lam lam
Lam x::name I:lam binds xinl (A _. )

5/19



Nominal Logic Nominal Isabelle and Reasoning

nominal _datatype lam =
Var name

App lam lam
Lam x::name I:lam binds xinl (A _. )

nominal _primrec
height :: lam = int
where
height (Var x) =1
| height (App t1 t2) = max (height t1) (height t2) + 1
| height (Ax. t) = height t + 1

5/19



Nominal Logic Nominal Isabelle and Reasoning

nominal _datatype lam =
Var name

App lam lam
Lam x::name I:lam binds xinl (A _. )

nominal _primrec
height :: lam = int
where
height (Var x) =1
| height (App t1 t2) = max (height t1) (height t2) + 1
| height (Ax. t) = height t + 1

nominal _primrec
subst :: lam = name = lam = lam ([ =
where
(Var x)[y ::= s] = (if x = y then s else (Var x))
| (App t1 t2)[y = s] = App (t1[y ::=s]) (t2[y ::=s])
| atom x § (y, s) = (Ax. t)[y == s] = Ax. (tly == s])

Il
|
-
Nt

5/19



Nominal Logic Nominal Isabelle and Reasoning

theorem height (e[x::=¢e']) < height e - 1 + height €’
proof (nominal _induct e avoiding: x e’ rule: lam.strong _induct)

qed

6/19



Nominal Logic Nominal Isabelle and Reasoning

lemma height _ge one: 1 < (height €)
by (induct e rule: lam.induct) (simp_all)

theorem height (e[x::=¢e']) < height e - 1 + height €’
proof (nominal _induct e avoiding: x e’ rule: lam.strong _induct)
case (Vary)
have 1 < height e’ using height _ge one by simp
then show height (Var y[x::=e']) < height (Var y) - 1 + height €' by simp
next
case (App el e2)
have ih1: height (el[x::=e']) < (height el) - 1 + height €’
and ih2: height (e2[x::=e']) < (height €2) - 1 + height ¢’ by fact+
then show height ((App el e2)[x::=e']) < height (App el €2) - 1 + height &’
by simp
next
case (Lam y el)
have ih: height (el[x::=€’]) < height el - 1 + height e’ by fact

show height ((Ay. el)[x::=e']) < height (\y. el) - 1 + height €’

qed

6/19



Nominal Logic Nominal Isabelle and Reasoning

lemma height _ge one: 1 < (height €)
by (induct e rule: lam.induct) (simp_all)

theorem height (e[x::=¢e']) < height e - 1 + height €’
proof (nominal _induct e avoiding: x e’ rule: lam.strong _induct)
case (Vary)
have 1 < height e’ using height _ge one by simp
then show height (Var y[x::=e']) < height (Var y) - 1 + height €' by simp
next
case (App el e2)
have ih1: height (el[x::=e']) < (height el) - 1 + height €’
and ih2: height (e2[x::=e']) < (height €2) - 1 + height ¢’ by fact+
then show height ((App el e2)[x::=e']) < height (App el €2) - 1 + height &’
by simp
next
case (Lam y el)
have ih: height (el[x::=€’]) < height el - 1 + height e’ by fact
have vc: atom y § x atom y f e’ by fact+
show height ((Ay. el)[x::=e']) < height (\y. el) - 1 + height €’
using ih vc by simp
qed

6/19



Defining nominal constants and functions

@ Defining nominal constants and functions
o Possible approaches

7/19



Defining nominal constants and functions Possible approaches

Defining Constants and Functions

e Nominal Primrec

e primitive recursion, well understood, no new vars
Fresh Fun

e reasoning about the term and freshness together
Isabelle/HOL function package

e non-injective datatypes - completeness and compatibility

e mutually recursive functions, non-primitive-recursive
functions, or even functions on datatypes which abstract
multiple binders

Quotients

Use fixed new names
e convertibility to statments with assumptions

8/19



Second Fixed Point Theorem

@ Second Fixed Point Theorem
e Book Statement
e Second Fixed Point Theorem

9/19



Second Fixed Point Theorem Book Statement

Scan

%6.5.9. SECOND FIXED POINT THEOREM.

VFIx F'x'=X.

JOF. By the effectiveness of ff, there are recursive functions Ap and
Him such that Ap (M, #N)=4MN and Num(n)=14"n" . Let Ap and
be A-defined by Ap and Num & A°. Then

Ap"M'TNT="MN", Numn' =""p17;
ﬁg In particular

Num M =77 p00

W=Ax.F(Apx(Numx)), X=Ww W’ .

Then

X=w"w'=FAp W' (Num™W"))

=F'w'w''=F"x". O
10/19



Second Fixed Point Theorem Book Statement

Second Fixed Point Theorem

Notations:
nominal datatype t =

v
It -t
| Ax. t bind x in t

Term encoding (Bohm trees):

l_t—l

11/19



Second Fixed Point Theorem Book Statement

Substitution and Convertibility

Substituting a variable y for a term S in term M is defined by:

if x =y then S else x if T=x
Y M U[y:=9] if T=xx U
and x # (y, S)

Convertibility is an inductively defined relation axiomatized by the
following (note: no =):

(M. M) - N~ M [x:=N]
M~M

Ma~N=—=N=x=M
MxN=—=N=x=L=—=M=L
MxcxN=—=Z-M~Z-N
M~N=—M-Z~N.Z
M=~ N = (Ax. M) = (Ax. N)

12/19



Second Fixed Point Theorem Book Statement

Initial Functions

Assuming x #y,y # z and z # x:

Ug = M. Ay. A\z. Z
U12 = AX.Ay. Az. y
U22 = AX. Ay. Az. X

Var = )\x.)\e.é-U22->‘<-é
App = )\x.)\y.)\e.e-Ulz-)_(-y-E
Abs = /\x./\e.é-Ug-i-é

13/19



Second Fixed Point Theorem Book Statement

Bohm Encoding (1/2)

For a given A-term t, its Bohm encoding "t is is defined by:

Var - X provided t = X
"t'=¢App-"™M7-"NT providedt=M - N
Abs - (Ax. "M™)  provided t = (Ax. M)

14/19



Second Fixed Point Theorem Book Statement

B6hm Encoding (1/2)

For a given A-term t, its Bohm encoding "t is is defined by:

Var - X provided t = X
"t'= ¢ App-"™M7-"N7 providedt=M - N
Abs - (Ax. "M™)  provided t = (Ax. M)

But we also need a A-term that represents the Béhm encoding!

14/19



Second Fixed Point Theorem Book Statement

Bohm Encoding (2/2)

Don’t try to understand!
Assuming a # b, b # ¢ and ¢ # a:

Fi = (Aa. App - "Var' - (Var - 7))

Fo = (Aa. Ab. Ac. App - (App - "App' - (€ - 3)) - (€ - b))
F3 = (Aa. Ab. App - "Abs™ - (Abs - (Ac. b - (7 - ©))))

A = ()\a. Ab. Fq - 5)

Ay = (Na. Ab. Ac. F, -3 - b - [q])

A3 = (/\a b

. Ab. F3 -3 [b])

[M]-N~N-M

[M,N,P] - R~R-M-N-P
def

NUM = [[A1, Az, A]]

15/19



Second Fixed Point Theorem Book Statement

lemma NUM - TM7 = ""M77 proof (induct M)

case n

have NUM - I'(n)_‘ = NUM . (Var - A) by simp

also have ... = [[A1, Az, A3]] - (Var - A1) by simp

also have ... =~ Var - n - [Ag, A2, A3] using 8 .

also have ... = [A1, A2, A3] - 2 -n - [A1, A2, A3] using 5 .
also have ... =~ Ay - n - [A1, Az, A3] using 9 by simp

also have ... &~ F; - n using 13 .

also have ... = App - "Var™ . (Var - n) using 10 .

also have . Tr(n)77 by simp
finally show NUM - "(m)7 = " (n)77 .
next case M - N
assume IH: NUM - TM7 = T"TM77 NUM - "TN7 ~ T"N77
have NUM - - N)7 = NUM - (App - "M7 . T'N7T) by simp
also have ... [[A1, Az, A3]] - (App - "M™ - "'N7T) by simp
also have ... App - "TMT . I'N7 [A1, Az, A3] using 8 .
also have ... [A1, Az, A3] - M7 . "N . [Az, A2, A3] using 6 .
also have ... ® Ay - TM™ . rN-l . [A1, Az, Az] using 9 by simp
also have ... Fz - "™™M7 . "™N7 - NUM using 14 by simp
also have ... App - (App - "TAppT - (NUM - "M7T)) - (NUM - "N7) using 11 .
also have ... App - (App - "TAppT - TTM™7) - (NUM - "N7) using IH by simp
also have ... = T"(M . N)77 using IH by simp
finally show NUM - "(M - N)7 & "7 (M - N)77 .
next case Ax. P
assume IH: NUM . TP7 =~ FTP77
have NUM - T(Ax. P)7 = NUM - (Abs - (Ax. "P7)) by simp
also have ... = [[A1, Az, A3]] - (Abs - (Ax. "TP7)) by simp
also have ... Abs - (Ax. TP7) . [Ag, A3, A3] using 8 .
[A1, Az, A3]- U3 - (Ax. TPT) - [Aq, Az, A3] using 7 .
Az - (Ax. TP7) - [A1, Az, A3] using 9 by simp
F3 - (Ax. "P7) - [[A1, A2, A3]] using 15 .
3 - (Ax. "P7) - NUM by simp
App - TAbs™ - (Abs - (Ax. NUM - ((Ax. "P7) - X))) by (rule 12) simp_all
App - "Abs™ - (Abs - (Ax. NUM - "P7)) using 4 by simp N
App - TAbs™ - (Abs - (Ax. T"P77)) using IH by simp
m(Ax. P)77 by simp

Py
Qul g

QNN

also have ...
also have ...
also have ...
also have ...
also have ...
also have ...
also have ...
also have ...

fTrraeineear

16/19



Second Fixed Point Theorem Second Fixed Point Theorem

Second Fixed Point Theorem

theorem

fixes F 1 t

shows IX. X =~ F - X"
proof -

def W & . F - (App - X - (NUM - X))
def X &' w . w1
have a: X =W - "W unfolding X def ..

also have ... = (Ax. F - (App - X - (NUM - X))) - "W ..
also have ... = F - (App - "W - (NUM - "W7)) by simp
also have ... = F - (App - "W - TTW™) by simp

also have ... =~ F - "(W - "W")7 by simp

also have ... = F - "X" unfolding X def ..
finally show X ~ F - "X ..
ged

17/19



Second Fixed Point Theorem Second Fixed Point Theorem

Second Fixed Point Theorem

theorem
fixes F :: t
shows 3X. X = F - X"
proof -
obtain x :: var where x # F using obtain_fresh by blast

def W & Ax. F - (App - % - (NUM - %))

def X &' w . w1
have a: X =W - "W unfolding X def ..
also have ... = (Ax. F - (App - X - (NUM - X))) - "W ..

also have ... = F - (App - "W - (NUM - "W7)) by simp
also have ... = F - (App - "W - TTW™) by simp
also have ... =~ F - "(W - "W")7 by simp

also have ... = F - "X" unfolding X def ..
finally show X ~ F . "X™
ged

17/19



@ Conclusion

18/19



Conclusion

e Constants and Functions in Nominal Isabelle
e Nominal primrec / Function package
e CPS

e Formalizing A-calculus

e More use of quotients

19/19



	Nominal Logic
	Nominal Isabelle and Reasoning

	Defining nominal constants and functions
	Possible approaches

	Second Fixed Point Theorem
	Book Statement
	Second Fixed Point Theorem

	Conclusion

