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@ Ordinals

Demystification of Ordinals

Subrecursive Hierarchies

Application ®

More on the Slow-Growing Hierarchy

Application @
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ORIEISEEEEEE
Ordinals

Definition
an ordinal is a set « such that
« is totally ordered with respect to membership
VB,yEa:BEYVYELBVB=1
every element of « is a subset of « (aka « is transitive)
V3: B € aimplies B C «
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ORIEISEEEEEE
Ordinals

Definition
an ordinal is a set « such that
« is totally ordered with respect to membership
VB,yEa:BEYVYELBVB=1
every element of « is a subset of « (aka « is transitive)
V3: B € aimplies B C «

Lemma
ordinal «v is either

e 0
e fU{B}=p+1 successor ordinal
e Ja limit ordinal

GM (ICS @ UIBK) Seminar 3, May 23, 2012


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Properties or Ordinals

Lemma
let o be an ordinal, then
e « is well-ordered by €

« is totally ordered
there are no infinite descending sequences

“Jda;dadaz:-- (a;Ea)
e if B € «, then (3 is an ordinal

® a:U@’eaﬂ

Lemma

let X be a non-empty set of ordinals, then
e (X is an ordinal and (1 X = inf X
e |JX is an ordinal and |J X = sup X
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JOHERSEREE
Arithmetic of Ordinals

Definition (Addition)
« if =0
a+pf=c(a+p73)+1 ifs=0+1
Ug <pla+ ) if B is a limit ordinal
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JOHERSEREE
Arithmetic of Ordinals

Definition (Addition)
« if =0
a+pf=c(a+p73)+1 ifs=0+1
Ug <pla+ ) if B is a limit ordinal

Definition (Multiplication)
0 if3=0
a-f=Ca-F+a fg=p+1
Ug<pla- ) if B is a limit ordinal
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JOHERSEREE
Arithmetic of Ordinals

Definition (Addition)
« if =0
a+pf=c(a+p73)+1 ifs=0+1
Ug <pla+ ) if B is a limit ordinal

Definition (Multiplication)
0 if3=0
a-f=Ca-F+a fg=p+1
Ug<pla- ) if B is a limit ordinal

Definition (Exponentiation)
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Lemma

for all ordinals a, 3,~
ca+(B+7)=(a+p8)+7
ca-(B-7)=(a-8)~
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Lemma

for all ordinals a, 3,~
ca+(B+7)=(a+p8)+7
ca-(B-7)=(a-8)~

Example
neither + nor - are commutative

l4w=w#w+1 2Qiw=wHFw-2
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Lemma

for all ordinals a, 3,~
ca+(B+7)=(a+p8)+7
ca-(B-7)=(a-8)~

Example
neither + nor - are commutative

l4w=w#w+1 2Qiw=wHFw-2

Theorem
ordinal « # 0 is representable in Cantor Normal Form (CNF)

a=w 4w

where oy = - -+ = a, and o in CNF
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Demystification of Ordinals

Demystification of Ordinals

Definitions
let (A, <), (B, <) be partially ordered sets
e a mapping f: A — B is order preserving if
x < y implies f(x) < f(y)
e if f is a bijection and f and ! are order preserving then (A, <) is
isomorphic to (B, <)
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Demystification of Ordinals

Demystification of Ordinals

Definitions
let (A, <), (B, <) be partially ordered sets
e a mapping f: A — B is order preserving if
x < y implies f(x) < f(y)
e if f is a bijection and f and ! are order preserving then (A, <) is
isomorphic to (B, <)

Lemma

if two well-ordered sets Wy and W, are isomorphic, then the isomorphism
of Wy onto W5 is unique
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Demystification of Ordinals

Demystification of Ordinals

Definitions
let (A, <), (B, <) be partially ordered sets
e a mapping f: A — B is order preserving if
x < y implies f(x) < f(y)
e if f is a bijection and f and ! are order preserving then (A, <) is
isomorphic to (B, <)

Lemma
if two well-ordered sets Wy and W, are isomorphic, then the isomorphism
of Wy onto W5 is unique

Theorem
every well-ordered set is isomorphic to a unique ordinal
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Ordinals as Order Types

Alternative "“Definition”
an ordinal is an equivalence class of well-orders with respect to isomorphist
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Ordinals as Order Types

Alternative “Definition”

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition
an ordinal term « is an element of the inductively defined set E;
definition makes use of auxiliary set P
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Ordinals as Order Types

Alternative “Definition”

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition
an ordinal term « is an element of the inductively defined set E;
definition makes use of auxiliary set P

BO0cE
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Ordinals as Order Types

Alternative “Definition”

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition
an ordinal term « is an element of the inductively defined set E;
definition makes use of auxiliary set P

0OcE

if ag,...,am € P, then ag+---4+a, € E
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Ordinals as Order Types

Alternative “Definition”

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition
an ordinal term « is an element of the inductively defined set E;
definition makes use of auxiliary set P

0OcE

if ag,...,am € P, then ag+---4+a, € E

if « € E, then w* € P, and w* € E
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Ordinals as Order Types

Alternative “Definition”

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition
an ordinal term « is an element of the inductively defined set E;
definition makes use of auxiliary set P

0OcE

if ag,...,am € P, then ag+---4+a, € E

if « € E, then w* € P, and w* € E

we write 1 instead of w°
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Ordinals as Order Types

Alternative “Definition”

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition
an ordinal term « is an element of the inductively defined set E;
definition makes use of auxiliary set P

0OcE

if ag,...,am € P, then ag+---4+a, € E

if « € E, then w* € P, and w* € E

we write 1 instead of w°

Lemma

any o # 0 € E can be uniquely represented as o = w™* + - - - + w",
where for each a; # 0 the same holds
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Demystification of Ordinals

Definition
simultaneous definition of ~ and < on E
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Demystification of Ordinals

Definition
simultaneous definition of ~ and < on E

0 is the minimal element of <
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Demystification of Ordinals

Definition
simultaneous definition of ~ and < on E
0 is the minimal element of <

a<ﬂiffw°‘<wf3
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Demystification of Ordinals

Definition
simultaneous definition of ~ and < on E

0 is the minimal element of <
a<ﬂiffwa<wf3

let a, B be of form
a:’7+wai+wai+1+(5 ,8:’}/+wai+1+(5

where ajy1 >~ «j, then a = 3
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Demystification of Ordinals

Definition
simultaneous definition of ~ and < on E
0 is the minimal element of <
a<ﬂiffwa<wf8
let a, B be of form
azfy+wai+wai+1+5 /8:7+w0¢i+1+6
where ajy1 > «j, then a = 3
let @« = w™ 4+ -+ 4+ w* and let ﬂ:wﬁl + -+ + wP such that
arFaxFE - Emam PrEPaiE = B

then a < B iff 3i: wY < W AV < it wY =Wl
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Demystification of Ordinals

Lemma (Cantor Normal Form (again))

ordinal term o # 0 is uniquely representable in Cantor Normal Form
(CNF)

a=w 4. 4w

where oy 3= -+ = a, and o« in CNF
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Demystification of Ordinals

Lemma (Cantor Normal Form (again))

ordinal term o # 0 is uniquely representable in Cantor Normal Form
(CNF)

a=w 4. 4w

where oy 3= -+ = a, and o« in CNF

Lemma
the set (E, <) is isomorphic to (eg, €)
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Demystification of Ordinals

Lemma (Cantor Normal Form (again))

ordinal term o # 0 is uniquely representable in Cantor Normal Form

(CNF)

a=w 4. 4w

where oy 3= -+ = a, and o« in CNF

Lemma
the set (E, <) is isomorphic to (eg, €)

Notations
e ordinal terms are ordinals, collected in the set O
e ~ becomes =
e < becomes <

e a limit ordinal is an ordinal which is neither O nor a successor ordinal
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Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows

(A limit ordinal): )
fA=w

Ax] = if \=p+wot!
if A =0+ w, alimit
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Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows

(A limit ordinal):
x+1 ifA=w

Ax] = if \=p+wot!
if A =0+ w, alimit
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Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows

(A limit ordinal):
x+1 ifA=w

A= B+w®-(x+1) ifA=p+wot!
if A =0+ w, alimit
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Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows
(A limit ordinal):

x+1 fA=w
A= B+w®-(x+1) ifA=p+wot!
B+ wold if A= 73+w® alimit
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Subrecursive Hierarchies

Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows
(A limit ordinal):

x+1 fA=w
AX] = B+w (x+1) if A= p+w!
B 4wl if A =064 w® a limit

Definition
the family of slow-growing functions (G, ).co is defined as follows:
Go(x) =0 Gat1(x) = Ga(x) +1 Ga(x) = Gypq(x) (A limit)
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Subrecursive Hierarchies

Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows
(A limit ordinal):

x+1 fA=w
AX] = B+w (x+1) if A= p+w!
B 4wl if A =064 w® a limit

Definition
the family of slow-growing functions (G, ).co is defined as follows:
Go(x) =0 Gat1(x) = Ga(x) +1 Ga(x) = Gypq(x) (A limit)
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Subrecursive Hierarchies

Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows
(A limit ordinal):

x+1 fA=w
AX] = B+w (x+1) if A= p+w!
B 4wl if A =064 w® a limit

Definition
the family of slow-growing functions (G, ).co is defined as follows:
Go(x) =0 Gar1(x) =Ga(x)+1 Ga(x) = Gypq(x) (A limit)
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Subrecursive Hierarchies

Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows
(A limit ordinal):

x+1 fA=w
AX] = B+w (x+1) if A= p+w!
B 4wl if A =064 w® a limit

Definition
the family of slow-growing functions (G, ).co is defined as follows:
Go(x) =0 Ga+1(x) = Ga(x) +1 Ga(x) = Gypq(x) (A limit)
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Subrecursive Hierarchies

Subrecursive Hierarchies

Definition
we define the family of fundamental sequences A[x].cn as follows
(A limit ordinal):

x+1 fA=w
AX] = B+w (x+1) if A= p+w!
B+ weld if A= 73+w® alimit

Definition
the family of slow-growing functions (G, ).co is defined as follows:
Go(x) =0 Gat1(x) = Ga(x) +1 Ga(x) = Gypq(x) (A limit)

Example
Go(x) =x+1 Guuw(x)=(x+ 1) GLp(10) = (10+1) -2 =22
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Subrecursive Hierarchies

Lemma
* Gaytotan(x) = Gay (x) + -+ + Gq, (X)
o Gua(x) = (x4 1)%
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Subrecursive Hierarchies

Lemma
* Gaytotan(x) = Gay (x) + -+ + Gq, (X)
o Gua(x) = (x4 1)%

Definition
we define a function P,(«) that allows to “subtract” 1 from «
P«(0) =0 Px(a+1)=«a Px(A\) = Px(A[x]) (A limit)
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Subrecursive Hierarchies

Lemma
* Gaytotan(x) = Gay (x) + -+ + Gq, (X)
o Gua(x) = (x4 1)%

Definition
we define a function P,(«) that allows to “subtract” 1 from «
P.(0)=0 Px(a+1)=«a Px(A\) = Px(A[x]) (A limit)
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Subrecursive Hierarchies

Lemma
* Gaytotan(x) = Gay (x) + -+ + Gq, (X)
o Gua(x) = (x4 1)%

Definition
we define a function P,(«) that allows to “subtract” 1 from «
P«(0) =0 Pila+1)=a Px(A\) = Px(A[x]) (A limit)
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Subrecursive Hierarchies

Lemma
* Gaytotan(x) = Gay (x) + -+ + Gq, (X)
o Gua(x) = (x4 1)%

Definition
we define a function P,(«) that allows to “subtract” 1 from «
P«(0) =0 Px(a+1)=«a Px«(A) = Px(A[x]) (A limit)
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Subrecursive Hierarchies

Lemma
* Gaytotan(x) = Gay (x) + -+ + Gq, (X)
o Gua(x) = (x4 1)%

Definition
we define a function P,(«) that allows to “subtract” 1 from «
P.(0) =0 Px(a+1)=«a Px(A) = Px(A[x]) (A limit)

Lemma
fora € O, x € N, we have Gp_(4)(x) = Px(Ga(x)) = Ga(x) — 1

Proof.

by induction on a, e.g.
Gp,(8+1) () = Gp(x) = Px(Gp(x) + 1) = Px(Gp11(x))
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Application @

Definition (Goodstein Sequence)
start with arbitrary number N in hereditary base x representation
replace base x by base x + 1, then subtract 1

continue
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Application @

Definition (Goodstein Sequence)
start with arbitrary number N in hereditary base x representation
replace base x by base x + 1, then subtract 1

continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic
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Application ®

Application @

Definition (Goodstein Sequence)

start with arbitrary number N in hereditary base x representation
replace base x by base x + 1, then subtract 1
continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition
the family of Hardy functions (H,,)aco is defined as follows:

Ho(x) = x Ha+1(x) = Ha(x + 1) Ha(x) = Hapg(x) (A limit)
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Definition (Goodstein Sequence)

start with arbitrary number N in hereditary base x representation
replace base x by base x + 1, then subtract 1
continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition
the family of Hardy functions (H,,)aco is defined as follows:

Ho(x) = x Ha+1(x) = Ha(x + 1) Ha(x) = Hapg(x) (A limit)

GM (ICS @ UIBK) Seminar 3, May 23, 2012 13/21


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Application ®

Application @

Definition (Goodstein Sequence)

start with arbitrary number N in hereditary base x representation
replace base x by base x + 1, then subtract 1
continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition
the family of Hardy functions (H,,)aco is defined as follows:

Ho(x) = x Hos1(x) = Ho(x + 1) Ha(x) = Hapg(x) (A limit)
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Application ®

Application @

Definition (Goodstein Sequence)

start with arbitrary number N in hereditary base x representation
replace base x by base x + 1, then subtract 1
continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition
the family of Hardy functions (H,,)aco is defined as follows:

Ho(x) = x Ha+1(x) = Ha(x + 1) Ha(x) = Hapg(x) (A limit)

GM (ICS @ UIBK) Seminar 3, May 23, 2012 13/21


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Application ®

Application @

Definition (Goodstein Sequence)

start with arbitrary number N in hereditary base x representation
replace base x by base x + 1, then subtract 1
continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition
the family of Hardy functions (H,,)aco is defined as follows:

Ho(x) = x Ha+1(x) = Ha(x + 1) Ha(x) = Hapg(x) (A limit)

Remark

the Hardy functions are fast-growing

o
GM (ICS @ UIBK) Seminar 3, May 23, 2012 13/21
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A Closer Look

Definition
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A Closer Look

Definition
start with arbitrary number N in hereditary base x representation

GM (ICS @ UIBK) Seminar 3, May 23, 2012


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A Closer Look
Definition
start with arbitrary number N in hereditary base x representation

replace x by w to obtain a; note Go(x —1) = N

GM (ICS @ UIBK) Seminar 3, May 23, 2012


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A Closer Look

Definition
start with arbitrary number N in hereditary base x representation
replace x by w to obtain a; note Go(x —1) = N
change base to x 4 1 obtaining G,(x)
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Application ®

A Closer Look

Definition
start with arbitrary number N in hereditary base x representation
replace x by w to obtain a; note Go(x —1) = N
change base to x 4 1 obtaining G,(x)
subtract 1: Ga(x) — 1 = Px(Ga(x)) = Gp, (a)(x)
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Application ®

A Closer Look

Definition
start with arbitrary number N in hereditary base x representation
replace x by w to obtain a; note Go(x —1) = N
change base to x 4 1 obtaining G,(x)
subtract 1: Ga(x) — 1 = Px(Ga(x)) = Gp,(a)(x)
one more iteration yields Gp_ op, (a)(x +1)
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Application ®

A Closer Look

Definition
start with arbitrary number N in hereditary base x representation
replace x by w to obtain a; note Go(x —1) = N
change base to x 4 1 obtaining G,(x)
subtract 1: Ga(x) — 1 = Px(Ga(x)) = Gp,(a)(x)
one more iteration yields Gp_ op,(a)(x +1)

[@ one more iteration yields Gp_,op, 0P, (a))(X +2)
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A Closer Look

Definition
start with arbitrary number N in hereditary base x representation
replace x by w to obtain a; note Go(x —1) = N
change base to x 4 1 obtaining G,(x)
subtract 1: Ga(x) — 1 = Px(Ga(x)) = Gp,(a)(x)
one more iteration yields Gp_ op,(a)(x +1)
[@ one more iteration yields Gp__,op, ,;0P,(a)) (X + 2)
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A Closer Look

Definition
start with arbitrary number N in hereditary base x representation
replace x by w to obtain a; note Go(x —1) = N
change base to x 4 1 obtaining G,(x)
subtract 1: Ga(x) — 1 = Px(Ga(x)) = Gp,(a)(x)
one more iteration yields Gp_ op,(a)(x +1)
[@ one more iteration yields Gp__,op, ,;0P,(a)) (X + 2)

Theorem (Goodstein)

the process terminates
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Proof (due to Cichon).
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Application ®

Proof (due to Cichon).
e Gu(x)=0iffa=0
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Application ®

Proof (due to Cichon).
e Gu(x)=0iffa=0
e process terminates iff V. o« #£ 0 € O, 3 y > x such that
PyoPy,_10---0Po0P,(a)=0
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Application ®

Proof (due to Cichon).
e Gu(x)=0iffa=0
e process terminates iff V. o« #£ 0 € O, 3 y > x such that
PyoPy,_10---0Po0P,(a)=0
e let f(a, x) be defined as follows

f(a,x) =least y (Py_10P,_10---0P,i10P,(a) =0)
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Application ®

Proof (due to Cichon).
e Gu(x)=0iffa=0
e process terminates iff V. o« #£ 0 € O, 3 y > x such that
PyoPy,_10---0Po0P,(a)=0
e let f(a, x) be defined as follows
f(a,x) =least y (Py_10P,_10---0P,i10P,(a) =0)
o Va #0, Vx: Hao(x) = (o, x)
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Application ®

Proof (due to Cichon).
e Gu(x)=0iffa=0
e process terminates iff V. o« #£ 0 € O, 3 y > x such that
PyoPy,_10---0Po0P,(a)=0
e let f(a, x) be defined as follows
f(a,x) =least y (Py_10P,_10---0P,i10P,(a) =0)
o Va #0, Vx: Hao(x) = (o, x)
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Application ®

Proof (due to Cichon).
e Gu(x)=0iffa=0
e process terminates iff V. o« #£ 0 € O, 3 y > x such that
PyoPy,_10---0Po0P,(a)=0
e let f(a, x) be defined as follows
f(a,x) =least y (Py_10P,_10---0P,i10P,(a) =0)
o Va #0, Vx: Hao(x) = (o, x)

|
Corollary (Kirby and Paris)
termination is not provable in Peano Arithmetic
Proof.
V functions f, provable recursive in Peano Arithmetic
J a € O such that f is majorised by H, |
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More on the Slow-Growing Hierarchy
Lemma

the family (Gq)aco forms a hierarchy: for o > f3:
3 ¢ such that V x > c: Gao(x) > Gg(x)
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More on the Slow-Growing Hierarchy
Lemma

the family (Gq)aco forms a hierarchy: for o > f3:
3 ¢ such that V x > c: Gao(x) > Gg(x)

Example
Vx> 1 Guw(x) = (x + 1) > (x +1) = G,(x)
Vx >1 Gu(x) =x+1%y=0Gy(x) whenever y > x
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More on the Slow-Growing Hierarchy
Lemma

the family (Gq)aco forms a hierarchy: for o > f3:
3 ¢ such that V x > c: Gao(x) > Gg(x)

Example

Vx> 1 Guw(x) = (x + 1) > (x +1) = G,(x)

Vx >1 Gu(x) =x+1%y=0Gy(x) whenever y > x
Definition

let >(,) denote the transitive closure of the fundamental sequence -[]

a > B if 3= alx] or alx] = B
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More on the Slow-Growing Hierarchy
Lemma

the family (Gq)aco forms a hierarchy: for o > f3:
3 ¢ such that V x > c: Gao(x) > Gg(x)

Example

Vx> 1 Guw(x) = (x + 1) > (x +1) = G,(x)

Vx >1 Gu(x) =x+1%y=0Gy(x) whenever y > x
Definition

let >(,) denote the transitive closure of the fundamental sequence -[]
a >y B if = alx] or a[x] 2(x) B
where we set 0[x] =0, (o + 1)[x] = «
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More on the Slow-Growing Hierarchy

Lemma
Gy, is increasing (strictly if « is infinite)
if o>y B, then Ga(x) > Gg(x) forall x > n
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More on the Slow-Growing Hierarchy

Lemma
Gy, is increasing (strictly if « is infinite)
if o>y B, then Ga(x) > Gg(x) forall x > n

Definition
we define the norm N(«) of « as follows
N(0) = 0
N(w + - +w*) = N(a1) + -+ N(as) +n
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More on the Slow-Growing Hierarchy

Lemma

Gy, is increasing (strictly if « is infinite)

if o>y B, then Ga(x) > Gg(x) forall x > n
Definition
we define the norm N(«) of « as follows

N(0) =0
N(w + - +w*) = N(a1) + -+ N(as) +n

Lemma
if > 8 and n = N(f3), then

a > B

Vx = n: Go(x) > Gg(x)
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Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs) J
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Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)

Theorem (Ludwig and Waldmann)

TKBOs form a simplification order

GM (ICS @ UIBK) Seminar 3, May 23, 2012


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)

Theorem (Ludwig and Waldmann)

TKBOs form a simplification order

Theorem (Kovacs, M., and Voronkov)

let signature F be finite; any TKBO is equivalent to a TKBO restricting
ordinal weights to ordinals < w*”
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Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)

Theorem (Ludwig and Waldmann)

TKBOs form a simplification order

Theorem (Kovacs, M., and Voronkov)

let signature F be finite; any TKBO is equivalent to a TKBO restricting
ordinal weights to ordinals < w*”

Theorem (Winkler, Zankl, and Middeldorp)

if a finite TRS R is compatible with a TKBO, then R is compatible with
a finite TKBO

GM (ICS @ UIBK) Seminar 3, May 23, 2012


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Application @

Example

let F = {f, g, h,k} and consider the following rules:

fx) — &x) w(f) =
h(x) — f(f(x)) w(g) =
k(x,y) — h(f(x),f(y))  w(h)=w
wk)=w-2

subterm coefficents are =1

GM (ICS @ UIBK) Seminar 3, May 23, 2012


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

let F = {f, g, h,k} and consider the following rules:

fx) — &) w(f) =5

h(x,x)  — f(f(x)) w(g) =0

k(x,y) — h(f(x),f(y))  w(h)=w
wk)=w-2

subterm coefficents are =1
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Example

let F = {f, g, h,k} and consider the following rules:

f(X) >tkbo g(X) (f) =5
h(x, x) =tkbo f(f(x)) w(g) =0
k(x,y) =tkbo h(f(x),f(y)) w(h) =w

w(k) =w-2

subterm coefficents are =1
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Application @

Example

let F = {f, g, h,k} and consider the following rules:

f(x) >tkbo 8(x) w(f) =5
h(x, x) =tkbo f(f(x)) w(g) =0
k(x, ) =tkbo h(f(x),f(y))  w(h) =11

w(k) =112 = 22

subterm coefficents are =1
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Application @

Example

let F = {f, g, h,k} and consider the following rules:

f(x) >tkbo 8(x) w(f) =5
h(x, x) =tkbo f(f(x)) w(g) =0
k(x, ) =tkbo h(f(x),f(y))  w(h) =11

w(k) =112 = 22

subterm coefficents are =1

Proof of Theorem on Finite TKBOs.

o it suffices to show that 3 x V / — r € R: weight(/) >, weight(r)
asthenV/—reR: Gweight(l)(k) > Gweight(r)(k)
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Application @

Example

let F = {f, g, h,k} and consider the following rules:

f(x) >tkbo 8(x) w(f) =5
h(x, x) =tkbo f(f(x)) w(g) =0
k(x, ) =tkbo h(f(x),f(y))  w(h) =11

w(k) =112 = 22

subterm coefficents are =1

Proof of Theorem on Finite TKBOs.

o it suffices to show that 3 x V / — r € R: weight(/) >, weight(r)
asthenV/—reR: Gweight(l)(k) > Gweight(r)(k)
e set k = max{N(weight(r)) |/ — r e R}
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Application @

Example
let F = {f, g, h,k} and consider the following rules:
f(x) > tkbo g(X) w(f) =5
h(x,x) >tkbo f(f(x)) w(g) =0

(
k(x,¥) =wbo h(f(x),f(y))  w(h) =11
w(k) =11-2=22
subterm coefficents are =1

Proof of Theorem on Finite TKBOs.
o it suffices to show that 3 x V / — r € R: weight(/) >, weight(r)
asthenV/—reR: Gweight(l)(k) = Gweight(r)(k)
e set k = max{N(weight(r)) |/ — r e R}
o then weight(/) > weight(r) implies weight(/) > ) weight(r)
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Application @

Example
let F = {f, g, h,k} and consider the following rules:
f(x) > tkbo g(X) w(f) =5
h(x,x) >tkbo f(f(x)) w(g) =0

(
k(x,¥) =wbo h(f(x),f(y))  w(h) =11
w(k) =11-2=22
subterm coefficents are =1

Proof of Theorem on Finite TKBOs.
o it suffices to show that 3 x V / — r € R: weight(/) >, weight(r)
asthenV/—reR: Gweight(l)(k) = Gweight(r)(k)
e set k = max{N(weight(r)) |/ — r e R}
o then weight(/) > weight(r) implies weight(/) > ) weight(r) -
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Application @

Definition
we define the derivational complexity with respect to R:
dheight(t) = max{n | Ju t =" u}
dc(n) = max{dheight(t) | |t| < n}
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Application @

Definition
we define the derivational complexity with respect to R:
dheight(t) = max{n | Ju t =" u}
dc(n) = max{dheight(t) | |t| < n}

Theorem (Lepper)

for any TRS R, compatible with a KBO, the derivational complexity is
bounded by a 2-recursive function, that is, dc(n) € Ack(O(n),0)
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Definition
we define the derivational complexity with respect to R:
dheight(t) = max{n | Ju t =" u}
dc(n) = max{dheight(t) | |t| < n}

Theorem

for any TRS R, compatible with a TKBO, the derivational complexity is
bounded by a 2-recursive function, that is, dc(n) € Ack(O(n),0)
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Application @

Definition
we define the derivational complexity with respect to R:
dheight(t) = max{n | Ju t =" u}
dc(n) = max{dheight(t) | |t| < n}

Theorem

for any TRS R, compatible with a TKBO, the derivational complexity is
bounded by a 2-recursive function, that is, dc(n) € Ack(O(n),0)

Future Work
e generalised KBOs compute weights based on weakly monotone
simple algebras A
e clarify restrictions on A so that ordinal weights again collapse to
numbers
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Application @

Thank You for Your Attention!

GM (ICS @ UIBK) Seminar 3, May 23, 2012


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Ordinals
	Demystification of Ordinals
	Subrecursive Hierarchies
	Application 192
	More on the Slow-Growing Hierarchy
	Application 193

