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Ordinals

Ordinals

Definition

an ordinal is a set α such that

1 α is totally ordered with respect to membership

∀β, γ ∈ α : β ∈ γ ∨ γ ∈ β ∨ β = γ

2 every element of α is a subset of α (aka α is transitive)

∀β : β ∈ α implies β ⊆ α

Lemma

ordinal α is either

• 0

• β ∪ {β} = β + 1 successor ordinal

•
⋃
α limit ordinal
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Ordinals

Further Properties or Ordinals

Lemma

let α be an ordinal, then

• α is well-ordered by ∈
1 α is totally ordered
2 there are no infinite descending sequences

¬ ∃ α1 3 α2 3 α3 · · · (αi ∈ α)

• if β ∈ α, then β is an ordinal

• α =
⋃
β∈α β

Lemma

let X be a non-empty set of ordinals, then

•
⋂

X is an ordinal and
⋂

X = inf X

•
⋃

X is an ordinal and
⋃

X = sup X
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Ordinals

Arithmetic of Ordinals

Definition (Addition)

α + β =


α if β = 0

(α + β′) + 1 if β = β′ + 1⋃
β′<β(α + β′) if β is a limit ordinal

Definition (Multiplication)

α · β =


0 if β = 0

α · β′ + α if β = β′ + 1⋃
β′<β(α · β′) if β is a limit ordinal

Definition (Exponentiation)
. . .

GM (ICS @ UIBK) Seminar 3, May 23, 2012 5/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Ordinals

Arithmetic of Ordinals

Definition (Addition)

α + β =


α if β = 0

(α + β′) + 1 if β = β′ + 1⋃
β′<β(α + β′) if β is a limit ordinal

Definition (Multiplication)

α · β =


0 if β = 0

α · β′ + α if β = β′ + 1⋃
β′<β(α · β′) if β is a limit ordinal

Definition (Exponentiation)
. . .

GM (ICS @ UIBK) Seminar 3, May 23, 2012 5/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Ordinals

Arithmetic of Ordinals

Definition (Addition)

α + β =


α if β = 0

(α + β′) + 1 if β = β′ + 1⋃
β′<β(α + β′) if β is a limit ordinal

Definition (Multiplication)

α · β =


0 if β = 0

α · β′ + α if β = β′ + 1⋃
β′<β(α · β′) if β is a limit ordinal

Definition (Exponentiation)
. . .

GM (ICS @ UIBK) Seminar 3, May 23, 2012 5/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Ordinals

Lemma

for all ordinals α, β, γ

• α + (β + γ) = (α + β) + γ

• α · (β · γ) = (α · β) · γ

Example

neither + nor · are commutative

1 + ω = ω 6= ω + 1 2 · ω = ω 6= ω · 2

Theorem

ordinal α 6= 0 is representable in Cantor Normal Form (CNF)

α = ωα1 + · · ·+ ωαn

where α1 > · · · > αn and αi in CNF
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Demystification of Ordinals

Demystification of Ordinals

Definitions

let (A, <), (B,≺) be partially ordered sets

• a mapping f : A→ B is order preserving if

x < y implies f (x) ≺ f (y)

• if f is a bijection and f and f −1 are order preserving then (A, <) is
isomorphic to (B,≺)

Lemma

if two well-ordered sets W1 and W2 are isomorphic, then the isomorphism
of W1 onto W2 is unique

Theorem

every well-ordered set is isomorphic to a unique ordinal
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Demystification of Ordinals

Ordinals as Order Types

Alternative “Definition”

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set E ;
definition makes use of auxiliary set P

1 0 ∈ E

2 if α1, . . . , αm ∈ P, then α1+ · · ·+αm ∈ E

3 if α ∈ E , then ωα ∈ P, and ωα ∈ E

we write 1 instead of ω0

Lemma

any α 6= 0 ∈ E can be uniquely represented as α = ωα1 + · · ·+ ωαm ,
where for each αi 6= 0 the same holds
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Demystification of Ordinals

Definition

simultaneous definition of ≈ and ≺ on E

1 0 is the minimal element of ≺

2 α ≺ β iff ωα ≺ ωβ

3 let α, β be of form

α = γ + ωαi + ωαi+1 + δ β = γ + ωαi+1 + δ

where αi+1 � αi , then α ≈ β

4 let α = ωα1 + · · ·+ ωαm and let β = ωβ1 + · · ·+ ωβn such that

α1 < α2 < · · · < αm β1 < β2 < · · · < βn

then α ≺ β iff ∃i : ωαi ≺ ωβi ∧ ∀j < i : ωαj ≈ ωβj
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Demystification of Ordinals

Lemma (Cantor Normal Form (again))

ordinal term α 6= 0 is uniquely representable in Cantor Normal Form
(CNF)

α = ωα1 + · · ·+ ωαn

where α1 < · · · < αn and αi in CNF

Lemma

the set (E ,≺) is isomorphic to (ε0,∈)

Notations

• ordinal terms are ordinals, collected in the set O
• ≈ becomes =

• ≺ becomes <

• a limit ordinal is an ordinal which is neither 0 nor a successor ordinal
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Subrecursive Hierarchies

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences λ[x ]x∈N as follows
(λ limit ordinal):

λ[x ] =



x + 1

if λ = ω

β + ωα · (x + 1)

if λ = β + ωα+1

β + ωα[x]

if λ = β + ωα, α limit

Definition

the family of slow-growing functions (Gα)α∈O is defined as follows:

G0(x) = 0 Gα+1(x) = Gα(x) + 1 Gλ(x) = Gλ[x](x) (λ limit)

Example

Gω(x) = x + 1 Gωωω (x) = (x + 1)x+1x+1
Gω·2(10) = (10 + 1) · 2 = 22
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(λ limit ordinal):
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Subrecursive Hierarchies

Lemma

• Gα1+···+αn(x) = Gα1(x) + · · ·+ Gαn(x)

• Gωα(x) = (x + 1)Gα(x)

Definition

we define a function Px(α) that allows to “subtract” 1 from α

Px(0) = 0 Px(α + 1) = α Px(λ) = Px(λ[x ]) (λ limit)

Lemma

for α ∈ O, x ∈ N, we have GPx (α)(x) = Px(Gα(x)) = Gα(x)− 1

Proof.

by induction on α, e.g.

GPx (β+1)(x) = Gβ(x) = Px(Gβ(x) + 1) = Px(Gβ+1(x))
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Application À

Application À

Definition (Goodstein Sequence)

1 start with arbitrary number N in hereditary base x representation

2 replace base x by base x + 1, then subtract 1

3 continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions (Hα)α∈O is defined as follows:

H0(x) = x Hα+1(x) = Hα(x + 1) Hλ(x) = Hλ[x](x) (λ limit)

Remark

the Hardy functions are fast-growing
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Application À

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation

2 replace x by ω to obtain α; note Gα(x − 1) = N

3 change base to x + 1 obtaining Gα(x)

4 subtract 1: Gα(x)− 1 = Px(Gα(x)) = GPx (α)(x)

5 one more iteration yields GPx+1◦Px (α)(x + 1)

6 one more iteration yields GPx+2◦Px+1◦Px (α))(x + 2)

7 . . .

Theorem (Goodstein)

the process terminates
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Application À

Proof (due to Cichon).

• Gα(x) = 0 iff α = 0

• process terminates iff ∀ α 6= 0 ∈ O, ∃ y > x such that

Py ◦ Py−1 ◦ · · · ◦ Px+2 ◦ Px(α) = 0

• let f (α, x) be defined as follows

f (α, x) = least y (Py−1 ◦ Py−1 ◦ · · · ◦ Px+1 ◦ Px(α) = 0)

• ∀α 6= 0, ∀x : Hα(x) = f (α, x)

Corollary (Kirby and Paris)

termination is not provable in Peano Arithmetic

Proof.

∀ functions f , provable recursive in Peano Arithmetic
∃ α ∈ O such that f is majorised by Hα
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More on the Slow-Growing Hierarchy

More on the Slow-Growing Hierarchy

Lemma

the family (Gα)α∈O forms a hierarchy: for α > β:

∃ c such that ∀ x > c: Gα(x) > Gβ(x)

Example

∀x > 1 Gωω(x) = (x + 1)x+1 > (x + 1) = Gω(x)

∀x > 1 Gω(x) = x + 1 6> y = Gy (x) whenever y > x

Definition

let >(x) denote the transitive closure of the fundamental sequence ·[·]
α >(x) β if β = α[x ] or α[x ] >(x) β

where we set 0[x ] = 0, (α + 1)[x ] = α
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More on the Slow-Growing Hierarchy

Lemma

1 Gα is increasing (strictly if α is infinite)

2 if α >(n) β, then Gα(x) > Gβ(x) for all x > n

Definition

we define the norm N(α) of α as follows

N(0) = 0

N(ωα1 + · · ·+ ωαn) = N(α1) + · · ·+ N(αn) + n

Lemma

if α > β and n > N(β), then

1 α >(n) β

2 ∀x > n : Gα(x) > Gβ(x)

GM (ICS @ UIBK) Seminar 3, May 23, 2012 17/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


More on the Slow-Growing Hierarchy

Lemma

1 Gα is increasing (strictly if α is infinite)

2 if α >(n) β, then Gα(x) > Gβ(x) for all x > n

Definition

we define the norm N(α) of α as follows

N(0) = 0

N(ωα1 + · · ·+ ωαn) = N(α1) + · · ·+ N(αn) + n

Lemma

if α > β and n > N(β), then

1 α >(n) β

2 ∀x > n : Gα(x) > Gβ(x)

GM (ICS @ UIBK) Seminar 3, May 23, 2012 17/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


More on the Slow-Growing Hierarchy

Lemma

1 Gα is increasing (strictly if α is infinite)

2 if α >(n) β, then Gα(x) > Gβ(x) for all x > n

Definition

we define the norm N(α) of α as follows

N(0) = 0

N(ωα1 + · · ·+ ωαn) = N(α1) + · · ·+ N(αn) + n

Lemma

if α > β and n > N(β), then

1 α >(n) β

2 ∀x > n : Gα(x) > Gβ(x)

GM (ICS @ UIBK) Seminar 3, May 23, 2012 17/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Application Á

Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)
. . .

Theorem (Ludwig and Waldmann)

TKBOs form a simplification order

Theorem (Kovacs, M., and Voronkov)

let signature F be finite; any TKBO is equivalent to a TKBO restricting
ordinal weights to ordinals < ωω

ω

Theorem (Winkler, Zankl, and Middeldorp)

if a finite TRS R is compatible with a TKBO, then R is compatible with
a finite TKBO
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Application Á

Example

let F = {f, g, h, k} and consider the following rules:

f(x) → g(x) w(f) = 5

h(x) → f(f(x)) w(g) = 0

k(x , y) → h(f(x), f(y)) w(h) = ω

w(k) = ω · 2
subterm coefficents are = 1

Proof of Theorem on Finite TKBOs.

• it suffices to show that ∃ x ∀ l → r ∈ R: weight(l) >(x) weight(r)
as then ∀ l → r ∈ R: Gweight(l)(k) > Gweight(r)(k)

• set k = max{N(weight(r)) | l → r ∈ R}
• then weight(l) > weight(r) implies weight(l) >(k) weight(r)
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Definition

we define the derivational complexity with respect to R:

dheight(t) = max{n | ∃u t →n u}
dc(n) = max{dheight(t) | |t| 6 n}

Future Work

• generalised KBOs compute weights based on weakly monotone
simple algebras A

• clarify restrictions on A so that ordinal weights again collapse to
numbers
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bounded by a 2-recursive function, that is, dc(n) ∈ Ack(O(n), 0)
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Thank You for Your Attention!
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