

Ordinals, Subrecursive Hierarchies and All That

Georg Moser

Institute of Computer Science University of Innsbruck

SIG

Master Seminar, November 9, 2011

Overview

- Ordinals
- Demystification of Ordinals
- Subrecursive Hierarchies
- \bullet Application
- More on the Slow-Growing Hierarchy
- Application 2

Ordinals

Definition

an ordinal is a set α such that

1 α is totally ordered with respect to membership

 $\forall \beta, \gamma \in \alpha \colon \beta \in \gamma \lor \gamma \in \beta \lor \beta = \gamma$

2 every element of α is a subset of α (aka α is transitive)

 $\forall \beta \colon \beta \in \alpha \text{ implies } \beta \subseteq \alpha$

Ordinals

Definition

an ordinal is a set α such that

1 α is totally ordered with respect to membership

 $\forall \beta, \gamma \in \alpha \colon \beta \in \gamma \lor \gamma \in \beta \lor \beta = \gamma$

2 every element of α is a subset of α (aka α is transitive)

 $\forall \beta \colon \beta \in \alpha \text{ implies } \beta \subseteq \alpha$

Lemma

ordinal α is either

• 0

•
$$\beta \cup \{\beta\} = \beta + 1$$

• $\bigcup \alpha$

successor ordinal

limit ordinal

Further Properties or Ordinals

Lemma

let α be an ordinal, then

- α is well-ordered by \in
 - **1** α is totally ordered
 - 2 there are no infinite descending sequences

 $\neg \exists \alpha_1 \ni \alpha_2 \ni \alpha_3 \cdots$

 $(\alpha_i \in \alpha)$

- if $\beta \in \alpha$, then β is an ordinal
- $\alpha = \bigcup_{\beta \in \alpha} \beta$

Lemma

let X be a non-empty set of ordinals, then

- $\bigcap X$ is an ordinal and $\bigcap X = \inf X$
- $\bigcup X$ is an ordinal and $\bigcup X = \sup X$

Arithmetic of Ordinals

Definition (Addition)

$$\alpha + \beta = \begin{cases} \alpha & \text{if } \beta = 0\\ (\alpha + \beta') + 1 & \text{if } \beta = \beta' + 1\\ \bigcup_{\beta' < \beta} (\alpha + \beta') & \text{if } \beta \text{ is a limit ordinal} \end{cases}$$

Arithmetic of Ordinals

Definition (Addition)

$$\alpha + \beta = \begin{cases} \alpha & \text{if } \beta = 0\\ (\alpha + \beta') + 1 & \text{if } \beta = \beta' + 1\\ \bigcup_{\beta' < \beta} (\alpha + \beta') & \text{if } \beta \text{ is a limit ordinal} \end{cases}$$

Definition (Multiplication)

$$\alpha \cdot \beta = \begin{cases} 0 & \text{if } \beta = 0\\ \alpha \cdot \beta' + \alpha & \text{if } \beta = \beta' + 1\\ \bigcup_{\beta' < \beta} (\alpha \cdot \beta') & \text{if } \beta \text{ is a limit ordinal} \end{cases}$$

Arithmetic of Ordinals

Definition (Addition)

$$\alpha + \beta = \begin{cases} \alpha & \text{if } \beta = 0\\ (\alpha + \beta') + 1 & \text{if } \beta = \beta' + 1\\ \bigcup_{\beta' < \beta} (\alpha + \beta') & \text{if } \beta \text{ is a limit ordinal} \end{cases}$$

Definition (Multiplication)

$$\alpha \cdot \beta = \begin{cases} 0 & \text{if } \beta = 0\\ \alpha \cdot \beta' + \alpha & \text{if } \beta = \beta' + 1\\ \bigcup_{\beta' < \beta} (\alpha \cdot \beta') & \text{if } \beta \text{ is a limit ordinal} \end{cases}$$

Definition (Exponentiation)

. . .

Lemma

for all ordinals α,β,γ

•
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

•
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

Lemma

for all ordinals α, β, γ

- $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$

Example

neither + nor \cdot are commutative

$$1 + \omega = \omega \neq \omega + 1$$
 $2 \cdot \omega = \omega \neq \omega \cdot 2$

Lemma

for all ordinals α, β, γ

•
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

•
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

Example

neither + nor \cdot are commutative

$$1+\omega=\omega\neq\omega+1 \qquad 2\cdot\omega=\omega\neq\omega\cdot2$$

Theorem

ordinal $\alpha \neq 0$ is representable in Cantor Normal Form (CNF)

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

where $\alpha_1 \ge \cdots \ge \alpha_n$ and α_i in CNF

Demystification of Ordinals

Definitions

let (A, <), (B, \prec) be partially ordered sets

• a mapping $f: A \rightarrow B$ is order preserving if

x < y implies $f(x) \prec f(y)$

 if f is a bijection and f and f⁻¹ are order preserving then (A, <) is isomorphic to (B, ≺)

Demystification of Ordinals

Definitions

let (A, <), (B, \prec) be partially ordered sets

• a mapping $f: A \rightarrow B$ is order preserving if

x < y implies $f(x) \prec f(y)$

 if f is a bijection and f and f⁻¹ are order preserving then (A, <) is isomorphic to (B, ≺)

Lemma

if two well-ordered sets W_1 and W_2 are isomorphic, then the isomorphism of W_1 onto W_2 is unique

Demystification of Ordinals

Definitions

let (A, <), (B, \prec) be partially ordered sets

• a mapping $f: A \rightarrow B$ is order preserving if

x < y implies $f(x) \prec f(y)$

 if f is a bijection and f and f⁻¹ are order preserving then (A, <) is isomorphic to (B, ≺)

Lemma

if two well-ordered sets W_1 and W_2 are isomorphic, then the isomorphism of W_1 onto W_2 is unique

Theorem

every well-ordered set is isomorphic to a unique ordinal

Alternative "Definition"

an ordinal is an equivalence class of well-orders with respect to isomorphism

Alternative "Definition"

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set *E*; definition makes use of auxiliary set *P*

Alternative "Definition"

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set *E*; definition makes use of auxiliary set *P*

1 0 ∈ *E*

Alternative "Definition"

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set *E*; definition makes use of auxiliary set *P*

1
$$0 \in E$$

2 if $\alpha_1, \ldots, \alpha_m \in P$, then $\alpha_1 + \cdots + \alpha_m \in E$

Alternative "Definition"

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set *E*; definition makes use of auxiliary set *P*

1
$$0 \in E$$

2 if $\alpha_1, \ldots, \alpha_m \in P$, then $\alpha_1 + \cdots + \alpha_m \in E$

3 if
$$\alpha \in E$$
, then $\omega^{lpha} \in P$, and $\omega^{lpha} \in E$

Alternative "Definition"

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set *E*; definition makes use of auxiliary set *P*

1
$$0 \in E$$

2 if $\alpha_1, \ldots, \alpha_m \in P$, then $\alpha_1 + \cdots + \alpha_m \in E$
3 if $\alpha \in E$, then $\omega^{\alpha} \in P$, and $\omega^{\alpha} \in E$

we write 1 instead of ω^0

Alternative "Definition"

an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set *E*; definition makes use of auxiliary set *P*

1 $0 \in E$ 2 if $\alpha_1, \ldots, \alpha_m \in P$, then $\alpha_1 + \cdots + \alpha_m \in E$ 3 if $\alpha \in E$, then $\omega^{\alpha} \in P$, and $\omega^{\alpha} \in E$

we write 1 instead of ω^0

Lemma

any $\alpha \neq 0 \in E$ can be uniquely represented as $\alpha = \omega^{\alpha_1} + \cdots + \omega^{\alpha_m}$, where for each $\alpha_i \neq 0$ the same holds

simultaneous definition of \approx and \prec on E

simultaneous definition of \approx and \prec on E

1 0 is the minimal element of \prec

simultaneous definition of \approx and \prec on E

1 0 is the minimal element of \prec

2
$$\alpha \prec \beta$$
 iff $\omega^{\alpha} \prec \omega^{\beta}$

simultaneous definition of \approx and \prec on ${\it E}$

- 1 0 is the minimal element of \prec
- **2** $\alpha \prec \beta$ iff $\omega^{\alpha} \prec \omega^{\beta}$
- 3 let α, β be of form

$$\alpha = \gamma + \omega^{\alpha_i} + \omega^{\alpha_{i+1}} + \delta \qquad \beta = \gamma + \omega^{\alpha_{i+1}} + \delta$$

where $\alpha_{i+1} \succ \alpha_i$, then $\alpha \approx \beta$

simultaneous definition of \approx and \prec on *E*

- 1 0 is the minimal element of \prec
- **2** $\alpha \prec \beta$ iff $\omega^{\alpha} \prec \omega^{\beta}$
- 3 let α, β be of form

$$\alpha = \gamma + \omega^{\alpha_i} + \omega^{\alpha_{i+1}} + \delta \qquad \beta = \gamma + \omega^{\alpha_{i+1}} + \delta$$

where $\alpha_{i+1} \succ \alpha_i$, then $\alpha \approx \beta$

4 let
$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_m}$$
 and let $\beta = \omega^{\beta_1} + \dots + \omega^{\beta_n}$ such that
 $\alpha_1 \succcurlyeq \alpha_2 \succcurlyeq \dots \succcurlyeq \alpha_m \qquad \beta_1 \succcurlyeq \beta_2 \succcurlyeq \dots \succcurlyeq \beta_n$
then $\alpha \prec \beta$ iff $\exists i \colon \omega^{\alpha_i} \prec \omega^{\beta_i} \land \forall j < i \colon \omega^{\alpha_j} \approx \omega^{\beta_j}$

Lemma (Cantor Normal Form (again))

ordinal term $\alpha \neq 0$ is uniquely representable in Cantor Normal Form (CNF)

 $\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$

where $\alpha_1 \succcurlyeq \cdots \succcurlyeq \alpha_n$ and α_i in CNF

Lemma (Cantor Normal Form (again))

ordinal term $\alpha \neq 0$ is uniquely representable in Cantor Normal Form (CNF)

 $\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$

where $\alpha_1 \succcurlyeq \cdots \succcurlyeq \alpha_n$ and α_i in CNF

Lemma

the set (E, \prec) is isomorphic to (ϵ_0, \in)

Lemma (Cantor Normal Form (again))

ordinal term $\alpha \neq 0$ is uniquely representable in Cantor Normal Form (CNF)

 $\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$

where $\alpha_1 \succcurlyeq \cdots \succcurlyeq \alpha_n$ and α_i in CNF

Lemma

the set (E, \prec) is isomorphic to (ϵ_0, \in)

Notations

- ordinal terms are ordinals, collected in the set $\ensuremath{\mathcal{O}}$
- \approx becomes =
- \prec becomes <
- a limit ordinal is an ordinal which is neither 0 nor a successor ordinal

Definition

we define the family of fundamental sequences $\lambda[x]_{x\in\mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[\mathbf{x}] = \begin{cases} & \text{if } \lambda = \omega \\ & \text{if } \lambda = \beta + \omega^{\alpha+1} \\ & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

we define the family of fundamental sequences $\lambda[x]_{x\in\mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[\mathbf{x}] = \begin{cases} \mathbf{x} + 1 & \text{if } \lambda = \omega \\ & \text{if } \lambda = \beta + \omega^{\alpha + 1} \\ & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

we define the family of fundamental sequences $\lambda[x]_{x\in\mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[\mathbf{x}] = \begin{cases} \mathbf{x} + 1 & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (\mathbf{x} + 1) & \text{if } \lambda = \beta + \omega^{\alpha + 1} \\ & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[\mathbf{x}] = \begin{cases} \mathbf{x} + 1 & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (\mathbf{x} + 1) & \text{if } \lambda = \beta + \omega^{\alpha + 1} \\ \beta + \omega^{\alpha[\mathbf{x}]} & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[x] = \begin{cases} x+1 & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (x+1) & \text{if } \lambda = \beta + \omega^{\alpha+1} \\ \beta + \omega^{\alpha[x]} & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

the family of slow-growing functions $(G_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$\mathsf{G}_0(x) = 0 \qquad \mathsf{G}_{\alpha+1}(x) = \mathsf{G}_{\alpha}(x) + 1 \qquad \mathsf{G}_{\lambda}(x) = \mathsf{G}_{\lambda[x]}(x) \quad (\lambda \text{ limit})$$

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[x] = \begin{cases} x+1 & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (x+1) & \text{if } \lambda = \beta + \omega^{\alpha+1} \\ \beta + \omega^{\alpha[x]} & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

the family of slow-growing functions $(G_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$\mathsf{G}_0(x) = 0$$
 $\mathsf{G}_{\alpha+1}(x) = \mathsf{G}_{\alpha}(x) + 1$ $\mathsf{G}_{\lambda}(x) = \mathsf{G}_{\lambda[x]}(x)$ (λ limit)

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[x] = \begin{cases} x+1 & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (x+1) & \text{if } \lambda = \beta + \omega^{\alpha+1} \\ \beta + \omega^{\alpha[x]} & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

the family of slow-growing functions $(G_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

 $\mathsf{G}_0(x) = 0$ $\mathsf{G}_{\alpha+1}(x) = \mathsf{G}_{\alpha}(x) + 1$ $\mathsf{G}_{\lambda}(x) = \mathsf{G}_{\lambda[x]}(x)$ (λ limit)
Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[x] = \begin{cases} x+1 & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (x+1) & \text{if } \lambda = \beta + \omega^{\alpha+1} \\ \beta + \omega^{\alpha[x]} & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

the family of slow-growing functions $(G_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$\mathsf{G}_0(x) = 0$$
 $\mathsf{G}_{\alpha+1}(x) = \mathsf{G}_{\alpha}(x) + 1$ $\mathsf{G}_{\lambda}(x) = \mathsf{G}_{\lambda[x]}(x)$ (λ limit)

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$\lambda[x] = \begin{cases} x+1 & \text{if } \lambda = \omega \\ \beta + \omega^{\alpha} \cdot (x+1) & \text{if } \lambda = \beta + \omega^{\alpha+1} \\ \beta + \omega^{\alpha[x]} & \text{if } \lambda = \beta + \omega^{\alpha}, \ \alpha \text{ limit} \end{cases}$$

Definition

the family of slow-growing functions $(G_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$\mathsf{G}_0(x) = 0$$
 $\mathsf{G}_{\alpha+1}(x) = \mathsf{G}_{\alpha}(x) + 1$ $\mathsf{G}_{\lambda}(x) = \mathsf{G}_{\lambda[x]}(x)$ (λ limit)

Example

 $G_{\omega}(x) = x + 1$ $G_{\omega^{\omega^{\omega}}}(x) = (x + 1)^{x + 1^{x+1}}$ $G_{\omega \cdot 2}(10) = (10 + 1) \cdot 2 = 22$

•
$$G_{\alpha_1+\cdots+\alpha_n}(x) = G_{\alpha_1}(x) + \cdots + G_{\alpha_n}(x)$$

•
$$G_{\omega^{\alpha}}(x) = (x+1)^{G_{\alpha}(x)}$$

•
$$\mathsf{G}_{\alpha_1+\cdots+\alpha_n}(x) = \mathsf{G}_{\alpha_1}(x) + \cdots + \mathsf{G}_{\alpha_n}(x)$$

•
$$\mathsf{G}_{\omega^{\alpha}}(x) = (x+1)^{\mathsf{G}_{\alpha}(x)}$$

Definition

$$\mathsf{P}_{x}(0) = 0$$
 $\mathsf{P}_{x}(\alpha + 1) = \alpha$ $\mathsf{P}_{x}(\lambda) = \mathsf{P}_{x}(\lambda[x])$ (λ limit)

•
$$G_{\alpha_1+\cdots+\alpha_n}(x) = G_{\alpha_1}(x) + \cdots + G_{\alpha_n}(x)$$

•
$$\mathsf{G}_{\omega^{\alpha}}(x) = (x+1)^{\mathsf{G}_{\alpha}(x)}$$

Definition

$$\mathsf{P}_{x}(0) = 0$$
 $\mathsf{P}_{x}(\alpha + 1) = \alpha$ $\mathsf{P}_{x}(\lambda) = \mathsf{P}_{x}(\lambda[x])$ (λ limit)

•
$$G_{\alpha_1+\cdots+\alpha_n}(x) = G_{\alpha_1}(x) + \cdots + G_{\alpha_n}(x)$$

•
$$\mathsf{G}_{\omega^{\alpha}}(x) = (x+1)^{\mathsf{G}_{\alpha}(x)}$$

Definition

$$\mathsf{P}_{x}(0) = 0$$
 $\mathsf{P}_{x}(\alpha + 1) = \alpha$ $\mathsf{P}_{x}(\lambda) = \mathsf{P}_{x}(\lambda[x])$ (λ limit)

•
$$\mathsf{G}_{\alpha_1+\cdots+\alpha_n}(x) = \mathsf{G}_{\alpha_1}(x) + \cdots + \mathsf{G}_{\alpha_n}(x)$$

•
$$\mathsf{G}_{\omega^{\alpha}}(x) = (x+1)^{\mathsf{G}_{\alpha}(x)}$$

Definition

$$\mathsf{P}_{\mathsf{x}}(0) = 0$$
 $\mathsf{P}_{\mathsf{x}}(\alpha + 1) = \alpha$ $\mathsf{P}_{\mathsf{x}}(\lambda) = \mathsf{P}_{\mathsf{x}}(\lambda[x])$ (λ limit)

•
$$G_{\alpha_1+\cdots+\alpha_n}(x) = G_{\alpha_1}(x) + \cdots + G_{\alpha_n}(x)$$

•
$$\mathsf{G}_{\omega^{\alpha}}(x) = (x+1)^{\mathsf{G}_{\alpha}(x)}$$

Definition

we define a function $P_x(\alpha)$ that allows to "subtract" 1 from α

$$\mathsf{P}_{x}(0) = 0$$
 $\mathsf{P}_{x}(\alpha + 1) = \alpha$ $\mathsf{P}_{x}(\lambda) = \mathsf{P}_{x}(\lambda[x])$ (λ limit)

Lemma

for
$$\alpha \in \mathcal{O}$$
, $x \in \mathbb{N}$, we have $\mathsf{G}_{\mathsf{P}_x(\alpha)}(x) = \mathsf{P}_x(\mathsf{G}_{\alpha}(x)) = \mathsf{G}_{\alpha}(x) - 1$

Proof.

by induction on α , e.g.

$$\mathsf{G}_{\mathsf{P}_x(\beta+1)}(x) = \mathsf{G}_\beta(x) = \mathsf{P}_x(\mathsf{G}_\beta(x)+1) = \mathsf{P}_x(\mathsf{G}_{\beta+1}(x))$$

${\sf Application}\ \textcircled{1}$

Definition (Goodstein Sequence)

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace base x by base x + 1, then subtract 1
- 3 continue

${\sf Application}\ \textcircled{1}$

Definition (Goodstein Sequence)

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace base x by base x + 1, then subtract 1
- 3 continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition (Goodstein Sequence)

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace base x by base x + 1, then subtract 1
- 3 continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $(H_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$H_0(x) = x$$
 $H_{\alpha+1}(x) = H_{\alpha}(x+1)$ $H_{\lambda}(x) = H_{\lambda[x]}(x)$ (λ limit)

Definition (Goodstein Sequence)

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace base x by base x + 1, then subtract 1
- 3 continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $(H_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$H_0(x) = x$$
 $H_{\alpha+1}(x) = H_{\alpha}(x+1)$ $H_{\lambda}(x) = H_{\lambda[x]}(x)$ (λ limit)

Definition (Goodstein Sequence)

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace base x by base x + 1, then subtract 1
- 3 continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $(H_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

 $H_0(x) = x$ $H_{\alpha+1}(x) = H_{\alpha}(x+1)$ $H_{\lambda}(x) = H_{\lambda[x]}(x)$ (λ limit)

Definition (Goodstein Sequence)

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace base x by base x + 1, then subtract 1
- 3 continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $(H_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

 $H_0(x) = x$ $H_{\alpha+1}(x) = H_{\alpha}(x+1)$ $H_{\lambda}(x) = H_{\lambda[x]}(x)$ (λ limit)

Application 1

Definition (Goodstein Sequence)

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace base x by base x + 1, then subtract 1
- 3 continue

Theorem (Kirby and Paris)

this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $(H_{\alpha})_{\alpha \in \mathcal{O}}$ is defined as follows:

$$H_0(x) = x$$
 $H_{\alpha+1}(x) = H_{\alpha}(x+1)$ $H_{\lambda}(x) = H_{\lambda[x]}(x)$ (λ limit)

Remark

the Hardy functions are fast-growing

Definition

1 start with arbitrary number N in hereditary base x representation

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace x by ω to obtain α ; note $G_{\alpha}(x-1) = N$

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace x by ω to obtain α ; note $G_{\alpha}(x-1) = N$
- **3** change base to x + 1 obtaining $G_{\alpha}(x)$

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace x by ω to obtain α ; note $G_{\alpha}(x-1) = N$
- 3 change base to x + 1 obtaining $G_{\alpha}(x)$
- 4 subtract 1: $G_{\alpha}(x) 1 = P_{x}(G_{\alpha}(x)) = G_{P_{x}(\alpha)}(x)$

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace x by ω to obtain α ; note $G_{\alpha}(x-1) = N$
- 3 change base to x + 1 obtaining $G_{\alpha}(x)$
- 4 subtract 1: $G_{\alpha}(x) 1 = P_x(G_{\alpha}(x)) = G_{P_x(\alpha)}(x)$
- **5** one more iteration yields $G_{P_{x+1} \circ P_x(\alpha)}(x+1)$

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace x by ω to obtain α ; note $G_{\alpha}(x-1) = N$
- 3 change base to x + 1 obtaining $G_{\alpha}(x)$
- 4 subtract 1: $G_{\alpha}(x) 1 = P_x(G_{\alpha}(x)) = G_{P_x(\alpha)}(x)$
- **5** one more iteration yields $G_{P_{x+1} \circ P_x(\alpha)}(x+1)$
- **6** one more iteration yields $G_{P_{x+2} \circ P_{x+1} \circ P_x(\alpha)}(x+2)$

Definition

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace x by ω to obtain α ; note $G_{\alpha}(x-1) = N$
- 3 change base to x + 1 obtaining $G_{\alpha}(x)$
- 4 subtract 1: $G_{\alpha}(x) 1 = P_x(G_{\alpha}(x)) = G_{P_x(\alpha)}(x)$
- **5** one more iteration yields $G_{P_{x+1} \circ P_x(\alpha)}(x+1)$
- **6** one more iteration yields $G_{P_{x+2} \circ P_{x+1} \circ P_x(\alpha)}(x+2)$

7 ...

Definition

7 . . .

- **1** start with arbitrary number N in hereditary base x representation
- **2** replace x by ω to obtain α ; note $G_{\alpha}(x-1) = N$
- 3 change base to x + 1 obtaining $G_{\alpha}(x)$
- 4 subtract 1: $G_{\alpha}(x) 1 = P_x(G_{\alpha}(x)) = G_{P_x(\alpha)}(x)$
- **5** one more iteration yields $G_{P_{x+1} \circ P_x(\alpha)}(x+1)$
- **6** one more iteration yields $G_{P_{x+2} \circ P_{x+1} \circ P_x(\alpha)}(x+2)$

Theorem (Goodstein)

the process terminates

• $G_{\alpha}(x) = 0$ iff $\alpha = 0$

- $G_{\alpha}(x) = 0$ iff $\alpha = 0$
- process terminates iff $\forall \alpha \neq \mathbf{0} \in \mathcal{O}, \exists y > x$ such that

$$\mathsf{P}_{y} \circ \mathsf{P}_{y-1} \circ \cdots \circ \mathsf{P}_{x+2} \circ \mathsf{P}_{x}(\alpha) = 0$$

- $G_{\alpha}(x) = 0$ iff $\alpha = 0$
- process terminates iff $\forall \alpha \neq \mathbf{0} \in \mathcal{O}$, $\exists y > x$ such that

$$\mathsf{P}_{y} \circ \mathsf{P}_{y-1} \circ \cdots \circ \mathsf{P}_{x+2} \circ \mathsf{P}_{x}(\alpha) = \mathsf{0}$$

• let $f(\alpha, x)$ be defined as follows

$$f(\alpha, x) = \text{least } y \ (\mathsf{P}_{y-1} \circ \mathsf{P}_{y-1} \circ \cdots \circ \mathsf{P}_{x+1} \circ \mathsf{P}_{x}(\alpha) = 0)$$

- $G_{\alpha}(x) = 0$ iff $\alpha = 0$
- process terminates iff $\forall \ \alpha \neq \mathbf{0} \in \mathcal{O}$, $\exists \ y > x$ such that

$$\mathsf{P}_{y} \circ \mathsf{P}_{y-1} \circ \cdots \circ \mathsf{P}_{x+2} \circ \mathsf{P}_{x}(\alpha) = \mathsf{0}$$

• let $f(\alpha, x)$ be defined as follows $f(\alpha, x) = \text{least } y \ (\mathsf{P}_{y-1} \circ \mathsf{P}_{y-1} \circ \cdots \circ \mathsf{P}_{x+1} \circ \mathsf{P}_{x}(\alpha) = 0)$

•
$$\forall \alpha \neq 0, \ \forall x: \ \mathsf{H}_{\alpha}(x) = f(\alpha, x)$$

- $G_{\alpha}(x) = 0$ iff $\alpha = 0$
- process terminates iff $\forall \ \alpha \neq \mathbf{0} \in \mathcal{O}$, $\exists \ y > x$ such that

$$\mathsf{P}_{y} \circ \mathsf{P}_{y-1} \circ \cdots \circ \mathsf{P}_{x+2} \circ \mathsf{P}_{x}(\alpha) = \mathsf{0}$$

let f(α, x) be defined as follows
 f(α, x) = least y (P_{y-1} ∘ P_{y-1} ∘ · · · ∘ P_{x+1} ∘ P_x(α) = 0)

•
$$\forall \alpha \neq 0, \ \forall x: \ \mathsf{H}_{\alpha}(x) = f(\alpha, x)$$

- $G_{\alpha}(x) = 0$ iff $\alpha = 0$
- process terminates iff $\forall \ \alpha \neq \mathbf{0} \in \mathcal{O}$, $\exists \ y > x$ such that

$$\mathsf{P}_{y} \circ \mathsf{P}_{y-1} \circ \cdots \circ \mathsf{P}_{x+2} \circ \mathsf{P}_{x}(\alpha) = \mathsf{0}$$

let f(α, x) be defined as follows
 f(α, x) = least y (P_{y-1} ∘ P_{y-1} ∘ · · · ∘ P_{x+1} ∘ P_x(α) = 0)

•
$$\forall \alpha \neq 0, \forall x: H_{\alpha}(x) = f(\alpha, x)$$

Corollary (Kirby and Paris)

termination is not provable in Peano Arithmetic

Proof.

 \forall functions f, provable recursive in Peano Arithmetic $\exists \ \alpha \in \mathcal{O}$ such that f is majorised by H_{α}

Lemma

the family $(G_{\alpha})_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha > \beta$: $\exists c \text{ such that } \forall x \ge c : G_{\alpha}(x) > G_{\beta}(x)$

Lemma

the family $(G_{\alpha})_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha > \beta$: \exists c such that $\forall x \ge c$: $G_{\alpha}(x) > G_{\beta}(x)$

Example $G_{\omega}(x) = (x+1)^{x+1} > (x+1) = G_{\omega}(x)$ $\forall x \ge 1$ $G_{\omega}(x) = x + 1 \not> y = G_{\nu}(x)$ whenever y > x $\forall x \ge 1$

Lemma

the family $(G_{\alpha})_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha > \beta$: $\exists c \text{ such that } \forall x \ge c : G_{\alpha}(x) > G_{\beta}(x)$

Example

$$\forall x \ge 1$$
 $G_{\omega^{\omega}}(x) = (x+1)^{x+1} > (x+1) = G_{\omega}(x)$
 $\forall x \ge 1$ $G_{\omega}(x) = x+1 \ge y = G_y(x)$ whenever $y > x$

Definition

let $>_{(x)}$ denote the transitive closure of the fundamental sequence $\cdot [\cdot]$

$$\alpha >_{(x)} \beta$$
 if $\beta = \alpha[x]$ or $\alpha[x] \ge_{(x)} \beta$

Lemma

the family $(G_{\alpha})_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha > \beta$: $\exists c \text{ such that } \forall x \ge c : G_{\alpha}(x) > G_{\beta}(x)$

Example $\forall x \ge 1$ $G_{\omega^{\omega}}(x) = (x+1)^{x+1} > (x+1) = G_{\omega}(x)$ $\forall x \ge 1$ $G_{\omega}(x) = x+1 \ge y = G_y(x)$ whenever y > x

Definition

let $>_{(x)}$ denote the transitive closure of the fundamental sequence $\cdot[\cdot]$ $\alpha >_{(x)} \beta$ if $\beta = \alpha[x]$ or $\alpha[x] \ge_{(x)} \beta$ where we set 0[x] = 0, $(\alpha + 1)[x] = \alpha$

- **1** G_{α} is increasing (strictly if α is infinite)
- 2 if $\alpha >_{(n)} \beta$, then $G_{\alpha}(x) > G_{\beta}(x)$ for all $x \ge n$
Lemma

- **1** G_{α} is increasing (strictly if α is infinite)
- 2 if $\alpha >_{(n)} \beta$, then $G_{\alpha}(x) > G_{\beta}(x)$ for all $x \ge n$

Definition

we define the norm $N(\alpha)$ of α as follows

$$\begin{split} \mathsf{N}(0) &= 0 \\ \mathsf{N}(\omega^{\alpha_1} + \dots + \omega^{\alpha_n}) &= \mathsf{N}(\alpha_1) + \dots + \mathsf{N}(\alpha_n) + n \end{split}$$

Lemma

- **1** G_{α} is increasing (strictly if α is infinite)
- 2 if $\alpha >_{(n)} \beta$, then $G_{\alpha}(x) > G_{\beta}(x)$ for all $x \ge n$

Definition

we define the norm $N(\alpha)$ of α as follows

$$N(0) = 0$$

$$N(\omega^{\alpha_1} + \dots + \omega^{\alpha_n}) = N(\alpha_1) + \dots + N(\alpha_n) + n$$

Lemma

if $\alpha > \beta$ and $n \ge N(\beta)$, then

1
$$\alpha >_{(n)} \beta$$

2
$$\forall x \ge n : \mathsf{G}_{\alpha}(x) > \mathsf{G}_{\beta}(x)$$

Definition (TKBOs)

GM (ICS @ UIBK)

Definition (TKBOs)

Theorem (Ludwig and Waldmann) TKBOs form a simplification order

Definition (TKBOs)

Theorem (Ludwig and Waldmann) TKBOs form a simplification order

Theorem (Kovacs, M., and Voronkov)

let signature F be finite; any TKBO is equivalent to a TKBO restricting ordinal weights to ordinals $<\omega^{\omega^{\omega}}$

Definition (TKBOs)

Theorem (Ludwig and Waldmann) TKBOs form a simplification order

Theorem (Kovacs, M., and Voronkov)

let signature F be finite; any TKBO is equivalent to a TKBO restricting ordinal weights to ordinals $<\omega^{\omega^{\omega}}$

Theorem (Winkler, Zankl, and Middeldorp) if a finite TRS \mathcal{R} is compatible with a TKBO, then \mathcal{R} is compatible with a finite TKBO

let $\mathsf{F} = \{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$\begin{array}{rcl} f(x) & \rightarrow & g(x) & w(f) = 5 \\ h(x) & \rightarrow & f(f(x)) & w(g) = 0 \\ k(x,y) & \rightarrow & h(f(x), f(y)) & w(h) = \omega \\ & & w(k) = \omega \cdot 2 \end{array}$$

subterm coefficents are $\ = 1$

let $\mathsf{F} = \{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$\begin{array}{rcl} f(x) & \rightarrow & g(x) & & w(f) = 5 \\ h(x,x) & \rightarrow & f(f(x)) & & w(g) = 0 \\ k(x,y) & \rightarrow & h(f(x),f(y)) & & w(h) = \omega \\ & & & w(k) = \omega \cdot 2 \end{array}$$

subterm coefficents are $\ = 1$

let $\mathsf{F}=\{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$f(x) \succ_{tkbo} g(x) \qquad w$$

$$h(x,x) \succ_{tkbo} f(f(x)) \qquad w$$

$$k(x,y) \succ_{tkbo} h(f(x), f(y)) \qquad w$$

$$w(f) = 5$$

$$w(g) = 0$$

$$w(h) = \omega$$

$$w(k) = \omega \cdot 2$$

subterm coefficients are = 1

GM (ICS @ UIBK)

١

let $\mathsf{F}=\{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$f(x) \succ_{tkbo} g(x)$$

$$h(x,x) \succ_{tkbo} f(f(x))$$

$$k(x,y) \succ_{tkbo} h(f(x), f(y))$$

$$w(f) = 5$$

$$w(g) = 0$$

$$w(h) = 11$$

$$w(k) = 11 \cdot 2 = 22$$

subterm coefficients are - 1

let $\mathsf{F}=\{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$\begin{split} f(x) \succ_{\mathsf{tkbo}} g(x) & \mathsf{w}(\mathsf{f}) = 5 \\ h(x,x) \succ_{\mathsf{tkbo}} f(\mathsf{f}(x)) & \mathsf{w}(\mathsf{g}) = 0 \\ k(x,y) \succ_{\mathsf{tkbo}} h(\mathsf{f}(x),\mathsf{f}(y)) & \mathsf{w}(\mathsf{h}) = 11 \\ & \mathsf{w}(\mathsf{k}) = 11 \cdot 2 = 22 \\ & \mathsf{subterm coefficients are} = 1 \end{split}$$

Proof of Theorem on Finite TKBOs.

• it suffices to show that $\exists x \forall l \rightarrow r \in \mathcal{R}$: weight(l) $\geq_{(x)}$ weight(r) as then $\forall l \rightarrow r \in \mathcal{R}$: $G_{weight(l)}(k) \geq G_{weight(r)}(k)$

let $\mathsf{F}=\{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$\begin{split} f(x) \succ_{\mathsf{tkbo}} g(x) & \mathsf{w}(\mathsf{f}) = 5\\ h(x,x) \succ_{\mathsf{tkbo}} f(\mathsf{f}(x)) & \mathsf{w}(\mathsf{g}) = 0\\ \mathsf{k}(x,y) \succ_{\mathsf{tkbo}} h(\mathsf{f}(x),\mathsf{f}(y)) & \mathsf{w}(\mathsf{h}) = 11\\ & \mathsf{w}(\mathsf{k}) = 11 \cdot 2 = 22\\ & \mathsf{subterm coefficients are} = 1 \end{split}$$

Proof of Theorem on Finite TKBOs.

• it suffices to show that $\exists x \forall l \rightarrow r \in \mathcal{R}$: weight(l) $\geq_{(x)}$ weight(r) as then $\forall l \rightarrow r \in \mathcal{R}$: $G_{weight(l)}(k) \geq G_{weight(r)}(k)$

• set
$$k = \max\{\mathsf{N}(\mathsf{weight}(r)) \mid l \to r \in \mathcal{R}\}$$

let $\mathsf{F}=\{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$f(x) \succ_{tkbo} g(x) \qquad w(f) = 5$$

$$h(x,x) \succ_{tkbo} f(f(x)) \qquad w(g) = 0$$

$$k(x,y) \succ_{tkbo} h(f(x), f(y)) \qquad w(h) = 11$$

$$w(k) = 11 \cdot 2 = 22$$

subterm coefficents are = 1

Proof of Theorem on Finite TKBOs.

• it suffices to show that $\exists x \forall l \rightarrow r \in \mathcal{R}$: weight(l) $\geq_{(x)}$ weight(r) as then $\forall l \rightarrow r \in \mathcal{R}$: $G_{weight(l)}(k) \geq G_{weight(r)}(k)$

• set
$$k = \max\{N(\operatorname{weight}(r)) \mid l \to r \in \mathcal{R}\}$$

• then weight(I) \geq weight(r) implies weight(I) $\geq_{(k)}$ weight(r)

let $\mathsf{F}=\{\mathsf{f},\mathsf{g},\mathsf{h},\mathsf{k}\}$ and consider the following rules:

$$\begin{split} f(x) \succ_{\mathsf{tkbo}} g(x) & \mathsf{w}(\mathsf{f}) = 5\\ h(x,x) \succ_{\mathsf{tkbo}} f(\mathsf{f}(x)) & \mathsf{w}(\mathsf{g}) = 0\\ \mathsf{k}(x,y) \succ_{\mathsf{tkbo}} h(\mathsf{f}(x),\mathsf{f}(y)) & \mathsf{w}(\mathsf{h}) = 11\\ & \mathsf{w}(\mathsf{k}) = 11 \cdot 2 = 22\\ & \mathsf{subterm coefficients are} = 1 \end{split}$$

Proof of Theorem on Finite TKBOs.

- it suffices to show that $\exists x \forall l \rightarrow r \in \mathcal{R}$: weight(l) $\geq_{(x)}$ weight(r) as then $\forall l \rightarrow r \in \mathcal{R}$: $G_{weight(l)}(k) \geq G_{weight(r)}(k)$
- set $k = \max\{N(\operatorname{weight}(r)) \mid l \to r \in \mathcal{R}\}$
- then weight(I) \geq weight(r) implies weight(I) $\geq_{(k)}$ weight(r)

we define the derivational complexity with respect to \mathcal{R} : dheight(t) = max{ $n \mid \exists u \ t \rightarrow^{n} u$ }

$$\begin{aligned} \mathsf{height}(t) &= \max\{n \mid \exists u \ t \to^n u\} \\ \mathsf{dc}(n) &= \max\{\mathsf{dheight}(t) \mid |t| \leqslant n\} \end{aligned}$$

we define the derivational complexity with respect to \mathcal{R} : dheight(t) = max{n | $\exists u \ t \rightarrow^{n} u$ } dc(n) = max{dheight(t) | |t| $\leq n$ }

Theorem (Lepper)

for any TRS \mathcal{R} , compatible with a KBO, the derivational complexity is bounded by a 2-recursive function, that is, $dc(n) \in Ack(O(n), 0)$

we define the derivational complexity with respect to \mathcal{R} : dheight(t) = max{n | $\exists u \ t \rightarrow^{n} u$ } dc(n) = max{dheight(t) | |t| $\leq n$ }

Theorem

for any TRS \mathcal{R} , compatible with a TKBO, the derivational complexity is bounded by a 2-recursive function, that is, $dc(n) \in Ack(O(n), 0)$

we define the derivational complexity with respect to \mathcal{R} : dheight(t) = max{n | $\exists u \ t \rightarrow^{n} u$ } dc(n) = max{dheight(t) | |t| $\leq n$ }

Theorem

for any TRS \mathcal{R} , compatible with a TKBO, the derivational complexity is bounded by a 2-recursive function, that is, $dc(n) \in Ack(O(n), 0)$

Future Work

- generalised KBOs compute weights based on weakly monotone simple algebras ${\cal A}$
- clarify restrictions on $\ensuremath{\mathcal{A}}$ so that ordinal weights again collapse to numbers

Thank You for Your Attention!