Ordinals, Subrecursive Hierarchies and All That

Georg Moser

Institute of Computer Science
University of Innsbruck
Master Seminar, November 9, 2011

Overview

- Ordinals
- Demystification of Ordinals
- Subrecursive Hierarchies
- Application (1)
- More on the Slow-Growing Hierarchy
- Application (2)

Ordinals

Definition

an ordinal is a set α such that
1α is totally ordered with respect to membership

$$
\forall \beta, \gamma \in \alpha: \beta \in \gamma \vee \gamma \in \beta \vee \beta=\gamma
$$

2 every element of α is a subset of α (aka α is transitive)
$\forall \beta: \beta \in \alpha$ implies $\beta \subseteq \alpha$

Ordinals

Definition

an ordinal is a set α such that
1α is totally ordered with respect to membership

$$
\forall \beta, \gamma \in \alpha: \beta \in \gamma \vee \gamma \in \beta \vee \beta=\gamma
$$

2 every element of α is a subset of α (aka α is transitive)
$\forall \beta: \beta \in \alpha$ implies $\beta \subseteq \alpha$

Lemma
ordinal α is either

- 0
- $\beta \cup\{\beta\}=\beta+1$
- $\bigcup \alpha$
successor ordinal
limit ordinal

Further Properties or Ordinals

Lemma

let α be an ordinal, then

- α is well-ordered by \in
1α is totally ordered
2 there are no infinite descending sequences

$$
\neg \exists \alpha_{1} \ni \alpha_{2} \ni \alpha_{3} \ldots
$$

$$
\left(\alpha_{i} \in \alpha\right)
$$

- if $\beta \in \alpha$, then β is an ordinal
- $\alpha=\bigcup_{\beta \in \alpha} \beta$

Lemma
let X be a non-empty set of ordinals, then

- $\bigcap X$ is an ordinal and $\bigcap X=\inf X$
- $\bigcup X$ is an ordinal and $\bigcup X=\sup X$

Arithmetic of Ordinals

Definition (Addition)

$$
\alpha+\beta= \begin{cases}\alpha & \text { if } \beta=0 \\ \left(\alpha+\beta^{\prime}\right)+1 & \text { if } \beta=\beta^{\prime}+1 \\ \bigcup_{\beta^{\prime}<\beta}\left(\alpha+\beta^{\prime}\right) & \text { if } \beta \text { is a limit ordinal }\end{cases}
$$

Arithmetic of Ordinals

Definition (Addition)

$$
\alpha+\beta= \begin{cases}\alpha & \text { if } \beta=0 \\ \left(\alpha+\beta^{\prime}\right)+1 & \text { if } \beta=\beta^{\prime}+1 \\ \bigcup_{\beta^{\prime}<\beta}\left(\alpha+\beta^{\prime}\right) & \text { if } \beta \text { is a limit ordinal }\end{cases}
$$

Definition (Multiplication)

$$
\alpha \cdot \beta= \begin{cases}0 & \text { if } \beta=0 \\ \alpha \cdot \beta^{\prime}+\alpha & \text { if } \beta=\beta^{\prime}+1 \\ \bigcup_{\beta^{\prime}<\beta}\left(\alpha \cdot \beta^{\prime}\right) & \text { if } \beta \text { is a limit ordinal }\end{cases}
$$

Arithmetic of Ordinals

Definition (Addition)

$$
\alpha+\beta= \begin{cases}\alpha & \text { if } \beta=0 \\ \left(\alpha+\beta^{\prime}\right)+1 & \text { if } \beta=\beta^{\prime}+1 \\ \bigcup_{\beta^{\prime}<\beta}\left(\alpha+\beta^{\prime}\right) & \text { if } \beta \text { is a limit ordinal }\end{cases}
$$

Definition (Multiplication)

$$
\alpha \cdot \beta= \begin{cases}0 & \text { if } \beta=0 \\ \alpha \cdot \beta^{\prime}+\alpha & \text { if } \beta=\beta^{\prime}+1 \\ \bigcup_{\beta^{\prime}<\beta}\left(\alpha \cdot \beta^{\prime}\right) & \text { if } \beta \text { is a limit ordinal }\end{cases}
$$

Definition (Exponentiation)

Lemma

for all ordinals α, β, γ

- $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$
- $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$

Lemma

for all ordinals α, β, γ

- $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$
- $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$

Example

neither + nor • are commutative

$$
1+\omega=\omega \neq \omega+1 \quad 2 \cdot \omega=\omega \neq \omega \cdot 2
$$

Lemma

for all ordinals α, β, γ

- $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$
- $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$

Example

neither + nor • are commutative

$$
1+\omega=\omega \neq \omega+1 \quad 2 \cdot \omega=\omega \neq \omega \cdot 2
$$

Theorem
ordinal $\alpha \neq 0$ is representable in Cantor Normal Form (CNF)

$$
\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}
$$

where $\alpha_{1} \geqslant \cdots \geqslant \alpha_{n}$ and α_{i} in CNF

Demystification of Ordinals

Definitions

let $(A,<),(B, \prec)$ be partially ordered sets

- a mapping $f: A \rightarrow B$ is order preserving if

$$
x<y \text { implies } f(x) \prec f(y)
$$

- if f is a bijection and f and f^{-1} are order preserving then $(A,<)$ is isomorphic to (B, \prec)

Demystification of Ordinals

Definitions

let $(A,<),(B, \prec)$ be partially ordered sets

- a mapping $f: A \rightarrow B$ is order preserving if

$$
x<y \text { implies } f(x) \prec f(y)
$$

- if f is a bijection and f and f^{-1} are order preserving then $(A,<)$ is isomorphic to (B, \prec)

Lemma

if two well-ordered sets W_{1} and W_{2} are isomorphic, then the isomorphism of W_{1} onto W_{2} is unique

Demystification of Ordinals

Definitions

let $(A,<),(B, \prec)$ be partially ordered sets

- a mapping $f: A \rightarrow B$ is order preserving if

$$
x<y \text { implies } f(x) \prec f(y)
$$

- if f is a bijection and f and f^{-1} are order preserving then $(A,<)$ is isomorphic to (B, \prec)

Lemma

if two well-ordered sets W_{1} and W_{2} are isomorphic, then the isomorphism of W_{1} onto W_{2} is unique

Theorem

every well-ordered set is isomorphic to a unique ordinal

Ordinals as Order Types

Alternative "Definition" an ordinal is an equivalence class of well-orders with respect to isomorphism

Ordinals as Order Types

Alternative "Definition" an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set E; definition makes use of auxiliary set P

Ordinals as Order Types

Alternative "Definition" an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set E; definition makes use of auxiliary set P
1 $0 \in E$

Ordinals as Order Types

Alternative "Definition"
an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set E; definition makes use of auxiliary set P
$10 \in E$
2 if $\alpha_{1}, \ldots, \alpha_{m} \in P$, then $\alpha_{1}+\cdots+\alpha_{m} \in E$

Ordinals as Order Types

Alternative "Definition"
an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set E; definition makes use of auxiliary set P
$10 \in E$
2 if $\alpha_{1}, \ldots, \alpha_{m} \in P$, then $\alpha_{1}+\cdots+\alpha_{m} \in E$
3 if $\alpha \in E$, then $\omega^{\alpha} \in P$, and $\omega^{\alpha} \in E$

Ordinals as Order Types

Alternative "Definition"
an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set E; definition makes use of auxiliary set P
$10 \in E$
2 if $\alpha_{1}, \ldots, \alpha_{m} \in P$, then $\alpha_{1}+\cdots+\alpha_{m} \in E$
3 if $\alpha \in E$, then $\omega^{\alpha} \in P$, and $\omega^{\alpha} \in E$
we write 1 instead of ω^{0}

Ordinals as Order Types

Alternative "Definition"
an ordinal is an equivalence class of well-orders with respect to isomorphism

Definition

an ordinal term α is an element of the inductively defined set E; definition makes use of auxiliary set P
$10 \in E$
2 if $\alpha_{1}, \ldots, \alpha_{m} \in P$, then $\alpha_{1}+\cdots+\alpha_{m} \in E$
3 if $\alpha \in E$, then $\omega^{\alpha} \in P$, and $\omega^{\alpha} \in E$
we write 1 instead of ω^{0}

Lemma

any $\alpha \neq 0 \in E$ can be uniquely represented as $\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{m}}$, where for each $\alpha_{i} \neq 0$ the same holds

Definition
 simultaneous definition of \approx and \prec on E

Definition

simultaneous definition of \approx and \prec on E
10 is the minimal element of \prec

Definition

simultaneous definition of \approx and \prec on E
10 is the minimal element of \prec
$2 \alpha \prec \beta$ iff $\omega^{\alpha} \prec \omega^{\beta}$

Definition

simultaneous definition of \approx and \prec on E
10 is the minimal element of \prec
$2 \alpha \prec \beta$ iff $\omega^{\alpha} \prec \omega^{\beta}$
3 let α, β be of form

$$
\alpha=\gamma+\omega^{\alpha_{i}}+\omega^{\alpha_{i+1}}+\delta \quad \beta=\gamma+\omega^{\alpha_{i+1}}+\delta
$$

where $\alpha_{i+1} \succ \alpha_{i}$, then $\alpha \approx \beta$

Definition

simultaneous definition of \approx and \prec on E
10 is the minimal element of \prec
$2 \alpha \prec \beta$ iff $\omega^{\alpha} \prec \omega^{\beta}$
3 let α, β be of form

$$
\alpha=\gamma+\omega^{\alpha_{i}}+\omega^{\alpha_{i+1}}+\delta \quad \beta=\gamma+\omega^{\alpha_{i+1}}+\delta
$$

where $\alpha_{i+1} \succ \alpha_{i}$, then $\alpha \approx \beta$
4 let $\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{m}}$ and let $\beta=\omega^{\beta_{1}}+\cdots+\omega^{\beta_{n}}$ such that

$$
\alpha_{1} \succcurlyeq \alpha_{2} \succcurlyeq \cdots \succcurlyeq \alpha_{m} \quad \beta_{1} \succcurlyeq \beta_{2} \succcurlyeq \cdots \succcurlyeq \beta_{n}
$$

then $\alpha \prec \beta$ iff $\exists i: \omega^{\alpha_{i}} \prec \omega^{\beta_{i}} \wedge \forall j<i: \omega^{\alpha_{j}} \approx \omega^{\beta_{j}}$

Lemma (Cantor Normal Form (again))

ordinal term $\alpha \neq 0$ is uniquely representable in Cantor Normal Form (CNF)

$$
\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}
$$

where $\alpha_{1} \succcurlyeq \cdots \succcurlyeq \alpha_{n}$ and α_{i} in CNF

Lemma (Cantor Normal Form (again))

ordinal term $\alpha \neq 0$ is uniquely representable in Cantor Normal Form (CNF)

$$
\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}
$$

where $\alpha_{1} \succcurlyeq \cdots \succcurlyeq \alpha_{n}$ and α_{i} in CNF

Lemma

the set (E, \prec) is isomorphic to $\left(\epsilon_{0}, \in\right)$

Lemma (Cantor Normal Form (again))

ordinal term $\alpha \neq 0$ is uniquely representable in Cantor Normal Form (CNF)

$$
\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}
$$

where $\alpha_{1} \succcurlyeq \cdots \succcurlyeq \alpha_{n}$ and α_{i} in CNF

Lemma

the set (E, \prec) is isomorphic to $\left(\epsilon_{0}, \in\right)$

Notations

- ordinal terms are ordinals, collected in the set \mathcal{O}
- \approx becomes $=$
- \prec becomes $<$
- a limit ordinal is an ordinal which is neither 0 nor a successor ordinal

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}\text { if } \lambda=\omega \\ \text { if } \lambda=\beta+\omega^{\alpha+1} \\ & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ \beta+\omega^{\alpha} \cdot(x+1) & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ \beta+\omega^{\alpha} \cdot(x+1) & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ \beta+\omega^{\alpha[x]} & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ \beta+\omega^{\alpha} \cdot(x+1) & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ \beta+\omega^{\alpha[x]} & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Definition the family of slow-growing functions $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{G}_{0}(x)=0 \quad \mathrm{G}_{\alpha+1}(x)=\mathrm{G}_{\alpha}(x)+1 \quad \mathrm{G}_{\lambda}(x)=\mathrm{G}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ \beta+\omega^{\alpha} \cdot(x+1) & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ \beta+\omega^{\alpha[x]} & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Definition the family of slow-growing functions $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{G}_{0}(x)=0 \quad \mathrm{G}_{\alpha+1}(x)=\mathrm{G}_{\alpha}(x)+1 \quad \mathrm{G}_{\lambda}(x)=\mathrm{G}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ \beta+\omega^{\alpha} \cdot(x+1) & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ \beta+\omega^{\alpha[x]} & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Definition the family of slow-growing functions $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{G}_{0}(x)=0 \quad \mathrm{G}_{\alpha+1}(x)=\mathrm{G}_{\alpha}(x)+1 \quad \mathrm{G}_{\lambda}(x)=\mathrm{G}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ \beta+\omega^{\alpha} \cdot(x+1) & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ \beta+\omega^{\alpha[x]} & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Definition the family of slow-growing functions $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{G}_{0}(x)=0 \quad \mathrm{G}_{\alpha+1}(x)=\mathrm{G}_{\alpha}(x)+1 \quad \mathrm{G}_{\lambda}(x)=\mathrm{G}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Subrecursive Hierarchies

Definition

we define the family of fundamental sequences $\lambda[x]_{x \in \mathbb{N}}$ as follows (λ limit ordinal):

$$
\lambda[x]= \begin{cases}x+1 & \text { if } \lambda=\omega \\ \beta+\omega^{\alpha} \cdot(x+1) & \text { if } \lambda=\beta+\omega^{\alpha+1} \\ \beta+\omega^{\alpha[x]} & \text { if } \lambda=\beta+\omega^{\alpha}, \alpha \text { limit }\end{cases}
$$

Definition

the family of slow-growing functions $\left(G_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{G}_{0}(x)=0 \quad \mathrm{G}_{\alpha+1}(x)=\mathrm{G}_{\alpha}(x)+1 \quad \mathrm{G}_{\lambda}(x)=\mathrm{G}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Example

$$
\mathrm{G}_{\omega}(x)=x+1 \quad \mathrm{G}_{\omega^{\omega}}(x)=(x+1)^{x+1^{x+1}} \quad \mathrm{G}_{\omega \cdot 2}(10)=(10+1) \cdot 2=22
$$

Lemma

- $\mathrm{G}_{\alpha_{1}+\cdots+\alpha_{n}}(x)=\mathrm{G}_{\alpha_{1}}(x)+\cdots+\mathrm{G}_{\alpha_{n}}(x)$
- $\mathrm{G}_{\omega^{\alpha}}(x)=(x+1)^{\mathrm{G}_{\alpha}(x)}$

Lemma

- $\mathrm{G}_{\alpha_{1}+\cdots+\alpha_{n}}(x)=\mathrm{G}_{\alpha_{1}}(x)+\cdots+\mathrm{G}_{\alpha_{n}}(x)$
- $\mathrm{G}_{\omega^{\alpha}}(x)=(x+1)^{\mathrm{G}_{\alpha}(x)}$

Definition

we define a function $\mathrm{P}_{x}(\alpha)$ that allows to "subtract" 1 from α

$$
\mathrm{P}_{x}(0)=0 \quad \mathrm{P}_{x}(\alpha+1)=\alpha \quad \mathrm{P}_{x}(\lambda)=\mathrm{P}_{x}(\lambda[x]) \quad(\lambda \text { limit })
$$

Lemma

- $\mathrm{G}_{\alpha_{1}+\cdots+\alpha_{n}}(x)=\mathrm{G}_{\alpha_{1}}(x)+\cdots+\mathrm{G}_{\alpha_{n}}(x)$
- $\mathrm{G}_{\omega^{\alpha}}(x)=(x+1)^{\mathrm{G}_{\alpha}(x)}$

Definition

we define a function $\mathrm{P}_{x}(\alpha)$ that allows to "subtract" 1 from α

$$
\mathrm{P}_{x}(0)=0 \quad \mathrm{P}_{x}(\alpha+1)=\alpha \quad \mathrm{P}_{x}(\lambda)=\mathrm{P}_{x}(\lambda[x]) \quad(\lambda \text { limit })
$$

Lemma

- $\mathrm{G}_{\alpha_{1}+\cdots+\alpha_{n}}(x)=\mathrm{G}_{\alpha_{1}}(x)+\cdots+\mathrm{G}_{\alpha_{n}}(x)$
- $\mathrm{G}_{\omega^{\alpha}}(x)=(x+1)^{\mathrm{G}_{\alpha}(x)}$

Definition

we define a function $\mathrm{P}_{x}(\alpha)$ that allows to "subtract" 1 from α

$$
\mathrm{P}_{x}(0)=0 \quad \mathrm{P}_{x}(\alpha+1)=\alpha \quad \mathrm{P}_{x}(\lambda)=\mathrm{P}_{x}(\lambda[x]) \quad(\lambda \text { limit })
$$

Lemma

- $\mathrm{G}_{\alpha_{1}+\cdots+\alpha_{n}}(x)=\mathrm{G}_{\alpha_{1}}(x)+\cdots+\mathrm{G}_{\alpha_{n}}(x)$
- $\mathrm{G}_{\omega^{\alpha}}(x)=(x+1)^{\mathrm{G}_{\alpha}(x)}$

Definition

we define a function $\mathrm{P}_{x}(\alpha)$ that allows to "subtract" 1 from α

$$
\mathrm{P}_{x}(0)=0 \quad \mathrm{P}_{x}(\alpha+1)=\alpha \quad \mathrm{P}_{x}(\lambda)=\mathrm{P}_{x}(\lambda[x]) \quad(\lambda \text { limit })
$$

Lemma

- $\mathrm{G}_{\alpha_{1}+\cdots+\alpha_{n}}(x)=\mathrm{G}_{\alpha_{1}}(x)+\cdots+\mathrm{G}_{\alpha_{n}}(x)$
- $\mathrm{G}_{\omega^{\alpha}}(x)=(x+1)^{\mathrm{G}_{\alpha}(x)}$

Definition

we define a function $\mathrm{P}_{x}(\alpha)$ that allows to "subtract" 1 from α

$$
\mathrm{P}_{x}(0)=0 \quad \mathrm{P}_{x}(\alpha+1)=\alpha \quad \mathrm{P}_{x}(\lambda)=\mathrm{P}_{x}(\lambda[x]) \quad(\lambda \text { limit })
$$

Lemma

for $\alpha \in \mathcal{O}, x \in \mathbb{N}$, we have $\mathrm{G}_{\mathrm{P}_{x}(\alpha)}(x)=\mathrm{P}_{x}\left(\mathrm{G}_{\alpha}(x)\right)=\mathrm{G}_{\alpha}(x)-1$

Proof.

by induction on α, e.g.

$$
\mathrm{G}_{\mathrm{P}_{x}(\beta+1)}(x)=\mathrm{G}_{\beta}(x)=\mathrm{P}_{x}\left(\mathrm{G}_{\beta}(x)+1\right)=\mathrm{P}_{x}\left(\mathrm{G}_{\beta+1}(x)\right)
$$

Application (1)

Definition (Goodstein Sequence)
1 start with arbitrary number N in hereditary base x representation
2 replace base x by base $x+1$, then subtract 1
3 continue

Application (1)

Definition (Goodstein Sequence)
1 start with arbitrary number N in hereditary base x representation
2 replace base x by base $x+1$, then subtract 1
3 continue

Theorem (Kirby and Paris)
this process terminates, but this is not provable in Peano Arithmetic

Application (1)

Definition (Goodstein Sequence)
1 start with arbitrary number N in hereditary base x representation
2 replace base x by base $x+1$, then subtract 1
3 continue

Theorem (Kirby and Paris)
this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $\left(\mathrm{H}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{H}_{0}(x)=x \quad \mathrm{H}_{\alpha+1}(x)=\mathrm{H}_{\alpha}(x+1) \quad \mathrm{H}_{\lambda}(x)=\mathrm{H}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Application (1)

Definition (Goodstein Sequence)
1 start with arbitrary number N in hereditary base x representation
2 replace base x by base $x+1$, then subtract 1
3 continue

Theorem (Kirby and Paris)
this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $\left(\mathrm{H}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{H}_{0}(x)=x \quad \mathrm{H}_{\alpha+1}(x)=\mathrm{H}_{\alpha}(x+1) \quad \mathrm{H}_{\lambda}(x)=\mathrm{H}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Application (1)

Definition (Goodstein Sequence)
1 start with arbitrary number N in hereditary base x representation
2 replace base x by base $x+1$, then subtract 1
3 continue

Theorem (Kirby and Paris)
this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $\left(\mathrm{H}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{H}_{0}(x)=x \quad \mathrm{H}_{\alpha+1}(x)=\mathrm{H}_{\alpha}(x+1) \quad \mathrm{H}_{\lambda}(x)=\mathrm{H}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Application (1)

Definition (Goodstein Sequence)
1 start with arbitrary number N in hereditary base x representation
2 replace base x by base $x+1$, then subtract 1
3 continue

Theorem (Kirby and Paris)
this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $\left(\mathrm{H}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{H}_{0}(x)=x \quad \mathrm{H}_{\alpha+1}(x)=\mathrm{H}_{\alpha}(x+1) \quad \mathrm{H}_{\lambda}(x)=\mathrm{H}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Application (1)

Definition (Goodstein Sequence)
1 start with arbitrary number N in hereditary base x representation
2 replace base x by base $x+1$, then subtract 1
3 continue

Theorem (Kirby and Paris)
this process terminates, but this is not provable in Peano Arithmetic

Definition

the family of Hardy functions $\left(\mathrm{H}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ is defined as follows:

$$
\mathrm{H}_{0}(x)=x \quad \mathrm{H}_{\alpha+1}(x)=\mathrm{H}_{\alpha}(x+1) \quad \mathrm{H}_{\lambda}(x)=\mathrm{H}_{\lambda[x]}(x) \quad(\lambda \text { limit })
$$

Remark
the Hardy functions are fast-growing

都
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

路
－
d

-
\qquad
\square

正

A Closer Look

Definition
1 start with arbitrary number N in hereditary base x representation

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation
2 replace x by ω to obtain α; note $G_{\alpha}(x-1)=N$

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation
2 replace x by ω to obtain α; note $\mathrm{G}_{\alpha}(x-1)=N$
3 change base to $x+1$ obtaining $\mathrm{G}_{\alpha}(x)$

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation
2 replace x by ω to obtain α; note $\mathrm{G}_{\alpha}(x-1)=N$
3 change base to $x+1$ obtaining $\mathrm{G}_{\alpha}(x)$
4 subtract 1: $\mathrm{G}_{\alpha}(x)-1=\mathrm{P}_{x}\left(\mathrm{G}_{\alpha}(x)\right)=\mathrm{G}_{\mathrm{P}_{x}(\alpha)}(x)$

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation
2 replace x by ω to obtain α; note $\mathrm{G}_{\alpha}(x-1)=N$
3 change base to $x+1$ obtaining $\mathrm{G}_{\alpha}(x)$
4 subtract 1: $\mathrm{G}_{\alpha}(x)-1=\mathrm{P}_{x}\left(\mathrm{G}_{\alpha}(x)\right)=\mathrm{G}_{\mathrm{P}_{x}(\alpha)}(x)$
5 one more iteration yields $\mathrm{G}_{\mathrm{P}_{x+1} \circ \mathrm{P}_{x}(\alpha)}(x+1)$

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation
2 replace x by ω to obtain α; note $\mathrm{G}_{\alpha}(x-1)=N$
3 change base to $x+1$ obtaining $\mathrm{G}_{\alpha}(x)$
4 subtract 1: $\mathrm{G}_{\alpha}(x)-1=\mathrm{P}_{x}\left(\mathrm{G}_{\alpha}(x)\right)=\mathrm{G}_{\mathrm{P}_{x}(\alpha)}(x)$
5 one more iteration yields $\mathrm{G}_{\mathrm{P}_{x+1} \circ \mathrm{P}_{x}(\alpha)}(x+1)$
6 one more iteration yields $\mathrm{G}_{\left.\mathrm{P}_{x+2} \circ \mathrm{P}_{x+1} \circ \mathrm{P}_{x}(\alpha)\right)}(x+2)$

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation
2 replace x by ω to obtain α; note $\mathrm{G}_{\alpha}(x-1)=N$
3 change base to $x+1$ obtaining $\mathrm{G}_{\alpha}(x)$
4 subtract 1: $\mathrm{G}_{\alpha}(x)-1=\mathrm{P}_{x}\left(\mathrm{G}_{\alpha}(x)\right)=\mathrm{G}_{\mathrm{P}_{x}(\alpha)}(x)$
5 one more iteration yields $\mathrm{G}_{\mathrm{P}_{x+1} \circ \mathrm{P}_{x}(\alpha)}(x+1)$
6 one more iteration yields $\mathrm{G}_{\left.\mathrm{P}_{x+2} \circ \mathrm{P}_{x+1} \circ \mathrm{P}_{x}(\alpha)\right)}(x+2)$
7 ...

A Closer Look

Definition

1 start with arbitrary number N in hereditary base x representation
2 replace x by ω to obtain α; note $\mathrm{G}_{\alpha}(x-1)=N$
3 change base to $x+1$ obtaining $\mathrm{G}_{\alpha}(x)$
4 subtract 1: $\mathrm{G}_{\alpha}(x)-1=\mathrm{P}_{x}\left(\mathrm{G}_{\alpha}(x)\right)=\mathrm{G}_{\mathrm{P}_{x}(\alpha)}(x)$
5 one more iteration yields $\mathrm{GP}_{x+1} \circ \mathrm{P}_{x}(\alpha)(x+1)$
6 one more iteration yields $\mathrm{G}_{\left.\mathrm{P}_{x+2} \circ \mathrm{P}_{x+1} \circ \mathrm{P}_{x}(\alpha)\right)}(x+2)$ 7 ...

Theorem (Goodstein)
the process terminates

Seminar 3, May 23, 2012

都

\square

Proof (due to Cichon).

- $\mathrm{G}_{\alpha}(x)=0$ iff $\alpha=0$

Proof (due to Cichon).

- $\mathrm{G}_{\alpha}(x)=0$ iff $\alpha=0$
- process terminates iff $\forall \alpha \neq 0 \in \mathcal{O}, \exists y>x$ such that

$$
\mathrm{P}_{y} \circ \mathrm{P}_{y-1} \circ \cdots \circ \mathrm{P}_{x+2} \circ \mathrm{P}_{x}(\alpha)=0
$$

Proof (due to Cichon).

- $\mathrm{G}_{\alpha}(x)=0$ iff $\alpha=0$
- process terminates iff $\forall \alpha \neq 0 \in \mathcal{O}, \exists y>x$ such that

$$
P_{y} \circ P_{y-1} \circ \cdots \circ P_{x+2} \circ P_{x}(\alpha)=0
$$

- let $f(\alpha, x)$ be defined as follows

$$
f(\alpha, x)=\text { least } y\left(P_{y-1} \circ P_{y-1} \circ \cdots \circ P_{x+1} \circ P_{x}(\alpha)=0\right)
$$

Proof (due to Cichon).

- $\mathrm{G}_{\alpha}(x)=0$ iff $\alpha=0$
- process terminates iff $\forall \alpha \neq 0 \in \mathcal{O}, \exists y>x$ such that

$$
P_{y} \circ P_{y-1} \circ \cdots \circ P_{x+2} \circ P_{x}(\alpha)=0
$$

- let $f(\alpha, x)$ be defined as follows

$$
f(\alpha, x)=\text { least } y\left(P_{y-1} \circ P_{y-1} \circ \cdots \circ P_{x+1} \circ P_{x}(\alpha)=0\right)
$$

- $\forall \alpha \neq 0, \forall x: \mathrm{H}_{\alpha}(x)=f(\alpha, x)$

Proof (due to Cichon).

- $\mathrm{G}_{\alpha}(x)=0$ iff $\alpha=0$
- process terminates iff $\forall \alpha \neq 0 \in \mathcal{O}, \exists y>x$ such that

$$
P_{y} \circ P_{y-1} \circ \cdots \circ P_{x+2} \circ P_{x}(\alpha)=0
$$

- let $f(\alpha, x)$ be defined as follows

$$
f(\alpha, x)=\text { least } y\left(P_{y-1} \circ P_{y-1} \circ \cdots \circ P_{x+1} \circ P_{x}(\alpha)=0\right)
$$

- $\forall \alpha \neq 0, \forall x: \mathrm{H}_{\alpha}(x)=f(\alpha, x)$

Proof (due to Cichon).

- $\mathrm{G}_{\alpha}(x)=0$ iff $\alpha=0$
- process terminates iff $\forall \alpha \neq 0 \in \mathcal{O}, \exists y>x$ such that

$$
P_{y} \circ P_{y-1} \circ \cdots \circ P_{x+2} \circ P_{x}(\alpha)=0
$$

- let $f(\alpha, x)$ be defined as follows

$$
f(\alpha, x)=\text { least } y\left(P_{y-1} \circ P_{y-1} \circ \cdots \circ P_{x+1} \circ P_{x}(\alpha)=0\right)
$$

- $\forall \alpha \neq 0, \forall x: \mathrm{H}_{\alpha}(x)=f(\alpha, x)$

Corollary (Kirby and Paris)

termination is not provable in Peano Arithmetic

Proof.

\forall functions f, provable recursive in Peano Arithmetic
$\exists \alpha \in \mathcal{O}$ such that f is majorised by H_{α}

More on the Slow-Growing Hierarchy

Lemma
the family $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha>\beta$: $\exists c$ such that $\forall x \geqslant c: \mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)$

More on the Slow-Growing Hierarchy

Lemma
the family $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha>\beta$:

$$
\exists c \text { such that } \forall x \geqslant c: \mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)
$$

Example

$$
\begin{array}{lr}
\forall x \geqslant 1 & \mathrm{G}_{\omega^{\omega}}(x)=(x+1)^{x+1}>(x+1)=\mathrm{G}_{\omega}(x) \\
\forall x \geqslant 1 & \mathrm{G}_{\omega}(x)=x+1 \ngtr y=\mathrm{G}_{y}(x) \quad \text { whenever } y>x
\end{array}
$$

More on the Slow-Growing Hierarchy

Lemma
the family $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha>\beta$:

$$
\exists c \text { such that } \forall x \geqslant c: \mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)
$$

Example

$$
\begin{array}{lr}
\forall x \geqslant 1 & \mathrm{G}_{\omega^{\omega}}(x)=(x+1)^{x+1}>(x+1)=\mathrm{G}_{\omega}(x) \\
\forall x \geqslant 1 & \mathrm{G}_{\omega}(x)=x+1 \ngtr y=\mathrm{G}_{y}(x) \quad \text { whenever } y>x
\end{array}
$$

Definition

let $>_{(x)}$ denote the transitive closure of the fundamental sequence $\cdot[\cdot]$

$$
\alpha>_{(x)} \beta \quad \text { if } \beta=\alpha[x] \text { or } \alpha[x] \geqslant{ }_{(x)} \beta
$$

More on the Slow-Growing Hierarchy

Lemma
the family $\left(\mathrm{G}_{\alpha}\right)_{\alpha \in \mathcal{O}}$ forms a hierarchy: for $\alpha>\beta$:

$$
\exists c \text { such that } \forall x \geqslant c: \mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)
$$

Example

$$
\begin{array}{lr}
\forall x \geqslant 1 & \mathrm{G}_{\omega^{\omega}}(x)=(x+1)^{x+1}>(x+1)=\mathrm{G}_{\omega}(x) \\
\forall x \geqslant 1 & \mathrm{G}_{\omega}(x)=x+1 \ngtr y=\mathrm{G}_{y}(x) \quad \text { whenever } y>x
\end{array}
$$

Definition

let $>_{(x)}$ denote the transitive closure of the fundamental sequence $\cdot[\cdot]$

$$
\alpha>_{(x)} \beta \quad \text { if } \beta=\alpha[x] \text { or } \alpha[x] \geqslant{ }_{(x)} \beta
$$

where we set $0[x]=0,(\alpha+1)[x]=\alpha$

Lemma
$1 \mathrm{G}_{\alpha}$ is increasing (strictly if α is infinite)
2 if $\alpha>_{(n)} \beta$, then $\mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)$ for all $x \geqslant n$

Lemma

$1 \mathrm{G}_{\alpha}$ is increasing (strictly if α is infinite)
2 if $\alpha>_{(n)} \beta$, then $\mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)$ for all $x \geqslant n$

Definition

 we define the norm $\mathrm{N}(\alpha)$ of α as follows$N(0)=0$

$$
\mathrm{N}\left(\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}\right)=\mathrm{N}\left(\alpha_{1}\right)+\cdots+\mathrm{N}\left(\alpha_{n}\right)+n
$$

Lemma

$1 \mathrm{G}_{\alpha}$ is increasing (strictly if α is infinite)
2 if $\alpha>_{(n)} \beta$, then $\mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)$ for all $x \geqslant n$

Definition

we define the norm $\mathrm{N}(\alpha)$ of α as follows
$N(0)=0$

$$
\mathrm{N}\left(\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}\right)=\mathrm{N}\left(\alpha_{1}\right)+\cdots+\mathrm{N}\left(\alpha_{n}\right)+n
$$

Lemma
if $\alpha>\beta$ and $n \geqslant \mathrm{~N}(\beta)$, then
$1 \alpha>_{(n)} \beta$
$2 \forall x \geqslant n: \mathrm{G}_{\alpha}(x)>\mathrm{G}_{\beta}(x)$

Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)

Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)

Theorem (Ludwig and Waldmann)
TKBOs form a simplification order

Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)

Theorem (Ludwig and Waldmann)
TKBOs form a simplification order

Theorem (Kovacs, M., and Voronkov) let signature F be finite; any TKBO is equivalent to a TKBO restricting ordinal weights to ordinals $<\omega^{\omega^{\omega}}$

Application: Transfinite Knuth-Bendix Orders

Definition (TKBOs)

Theorem (Ludwig and Waldmann)
TKBOs form a simplification order

Theorem (Kovacs, M., and Voronkov) let signature F be finite; any TKBO is equivalent to a TKBO restricting ordinal weights to ordinals $<\omega^{\omega^{\omega}}$

Theorem (Winkler, Zankl, and Middeldorp)
if a finite TRS \mathcal{R} is compatible with a TKBO, then \mathcal{R} is compatible with a finite TKBO

Example

let $F=\{f, g, h, k\}$ and consider the following rules:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & \rightarrow \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) & \rightarrow \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=\omega \\
& & \mathrm{w}(\mathrm{k})=\omega \cdot 2
\end{aligned}
$$

subterm coefficents are $=1$

Example

let $F=\{f, g, h, k\}$ and consider the following rules:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & \rightarrow \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x, x) & \rightarrow \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) & \rightarrow \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=\omega \\
& & \mathrm{w}(\mathrm{k})=\omega \cdot 2
\end{aligned}
$$

$$
\text { subterm coefficents are }=1
$$

Example

let $F=\{f, g, h, k\}$ and consider the following rules:

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{x}) & \succ_{\text {tkbo }} \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x, x) & \succ_{\text {tkbo }} \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) & \succ_{\text {tkbo }} \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=\omega \\
& \mathrm{w}(\mathrm{k})=\omega \cdot 2
\end{array}
$$

$$
\text { subterm coefficents are }=1
$$

Example

let $F=\{f, g, h, k\}$ and consider the following rules:

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{x}) & \succ_{\text {tkbo }} \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x, x) \succ_{\text {tkbo }} \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) \succ_{\text {tkbo }} \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=11 \\
& \mathrm{w}(\mathrm{k})=11 \cdot 2=22
\end{array}
$$

$$
\text { subterm coefficents are }=1
$$

Example

let $F=\{f, g, h, k\}$ and consider the following rules:

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{x}) & \succ_{\text {tkbo }} \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x, x) \succ_{\text {tkbo }} \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) \succ_{\text {tkbo }} \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=11 \\
& \mathrm{w}(\mathrm{k})=11 \cdot 2=22
\end{array}
$$

$$
\text { subterm coefficents are }=1
$$

Proof of Theorem on Finite TKBOs.

- it suffices to show that $\exists x \forall I \rightarrow r \in \mathcal{R}$: weight $(I) \geqslant(x)$ weight (r) as then $\forall I \rightarrow r \in \mathcal{R}: \mathrm{G}_{\text {weight }(I)}(k) \geqslant \mathrm{G}_{\text {weight }(r)}(k)$

Example

let $F=\{f, g, h, k\}$ and consider the following rules:

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{x}) \succ_{\text {tkbo }} \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x, x) \succ_{\text {tkbo }} \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) \succ_{\text {tkbo }} \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=11 \\
& \mathrm{w}(\mathrm{k})=11 \cdot 2=22
\end{array}
$$

$$
\text { subterm coefficents are }=1
$$

Proof of Theorem on Finite TKBOs.

- it suffices to show that $\exists x \forall I \rightarrow r \in \mathcal{R}$: weight $(I) \geqslant{ }_{(x)}$ weight (r) as then $\forall I \rightarrow r \in \mathcal{R}: \mathrm{G}_{\text {weight }(I)}(k) \geqslant \mathrm{G}_{\text {weight }(r)}(k)$
- set $k=\max \{\mathrm{N}($ weight $(r)) \mid I \rightarrow r \in \mathcal{R}\}$

Example

let $\mathrm{F}=\{\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{k}\}$ and consider the following rules:

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{x}) \succ_{\text {tkbo }} \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x, x) \succ_{\text {tkbo }} \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) \succ_{\text {tkbo }} \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=11 \\
& \mathrm{w}(\mathrm{k})=11 \cdot 2=22
\end{array}
$$

$$
\text { subterm coefficents are }=1
$$

Proof of Theorem on Finite TKBOs.

- it suffices to show that $\exists x \forall I \rightarrow r \in \mathcal{R}$: weight $(I) \geqslant{ }_{(x)}$ weight (r) as then $\forall I \rightarrow r \in \mathcal{R}: \mathrm{G}_{\text {weight }(I)}(k) \geqslant \mathrm{G}_{\text {weight }(r)}(k)$
- set $k=\max \{\mathrm{N}($ weight $(r)) \mid I \rightarrow r \in \mathcal{R}\}$
- then weight $(I) \geqslant$ weight (r) implies weight $(I) \geqslant(k)$ weight (r)

Example

let $F=\{f, g, h, k\}$ and consider the following rules:

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{x}) \succ_{\text {tkbo }} \mathrm{g}(x) & \mathrm{w}(\mathrm{f})=5 \\
\mathrm{~h}(x, x) \succ_{\text {tkbo }} \mathrm{f}(\mathrm{f}(x)) & \mathrm{w}(\mathrm{~g})=0 \\
\mathrm{k}(x, y) \succ_{\text {tkbo }} \mathrm{h}(\mathrm{f}(x), \mathrm{f}(y)) & \mathrm{w}(\mathrm{~h})=11 \\
& \mathrm{w}(\mathrm{k})=11 \cdot 2=22
\end{array}
$$

$$
\text { subterm coefficents are }=1
$$

Proof of Theorem on Finite TKBOs.

- it suffices to show that $\exists x \forall I \rightarrow r \in \mathcal{R}$: weight $(I) \geqslant{ }_{(x)}$ weight (r) as then $\forall I \rightarrow r \in \mathcal{R}: \mathrm{G}_{\text {weight }(I)}(k) \geqslant \mathrm{G}_{\text {weight }(r)}(k)$
- set $k=\max \{\mathrm{N}($ weight $(r)) \mid I \rightarrow r \in \mathcal{R}\}$
- then weight $(I) \geqslant$ weight (r) implies weight $(I) \geqslant(k)$ weight (r)

Definition

we define the derivational complexity with respect to \mathcal{R} :

$$
\begin{aligned}
\operatorname{dheight}(t) & =\max \left\{n \mid \exists u t \rightarrow^{n} u\right\} \\
\operatorname{dc}(n) & =\max \{\operatorname{dheight}(t)| | t \mid \leqslant n\}
\end{aligned}
$$

Definition

we define the derivational complexity with respect to \mathcal{R} :

$$
\begin{aligned}
\operatorname{dheight}(t) & =\max \left\{n \mid \exists u t \rightarrow^{n} u\right\} \\
\operatorname{dc}(n) & =\max \{\operatorname{dheight}(t)| | t \mid \leqslant n\}
\end{aligned}
$$

Theorem (Lepper)
for any $\operatorname{TRS} \mathcal{R}$, compatible with a $K B O$, the derivational complexity is bounded by a 2-recursive function, that is, $\mathrm{dc}(n) \in \operatorname{Ack}(O(n), 0)$

Definition

we define the derivational complexity with respect to \mathcal{R} :

$$
\begin{aligned}
\operatorname{dheight}(t) & =\max \left\{n \mid \exists u t \rightarrow^{n} u\right\} \\
\operatorname{dc}(n) & =\max \{\operatorname{dheight}(t)| | t \mid \leqslant n\}
\end{aligned}
$$

Theorem
for any TRS \mathcal{R}, compatible with a TKBO, the derivational complexity is bounded by a 2-recursive function, that is, $\mathrm{dc}(n) \in \operatorname{Ack}(O(n), 0)$

Definition

we define the derivational complexity with respect to \mathcal{R} :

$$
\begin{aligned}
\operatorname{dheight}(t) & =\max \left\{n \mid \exists u t \rightarrow^{n} u\right\} \\
\operatorname{dc}(n) & =\max \{\operatorname{dheight}(t)| | t \mid \leqslant n\}
\end{aligned}
$$

Theorem
for any TRS \mathcal{R}, compatible with a TKBO, the derivational complexity is bounded by a 2-recursive function, that is, $\mathrm{dc}(n) \in \operatorname{Ack}(O(n), 0)$

Future Work

- generalised KBOs compute weights based on weakly monotone simple algebras \mathcal{A}
- clarify restrictions on \mathcal{A} so that ordinal weights again collapse to numbers

\section*{\section*{Thank You for Your Attention!

\section*{Thank You for Your Attention! Thank You for Your Attention! Application Application

 \qquad

 —

 \qquad

 \qquad Thank You for Your Attention! Thank You for Your Attention! Application © Thank You for Your Attention! Application © Thank You for Your Attention! Thank You for Your Attention! Thank You for Your Attention!

 hank You for

 hank You for

 \qquad \square \square \qquad $-$

 Attention

 Attention}

 Attention}

 Attention}