mputational
gic

A New Order-theoretic Characterisation of the

Polytime Computable Functions

Martin Avanzini! Naohi Eguchi® Georg Moser*

Institute of Computer Science
University of Innsbruck, Austria

2Mathematical Institute
Tohoku University, Japan

March 28, 2012

http://cl-informatik.uibk.ac.at
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.math.tohoku.ac.jp/english/index-e.html

Implicit Computational Complexity (ICC)

characterise complexity classes
— external restriction of resources

+ restrict program structure

Motivation

> broaden understanding

> apply in programming language theory

Cobhams Definition of FP

Alan Cobham
The Intrinsic Computational Difficulty of Functions.
Proc. of the 1964 International Congress for Logic, Methodology, and
the Philosophy of Science, pages 24-30, 1964

Cobhams Definition of FP

Alan Cobham
The Intrinsic Computational Difficulty of Functions.
Proc. of the 1964 International Congress for Logic, Methodology, and
the Philosophy of Science, pages 24-30, 1964

Bounded Recursion on Notation

f(e,y) = g(¥)
f(zi,y) = hi(z,y,f(z,y)) fori=0,1

» provided f(z,y) < p(z,y) for previously defined p and all z, y

> requires smash function x#y := 2X/'lV

Cobhams Definition of FP

Alan Cobham
The Intrinsic Computational Difficulty of Functions.
Proc. of the 1964 International Congress for Logic, Methodology, and
the Philosophy of Science, pages 24-30, 1964

Bounded Recursion on Notation

f(e,y) = g(¥)
f(zi,y) = hi(z,y,f(z,y)) fori=0,1

» provided |f(z,y)| < |p(z.y)| for previously defined p and all z, y

> requires smash function x#y := 2X/'lV

Bellantoni & Cooks Definition of FP

Stephen Bellantoni and Stephen A. Cook
A New Recursion-Theoretic Characterization of the Polytime
Functions.
Computational Complexity, Vol. 2, pages 97-110, 1992

Bellantoni & Cooks Definition of FP

@ Stephen Bellantoni and Stephen A. Cook
A New Recursion-Theoretic Characterization of the Polytime
Functions.
Computational Complexity, Vol. 2, pages 97-110, 1992

Predicative Recursion on Notation

f(e, % y) = g(X,¥)

> uses separation of arguments

f(ny,-ooon; Ny o5 Nigk)
—— —— —

normal safe

Bellantoni & Cooks Definition of FP

@ Stephen Bellantoni and Stephen A. Cook
A New Recursion-Theoretic Characterization of the Polytime

Functions.
Computational Complexity, Vol. 2, pages 97-110, 1992

Predicative Recursion on Notation
= g(x%;
hi(z,%;y,f(z,X;y)) fori=0,1

> uses separation of arguments

f(ny,-ooon; Ny o5 Nigk)
—_— ——
normal safe

> ‘“complexity depends only on normal arguments”

Runtime Complexity Analysis of TRSs

Computation
» conceive TRS R as first order program over signature D W C

» values Val are terms built from constructors C

» for each f € D, R computes functions f : Val” — Val such that

f(vi,...,vn) i =u — f(Vla---)Vn)_>!7€“

Runtime Complexity Analysis of TRSs

Computation
» conceive TRS R as first order program over signature D W C

» values Val are terms built from constructors C

» for each f € D, R computes functions f : Val” — Val such that

f(vi,...,vn) i =u — f(Vla---)Vn)_>!7€“

Runtime Complexity
> runtime complexity function

rcr(n) := max{dh(t,—z) | t is basic term of size up to n}

where dh(t, =) :=max{{|t >t = tr--- — t;}

» term f(vy,...,v,) is basic if f € D and all v; € Val

CE

Polynomial Path Order >,y

M. Avanzini and G. Moser
Complexity Analysis by Rewriting.
Proc. of 9th International Symposium on Functional and Logic
Programming, LNCS Vol. 4989, pages 130-146, 2008

» order >, embodies predicative recursion on >,

Polynomial Path Order >,y

[M. Avanzini and G. Moser
Complexity Analysis by Rewriting.
Proc. of 9th International Symposium on Functional and Logic
Programming, LNCS Vol. 4989, pages 130-146, 2008

» order >, embodies predicative recursion on >,

Example
10 +(0,y)—y 3: x(0,y)—0
2:4(s(x),y) = s(+0xy)) 4: x(s(x),y) = 4y, x(x,y)
5: sq(x) = x(x,x)

» TRS is compatible with >mpo using precedence sq > x > + = s

Polynomial Path Order >,y

[M. Avanzini and G. Moser
Complexity Analysis by Rewriting.
Proc. of 9th International Symposium on Functional and Logic
Programming, LNCS Vol. 4989, pages 130-146, 2008

» order >, embodies predicative recursion on >,

Example
10 +(0y)—y 3: x(0,y;)—0
2: 4+(s(x)iy) = s(+(xy)) 4 x(s(x),y:) = +(ri x(x,y3))
5: sq(x;) = x(x,x;)

» TRS is compatible with >pop« using precedence sq > x > + = s

Polynomial Path Order >,y

Runtime Complexity Analysis
Let R denote a constructor TRS. There exists k € N such that

R g >pop* — I’CiR S O(nk)

Polynomial Path Order >,y

Runtime Complexity Analysis
Let R denote a constructor TRS. There exists k € N such that

R C >popx = rcy € O(n¥)

Implicit Computational Complexity

® Soundness
Let R be a constructor TRS that computes a function f.
If R € >pop« then f is polytime computable.

Polynomial Path Order >,y

Runtime Complexity Analysis
Let R denote a constructor TRS. There exists k € N such that

R C >popx = rcy € O(n¥)

Implicit Computational Complexity

® Soundness
Let R be a constructor TRS that computes a function f.
If R € >pop« then f is polytime computable.

® Completeness
Let be a polytime computable function.
There exists a constructor TRS R computing f with R¢ C > p..

Polynomial Path Order >,y

Runtime Complexity Analysis
Let R denote a constructor TRS. There exists k € N such that

R C >popx = rcy € O(n¥)

Implicit Computational Complexity

® Soundness
Let R be a constructor TRS that computes a function f.
If R € >pop« then f is polytime computable.

® Completeness
Let be a polytime computable function.
There exists a constructor TRS R computing f with R¢ C > p..

Drawback
order >, cannot precisely estimate degree of polynomial

Small Polynomial Path Order >g,op«

» restriction of polynomial path order >spopx & >pops

> estimate degree of complexity certificate in “depth of recursion”

Small Polynomial Path Order >g,op«

> restriction of polynomial path order >spopx & > pops

> estimate degree of complexity certificate in “depth of recursion”

@ restrict composition to safe arguments weak safe composition

f(X5) = e(X (X Y), .., k(X ¥))

Small Polynomial Path Order >g,op«

> restriction of polynomial path order >spopx & > pops

> estimate degree of complexity certificate in “depth of recursion”

@ restrict composition to safe arguments weak safe composition
f(Xy) = g(Xim(Xy),..., h(X;¥))
@® uses product-status
fr(s(x1), X2, X35+« oy Xk) = Tr(x1, X2, X35+« oy Xk;)
fi(0,5(x2), X35« «y Xk) = Te(X2s X2y X3, + oy Xk3)
fr(0,...,0,s(x«);) —> fie (X -+ vy Xks Xk)

e compatible with >0, admits runtime complexity in ©(n*)

Small Polynomial Path Order >¢pop.

f(Sl, <oy Sky Sk41y- - - 7Sk+/) >Sp0p>k tif
® Si >sp0p+ t for some argument s;

Small Polynomial Path Order >g,op«

f(Sl, <oy Sky Sk41y- - - 7Sk+/) >Sp0p* tif
® Si >sp0p+ t for some argument s;

@ t=g(ti,...,tm tmils-- s tmen) Where f € Dand f - g
o f(S1,..., ki Ski1s- - -, Skt) o £ for all normal arguments ¢
® f(S1,..,SkiSk41s-- -, Sktt) >spops tj for all safe arguments t;

Small Polynomial Path Order >g,op«

f(Sl, <oy Sky Sk41y- - - 7Sk+/) >Sp0p* tif
® Si >sp0p+ t for some argument s;

@ t=g(ti,...,tm tmils-- s tmen) Where f € Dand f - g
o f(S1,..., ki Ski1s- - -, Skt) o £ for all normal arguments ¢
® f(S1,..,SkiSk41s-- -, Sktt) >spops tj for all safe arguments t;

(S, ySk;-.)Dut & s>~ t

Small Polynomial Path Order >g,op«

f(Sl, <oy Sky Sk41y- - - 7Sk+/) >Sp0p* tif
® Si >sp0p+ t for some argument s;

@ t=g(ti,...,tm tmils-- s tmen) Where f € Dand f - g
o f(S1,..., ki Ski1s- - -, Skt) o £ for all normal arguments ¢
® f(S1,..,SkiSk41s-- -, Sktt) >spops tj for all safe arguments t;
©t=g(ty, ..., tk;tks1,. -, tkrs) Wwhere f € D and f ~ g
® (S1,...,5) >spopx (tr(1)s- -+ tr(k))
® Skl Skrl) Zspopr (Er(ks1)s- -+ » Er(ketl))

=L

g(x;
h;

i(z,

—
N
Xt
< "<l
Il
X1

¥, f(z,Xy)) fori=0,1

Small Polynomial Path Order >g,op«

f(Sl, <oy Sky Sk41y- - - 7Sk+/) >Sp0p* tif
® Si >sp0p+ t for some argument s;

@ t=g(ti,...,tm tmils-- s tmen) Where f € Dand f - g
o f(S1,..., ki Ski1s- - -, Skt) o £ for all normal arguments ¢
® f(S1,..,SkiSk41s-- -, Sktt) >spops tj for all safe arguments t;

e t contains at most one defined symbol h with h = f

©t=g(ty, ..., tk;tks1,. -, tkrs) Wwhere f € D and f ~ g
e <51, ce 75/<> > spop <t7r(1)a veey tﬂ'(k)>
® (Ski1s.-+ySktt) Zspopr (Er(ka1)s -« s Er(ksi))

f(s(x);) Fspops <(; f(x:),f(x:))

Small Polynomial Path Order >g,op«

f(Sl, <o s Sk Sk41y .- - 7Sk+/) >Sp0p* tif
® Si >sp0p+ t for some argument s;

@ t=g(ti,...,tm tmils-- s tmen) Where f € Dand f - g
o f(S1,..., ki Ski1s- - -, Skt) o £ for all normal arguments ¢
® f(S1,..,SkiSk41s-- -, Sktt) >spops tj for all safe arguments t;

e t contains at most one defined symbol h with h = f

© t=g(ty, ..., tk; tksr1,- -, tkrs) Where f € Dyec and f ~ g
e <51, ce 75/<> > spop <t7r(1)a veey tﬂ‘(k)>
® (Ski1s.-+ySktt) Zspopr (Er(ka1)s -« s Er(ksi))

assume designated set of recursive symbols D,.c C D

Small Polynomial Path Order >g,op«

f(Sl, <oy Sky Sk41y- - - 7Sk+/) >Sp0p* tif
® Si >sp0p+ t for some argument s;

@ t=g(ti,...,tm tmils-- s tmen) Where f € Dand f - g
o f(S1,..., ki Ski1s- - -, Skt) o £ for all normal arguments ¢
® f(S1,..,SkiSk41s-- -, Sktt) >spops tj for all safe arguments t;

e t contains at most one defined symbol h with h = f
© t=g(ty, ..., tk; tksr1,- -, tkrs) Where f € Dyec and f ~ g
° <51, ce 7S/<> >>spopx <t7r(1), ey t,r(k)>

® (Ski1s.--ySktl) Zspop <t7'(k+1)7 cees tr(k+l)>

Small Polynomial Path Order >¢pop.

Main Result

» the depth of recursion rd(f) is defined as follows:

d(F) = 1+ max{rd(g) | f > g} iff € Dyec
T I max{rd(g) | f - g} otherwise

Small Polynomial Path Order >g,op«

Main Result

» the depth of recursion rd(f) is defined as follows:

a(f) 1+ max{rd(g) | f > g} iff € Dyec
r =

max{rd(g) | f > g} otherwise
» constructor TRS R is predicative recursive of degree d if

e R is compatible with >0

e depth of recursion of symbol in R is at most d

Small Polynomial Path Order >g,op«

Main Result

» the depth of recursion rd(f) is defined as follows:

d(F) = 1+ max{rd(g) | f > g} iff € Dyec
T I max{rd(g) | f - g} otherwise

» constructor TRS R is predicative recursive of degree d if
e R is compatible with >0
e depth of recursion of symbol in R is at most d

Theorem

@ if R is a predicative recursive TRS of degree d, then rci, € O(n9)

Small Polynomial Path Order >g,op«

Main Result

» the depth of recursion rd(f) is defined as follows:

d(F) = 1+ max{rd(g) | f > g} iff € Dyec
T I max{rd(g) | f - g} otherwise

» constructor TRS R is predicative recursive of degree d if
e R is compatible with >0
e depth of recursion of symbol in R is at most d

Theorem

@ if R is a predicative recursive TRS of degree d, then rci, € O(n9)

@® for all d there exists a predicative recursive TRS of degree d such
that rci, € ©(n9)

Small Polynomial Path Order >g,op«

Example
1 +(0;y) =y 3 x(0,y;) =0
2: +(s(x);y) = s(+(xiy)) 4 x(s(x),y:) = +(yi x(x, ¥7))
5 sq(x;) — x(x,x;)

» TRS is compatible with >spops« using precedence sq = X = + = s
» only x and + are recursive

> innermost runtime complexity is quadratic

Experimental Results

bound MPO POP* sPOP*

yes 767\0.00 43v\005 39\0.07

Table: 757 constructor TRSs from TPDB 8.0

Experimental Results

bound MPO POP* sPOP*

0(1) 0\0.06
O(nt) 32\0.07
O(nz) 38\0.09
O(n%) 39\0.20
O(nk) 43v0.05 39\0.20

yes 767\0.00 43v\005 39\0.07

Table: 757 constructor TRSs from TPDB 8.0

Experimental Results

bound MPO POP* sPOP* POP%Ls sPOPhe

0(1) 9\0.06 9\0.06
O(nl) 32\0.07 46\0.00
O(nz) 38\0.09 53\0.10
O(n3) 39\0.20 54:0.22
O(nk) 43v0.05 39\0.20 561\0.05 54\0.22

yes 767000 43005 39\0.07 5610.05 5410.08

Table: 757 constructor TRSs from TPDB 8.0

» Parameter Substitution
f(e, %, y) = g(Xy)
f(zi,X;y) = hi(z, %, ¥,f(z, %, p1(z, X, ¥), - .., pk(2, X, ¥))) fori=0,1

Applications in CC

Main Results

Theorem

>spops+ 1S sound and complete for polytime functions

Applications in CC

Main Results

Theorem

>spops+ 1S sound and complete for polytime functions

> innermost runtime complexity is an invariant cost model

Applications in CC

The Class B,
class Bysc is smallest class of functions that

@ contains a small set of initial functions successors, conditional, ...

@® is closed under weak predicative composition
f(%y) =g(X (% ¥), ... h(X: ¥))

© is closed under safe recursion on notation

,(z,>_<’, y,f(z,X,y)) fori=0,1

Applications in CC

The Class By
class Bysc is smallest class of functions that

@ contains a small set of initial functions successors, conditional, ...

@® is closed under weak predicative composition
f(X:y) = g(Xi (X Y), - - - hi(X:)
© is closed under safe recursion on notation

,(z,)_(’, y,f(z,X,y)) fori=0,1

Theorem

Buwsc equals the polytime computable functions

Applications in CC

Main Results

Theorem

>spops+ 1S sound and complete for polytime functions

> innermost runtime complexity is an invariant cost model

» every f € Bysc can be formulated as predicative recursive TRS

Applications in CC

More Precise. ..

Theorem RM = TRS

Suppose R is register machine operating in time O(nd).
If f is computed by R, then f is computable by some predicative recursive
TRS Ry of degree d.

Applications in CC

More Precise. ..

Theorem RM = TRS

Suppose R is register machine operating in time O(n9).
If f is computed by R, then f is computable by some predicative recursive
TRS Ry of degree d.

Theorem TRS = RM

Suppose predicative TRS R of degree d computes functions on strings.
If £ is computed by R, then f is computable on a register machine Ry
operating in time O(n9).

» can Theorem TRS = RM be generalised?

» can Theorem TRS = RM be generalised?

=

» can we replace weak safe composition by (X;y) = g(h(X;);i(X;¥))?

g €0(n%), heO(nd),icO(n?) = feOo(n)
where d = max{min{1,dg} - ds, d;}

» can Theorem TRS = RM be generalised?
» can we replace weak safe composition by f(x;y) = g(h(X;);i(X;y))?

g €0(n%), heO(nd),icO(n?) = feOo(n)
where d = max{min{1,dg} - ds, d;}

Conjecture

for any function f on strings, the following are equivalent
@ f is defined in B,sc via at most d-fold nested application of SRN
@® f is computed by predicative recursive TRS R¢ of degree d

© f is computed by register machine Ry operating in time O(n9)

