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Implicit Computational Complexity (ICC)

characterise complexity classes
— external restriction of resources

+ restrict program structure

Motivation

> broaden understanding

> apply in programming language theory
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Bellantoni & Cooks Definition of FP

@ Stephen Bellantoni and Stephen A. Cook
A New Recursion-Theoretic Characterization of the Polytime

Functions.
Computational Complexity, Vol. 2, pages 97-110, 1992

Predicative Recursion on Notation
= g(x%;
hi(z,%;y,f(z,X;y)) fori=0,1

> uses separation of arguments

f(ny,-ooon; Ny o5 Nigk)
—_— ——
normal safe

> ‘“complexity depends only on normal arguments”
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Computation
» conceive TRS R as first order program over signature D W C

» values Val are terms built from constructors C

» for each f € D, R computes functions f : Val” — Val such that

f(vi,...,vn) i =u — f(Vla---)Vn)_>!7€“



Runtime Complexity Analysis of TRSs

Computation
» conceive TRS R as first order program over signature D W C

» values Val are terms built from constructors C

» for each f € D, R computes functions f : Val” — Val such that

f(vi,...,vn) i =u — f(Vla---)Vn)_>!7€“

Runtime Complexity
> runtime complexity function

rcr(n) := max{dh(t,—z) | t is basic term of size up to n}

where dh(t, =) :=max{{|t >t = tr--- — t;}

» term f(vy,...,v,) is basic if f € D and all v; € Val



CE



Polynomial Path Order >,y

M. Avanzini and G. Moser
Complexity Analysis by Rewriting.
Proc. of 9th International Symposium on Functional and Logic
Programming, LNCS Vol. 4989, pages 130-146, 2008

» order >, embodies predicative recursion on >,



Polynomial Path Order >,y

[ M. Avanzini and G. Moser
Complexity Analysis by Rewriting.
Proc. of 9th International Symposium on Functional and Logic
Programming, LNCS Vol. 4989, pages 130-146, 2008

» order >, embodies predicative recursion on >,

Example
10 +(0,y)—y 3: x(0,y )—0
2:4(s(x),y) = s(+0xy))  4: x(s(x),y ) = 4y, x(x,y )
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Polynomial Path Order >,y

[ M. Avanzini and G. Moser
Complexity Analysis by Rewriting.
Proc. of 9th International Symposium on Functional and Logic
Programming, LNCS Vol. 4989, pages 130-146, 2008

» order >, embodies predicative recursion on >,

Example
10 +(0y)—y 3: x(0,y;)—0
2: 4+(s(x)iy) = s(+(xy)) 4 x(s(x),y:) = +(ri x(x,y3))
5: sq(x; ) = x(x,x;)

» TRS is compatible with >pop« using precedence sq > x > + = s
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Polynomial Path Order >,y

Runtime Complexity Analysis
Let R denote a constructor TRS. There exists k € N such that

R C >popx = rcy € O(n¥)

Implicit Computational Complexity

® Soundness
Let R be a constructor TRS that computes a function f.
If R € >pop« then f is polytime computable.

® Completeness
Let  be a polytime computable function.
There exists a constructor TRS R computing f with R¢ C > p..

Drawback
order >, cannot precisely estimate degree of polynomial
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Small Polynomial Path Order >g,op«

> restriction of polynomial path order >spopx & > pops

> estimate degree of complexity certificate in “depth of recursion”

@ restrict composition to safe arguments weak safe composition
f(Xy) = g(Xim(Xy),..., h(X;¥))
@® uses product-status
fr(s(x1), X2, X35+« oy Xk ) = Tr(x1, X2, X35+« oy Xk; )
fi(0,5(x2), X35« «y Xk ) = Te(X2s X2y X3, + oy Xk3 )
fr(0,...,0,s(x«);) —> fie (X -+ vy Xks Xk )

e compatible with >0, admits runtime complexity in ©(n*)
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e t contains at most one defined symbol h with h = f

© t=g(ty, ..., tk; tksr1,- -, tkrs) Where f € Dyec and f ~ g
e <51, ce 75/<> > spop <t7r(1)a veey tﬂ‘(k)>
® (Ski1s.-+ySktt) Zspopr (Er(ka1)s -« s Er(ksi))

assume designated set of recursive symbols D,.c C D
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f(Sl, <oy Sky Sk41y- - - 7Sk+/) >Sp0p* tif
® Si >sp0p+ t for some argument s;
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Small Polynomial Path Order >g,op«

Main Result

» the depth of recursion rd(f) is defined as follows:

d(F) = 1+ max{rd(g) | f > g} iff € Dyec
T I max{rd(g) | f - g} otherwise

» constructor TRS R is predicative recursive of degree d if
e R is compatible with >0
e depth of recursion of symbol in R is at most d

Theorem

@ if R is a predicative recursive TRS of degree d, then rci, € O(n9)

@® for all d there exists a predicative recursive TRS of degree d such
that rci, € ©(n9)



Small Polynomial Path Order >g,op«

Example
1 +(0;y) =y 3 x(0,y;) =0
2: +(s(x);y) = s(+(xiy)) 4 x(s(x),y:) = +(yi x(x, ¥7))
5 sq(x;) — x(x,x;)

» TRS is compatible with >spops« using precedence sq = X = + = s
» only x and + are recursive

> innermost runtime complexity is quadratic
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bound MPO POP* sPOP*

yes 767\0.00  43v\005  39\0.07

Table: 757 constructor TRSs from TPDB 8.0
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0(1) 0\0.06
O(nt) 32\0.07
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O(n%) 39\0.20
O(nk) 43v0.05  39\0.20
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Experimental Results

bound MPO POP* sPOP* POP%Ls sPOPhe

0(1) 9\0.06 9\0.06
O(nl) 32\0.07 46\0.00
O(nz) 38\0.09 53\0.10
O(n3) 39\0.20 54:0.22
O(nk) 43v0.05  39\0.20 561\0.05 54\0.22

yes 767000 43005  39\0.07 5610.05 5410.08

Table: 757 constructor TRSs from TPDB 8.0

» Parameter Substitution
f(e, %, y) = g(Xy)
f(zi,X;y) = hi(z, %, ¥,f(z, %, p1(z, X, ¥), - .., pk(2, X, ¥))) fori=0,1
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Applications in CC

The Class By
class Bysc is smallest class of functions that

@ contains a small set of initial functions successors, conditional, ...

@® is closed under weak predicative composition
f(X:y) = g(Xi (X Y), - - - hi(X: )
© is closed under safe recursion on notation

,(z,)_(’, y,f(z,X,y)) fori=0,1

Theorem

Buwsc equals the polytime computable functions



Applications in CC

Main Results

Theorem

>spops+ 1S sound and complete for polytime functions

> innermost runtime complexity is an invariant cost model

» every f € Bysc can be formulated as predicative recursive TRS
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Suppose R is register machine operating in time O(nd).
If f is computed by R, then f is computable by some predicative recursive
TRS Ry of degree d.
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More Precise. ..

Theorem RM = TRS

Suppose R is register machine operating in time O(n9).
If f is computed by R, then f is computable by some predicative recursive
TRS Ry of degree d.

Theorem TRS = RM

Suppose predicative TRS R of degree d computes functions on strings.
If £ is computed by R, then f is computable on a register machine Ry
operating in time O(n9).
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» can Theorem TRS = RM be generalised?
» can we replace weak safe composition by f(x;y) = g(h(X;);i(X;y))?

g €0(n%), heO(nd),icO(n?) = feOo(n)
where d = max{min{1,dg} - ds, d;}

Conjecture

for any function f on strings, the following are equivalent
@ f is defined in B,sc via at most d-fold nested application of SRN
@® f is computed by predicative recursive TRS R¢ of degree d

© f is computed by register machine Ry operating in time O(n9)



