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Motivation

Motivation

Example

void simpleLoop (int n){
int x = 0;
int y = n;
while (x < n){

x = x + 2;
y = y * x;
}

printf ("%d",y);
}
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Motivation

Motivation

Complexity
Number of loop iterations of a procedure P, in terms of the size of
its input.

precise: precise computational complexity + precise constants
efficient: quadratic (modulo invariant generation) with respect

to the number of back-edges
static: based on static analysis
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Motivation

Motivation

Example

void simpleLoop (int n){
int x = 0;
int y = n;
while (x < n){

x = x + 2;
y = y * x;

}
print ("%d",y);

}
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Motivation

Motivation

Example

void simpleLoop (int n){
int x = 0;

while (x < n){
x = x + 2;

}

}

� ignore condition-irrelevant
statements (slicing)

� convention: omit types and
parenthesis
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Motivation

Motivation

Example

simpleLoop (n)
x = 0;
c = 0;
while (x < n)

x = x + 2;
c++;

� instrument back-edges with
counter

� generate loop-invariant
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Motivation

Motivation

Example

simpleLoop (n)
x = 0;
c = 0;
while (x < n)

x = x + 2;
c++;

c ≤ max(0, 1/2 ∗ n)

� instrument back-edges with
counter

� generate loop-invariant
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Motivation

Motivation

But
There is no almighty invariant generator.

Invariant Generation
� abstract interpretation

� iterative fixed point analysis over abstract domain
� linear arithmetic abstract domain over R
� convex domain (constraints over conjuncts)
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Motivation

Limitation

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0;
y = y0;
while (x < n)

if(y > x)
x++;

else
y++;

Example (non-linear bound)

nonLinear (n,m)
x = 0;
while (x < n)

y = 0;
x++;
while (y < m)

y++;

Example (data-structures)

iterate (List e,f)
for(e=f;e!= null;e=L. GetNext (e));
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Motivation

Key Ideas

� instrumentation of multiple counters
� generation of a linear (invariant) bound for each counter
� composition of generated (linear) bounds

� quantitative functions + effects

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 8/26



Motivation

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary
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Proof Structure

Instrumentation

Definition
S set of counter variables
M mapping from back-edges to counter variables from S
G DAG over S ∪ {r}, where r is the root symbol
B mapping from back-edges to bounds

Definition (Instrumentation (P(S, M, G)))
� each back-edge q is instrumented with an increment (c++),
where M(q) = c

� if (r , c) ∈ G , then c is initialized (c=0) at entry point
� if (c, c ′) ∈ G , then c ′ is initialized at q, where M(q) = c
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Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0;
y = y0;
while(x < n)

if(y > x)
x++;

q1
else

y++;
q2

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}

B = {q1 7→ n − x0, q2 7→ n − y0}
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Example (disjunctive bound)
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Proof Structure

Proof Structure

Definition (Proof Structure)
Let P be a procedure then (S,M,G ,B) is a proof structure for P,
if for all back-edges q in P, the invariant generation tool can
establish bound B(q) on counter variable M(q) at q in
instrumentation (P(S,M,G)).
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Proof Structure

Computing Bounds

Theorem

Let (S,M,G ,B) be a proof structure for P, then U defines an
upper bound on the total number of iterations of all loops in P.

U =
∑
c∈S

TotalBound(c)

TotalBound(r) = 0
TotalBound(c) = max({0}

⋃
{B(q) | M(q) = c})

×

1+
∑

(c′,c)∈G
TotalBound(c ′)


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Continued Example
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Proof Structure

Continued Example

Example (non-linear bound)

nonLinear (n,m)
x = 0; c1 = 0; c2 = 0;
while(x < n)

y = 0;
x++;

q1 c1++; c2 = 0;
while (y < m)

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2), (c1, c2)}
B = {q1 7→ n, q2 7→ m}
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Continued Example

Example (non-linear bound)
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User Defined Data-Structures

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary
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User Defined Data-Structures

Properties

� iteration over abstract data-structures
� quantitative functions + effects

� no analysis of heap properties (shape, size, . . . )
� reflects user’s idea of complexity
� implementation independent
� semi-automatic
� requires support for uninterpreted functions

� combination of abstract interpretation of linear arithmetic +
abstract interpretation of uninterpreted functions
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User Defined Data-Structures

Singly Linked List

� quantitative functions:

Len(L) := length of list L
Pos(e, L) := position of element e of list L

� effects:

e = L.GetNext(f ) := Pos(e, L) = Pos(f , L) + 1;
Assume(0 ≤ Pos(f , L) < Len(L))

Example

iterate (List e,f)
for(e=f; e!= null;

e=L. GetNext (e));

c =Pos(e, L)− Pos(f , L)∧
Pos(e, L) ≤ Len(L)

U =Len(L)− Pos(f , L)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 20/26



User Defined Data-Structures

Singly Linked List

� quantitative functions:

Len(L) := length of list L
Pos(e, L) := position of element e of list L

� effects:

e = L.GetNext(f ) := Pos(e, L) = Pos(f , L) + 1;
Assume(0 ≤ Pos(f , L) < Len(L))

Example

iterate (List e,f)
for(e=f; e!= null;

e=L. GetNext (e));

c =Pos(e, L)− Pos(f , L)∧
Pos(e, L) ≤ Len(L)

U =Len(L)− Pos(f , L)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 20/26



Further Approaches

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary
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Further Approaches

S. Falke and D. Kapur
A Term Rewriting Approach to the Automated Termination
Analysis of Imperative Programs
In Proc. of CADE, 2009
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Further Approaches

Example

simpleloop (n)
x = 0;
while (x < n)

x++;

eval1(x , y)→ eval2(0, y)
eval2(x , y)→ eval2(x + 1, y)[x < y ]

� transformation (in a natural way) to PA-based TRSs
� used for proving termination

� notion of complexity for PA-based TRSs
� adaption of existing techniques
� expandable to heap analysis
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Summary

Outline
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Summary

Summary

� Microsoft product code + C++ Standard Template Library
� claim: bounds for more than the half of encountered examples

� multiple counters + composing of linear invariants
� maximal polynomial bounds
� quantitative functions + effects for abstract data-structures
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Summary

End

Thank you for your attention!
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