
Bound Analysis of Imperative Programs
Seminar Report

Michael Schaper

Computational Logic
Institute of Computer Science

University of Innsbruck

June 13, 2012

http://cl-informatik.uibk.ac.at


Motivation

Bibliography

S. Gulwani, K. Mehra and T. Chilimbi
SPEED: Precise and Efficient Static Estimation of Program
Computational Complexity
In Proc. of POPL, 2009

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 2/26



Motivation

Motivation

Example

void simpleLoop (int n){
int x = 0;
int y = n;
while (x < n){

x = x + 2;
y = y * x;
}

printf ("%d",y);
}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 3/26



Motivation

Motivation

Complexity
Number of loop iterations of a procedure P, in terms of the size of
its input.

precise: precise computational complexity + precise constants
efficient: quadratic (modulo invariant generation) with respect

to the number of back-edges
static: based on static analysis

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 4/26



Motivation

Motivation

Complexity
Number of loop iterations of a procedure P, in terms of the size of
its input.

precise: precise computational complexity + precise constants
efficient: quadratic (modulo invariant generation) with respect

to the number of back-edges
static: based on static analysis

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 4/26



Motivation

Motivation

Example

void simpleLoop (int n){
int x = 0;
int y = n;
while (x < n){

x = x + 2;
y = y * x;

}
print ("%d",y);

}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 5/26



Motivation

Motivation

Example

void simpleLoop (int n){
int x = 0;

while (x < n){
x = x + 2;

}

}

� ignore condition-irrelevant
statements (slicing)

� convention: omit types and
parenthesis

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 5/26



Motivation

Motivation

Example

simpleLoop (n)
x = 0;

while (x < n)
x = x + 2;

� ignore condition-irrelevant
statements (slicing)

� convention: omit types and
parenthesis

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 5/26



Motivation

Motivation

Example

simpleLoop (n)
x = 0;
c = 0;
while (x < n)

x = x + 2;
c++;

� instrument back-edges with
counter

� generate loop-invariant

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 5/26



Motivation

Motivation

Example

simpleLoop (n)
x = 0;
c = 0;
while (x < n)

x = x + 2;
c++;

c ≤ max(0, 1/2 ∗ n)

� instrument back-edges with
counter

� generate loop-invariant

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 5/26



Motivation

Motivation

But
There is no almighty invariant generator.

Invariant Generation
� abstract interpretation

� iterative fixed point analysis over abstract domain
� linear arithmetic abstract domain over R
� convex domain (constraints over conjuncts)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 6/26



Motivation

Limitation

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0;
y = y0;
while (x < n)

if(y > x)
x++;

else
y++;

Example (non-linear bound)

nonLinear (n,m)
x = 0;
while (x < n)

y = 0;
x++;
while (y < m)

y++;

Example (data-structures)

iterate (List e,f)
for(e=f;e!= null;e=L. GetNext (e));

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 7/26



Motivation

Limitation

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0;
y = y0;
while (x < n)

if(y > x)
x++;

else
y++;

Example (non-linear bound)

nonLinear (n,m)
x = 0;
while (x < n)

y = 0;
x++;
while (y < m)

y++;

Example (data-structures)

iterate (List e,f)
for(e=f;e!= null;e=L. GetNext (e));

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 7/26



Motivation

Limitation

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0;
y = y0;
while (x < n)

if(y > x)
x++;

else
y++;

Example (non-linear bound)

nonLinear (n,m)
x = 0;
while (x < n)

y = 0;
x++;
while (y < m)

y++;

Example (data-structures)

iterate (List e,f)
for(e=f;e!= null;e=L. GetNext (e));

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 7/26



Motivation

Key Ideas

� instrumentation of multiple counters
� generation of a linear (invariant) bound for each counter
� composition of generated (linear) bounds

� quantitative functions + effects

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 8/26



Motivation

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 9/26



Proof Structure

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 10/26



Proof Structure

Instrumentation

Definition
S set of counter variables
M mapping from back-edges to counter variables from S
G DAG over S ∪ {r}, where r is the root symbol
B mapping from back-edges to bounds

Definition (Instrumentation (P(S, M, G)))
� each back-edge q is instrumented with an increment (c++),
where M(q) = c

� if (r , c) ∈ G , then c is initialized (c=0) at entry point
� if (c, c ′) ∈ G , then c ′ is initialized at q, where M(q) = c

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 11/26



Proof Structure

Instrumentation

Definition
S set of counter variables
M mapping from back-edges to counter variables from S
G DAG over S ∪ {r}, where r is the root symbol
B mapping from back-edges to bounds

Definition (Instrumentation (P(S, M, G)))
� each back-edge q is instrumented with an increment (c++),
where M(q) = c

� if (r , c) ∈ G , then c is initialized (c=0) at entry point
� if (c, c ′) ∈ G , then c ′ is initialized at q, where M(q) = c

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 11/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0;
y = y0;
while(x < n)

if(y > x)
x++;

q1
else

y++;
q2

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}

B = {q1 7→ n − x0, q2 7→ n − y0}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 12/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0; c1 = 0;
y = y0; c2 = 0;
while(x < n)

if(y > x)
x++;

q1 c1++;
else

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}

B = {q1 7→ n − x0, q2 7→ n − y0}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 12/26



Proof Structure

Proof Structure

Definition (Proof Structure)
Let P be a procedure then (S,M,G ,B) is a proof structure for P,
if for all back-edges q in P, the invariant generation tool can
establish bound B(q) on counter variable M(q) at q in
instrumentation (P(S,M,G)).

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 13/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0; c1 = 0;
y = y0; c2 = 0;
while(x < n)

if(y > x)
x++;

q1 c1++;
else

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}

B = {q1 7→ n − x0, q2 7→ n − y0}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 14/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0; c1 = 0;
y = y0; c2 = 0;
while(x < n)

if(y > x)
x++;

q1 c1++;
else

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}
B = {q1 7→ n − x0, q2 7→ n − y0}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 14/26



Proof Structure

Computing Bounds

Theorem

Let (S,M,G ,B) be a proof structure for P, then U defines an
upper bound on the total number of iterations of all loops in P.

U =
∑
c∈S

TotalBound(c)

TotalBound(r) = 0
TotalBound(c) = max({0}

⋃
{B(q) | M(q) = c})

×

1+
∑

(c′,c)∈G
TotalBound(c ′)



MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 15/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0; c1 = 0;
y = y0; c2 = 0;
while(x < n)

if(y > x)
x++;

q1 c1++;
else

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}
B = {q1 7→ n − x0, q2 7→ n − y0}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 16/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0; c1 = 0;
y = y0; c2 = 0;
while(x < n)

if(y > x)
x++;

q1 c1++;
else

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}
B = {q1 7→ n − x0, q2 7→ n − y0}

U = TotalBound(c1)
+ TotalBound(c2)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 16/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0; c1 = 0;
y = y0; c2 = 0;
while(x < n)

if(y > x)
x++;

q1 c1++;
else

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}
B = {q1 7→ n − x0, q2 7→ n − y0}

U = max(0, n − x0)× (1+
TotalBound(r)) +max(0, n − y0)×
(1+ TotalBound(r))

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 16/26



Proof Structure

Continued Example

Example (disjunctive bound)

disjunctive (x0 ,y0 ,n)
x = x0; c1 = 0;
y = y0; c2 = 0;
while(x < n)

if(y > x)
x++;

q1 c1++;
else

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2)}
B = {q1 7→ n − x0, q2 7→ n − y0}

U = max(0, n−x0)+max(0, n−y0)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 16/26



Proof Structure

Continued Example

Example (non-linear bound)

nonLinear (n,m)
x = 0; c1 = 0; c2 = 0;
while(x < n)

y = 0;
x++;

q1 c1++; c2 = 0;
while (y < m)

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2), (c1, c2)}
B = {q1 7→ n, q2 7→ m}

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 17/26



Proof Structure

Continued Example

Example (non-linear bound)

nonLinear (n,m)
x = 0; c1 = 0; c2 = 0;
while(x < n)

y = 0;
x++;

q1 c1++; c2 = 0;
while (y < m)

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2), (c1, c2)}
B = {q1 7→ n, q2 7→ m}

U = TotalBound(c1)
+ TotalBound(c2)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 17/26



Proof Structure

Continued Example

Example (non-linear bound)

nonLinear (n,m)
x = 0; c1 = 0; c2 = 0;
while(x < n)

y = 0;
x++;

q1 c1++; c2 = 0;
while (y < m)

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2), (c1, c2)}
B = {q1 7→ n, q2 7→ m}

U =
max(0, n)× (1+ TotalBound(r))+
max(0,m)× (1+ TotalBound(r) +
TotalBound(c1))

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 17/26



Proof Structure

Continued Example

Example (non-linear bound)

nonLinear (n,m)
x = 0; c1 = 0; c2 = 0;
while(x < n)

y = 0;
x++;

q1 c1++; c2 = 0;
while (y < m)

y++;
q2 c2++;

S = {c1, c2}
M = {q1 7→ c1, q2 7→ c2}
G = {(r , c1), (r , c2), (c1, c2)}
B = {q1 7→ n, q2 7→ m}

U = max(0, n)+
max(0,m)× (1+max(0, n))

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 17/26



User Defined Data-Structures

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 18/26



User Defined Data-Structures

Properties

� iteration over abstract data-structures
� quantitative functions + effects

� no analysis of heap properties (shape, size, . . . )
� reflects user’s idea of complexity
� implementation independent
� semi-automatic
� requires support for uninterpreted functions

� combination of abstract interpretation of linear arithmetic +
abstract interpretation of uninterpreted functions

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 19/26



User Defined Data-Structures

Properties

� iteration over abstract data-structures
� quantitative functions + effects

� no analysis of heap properties (shape, size, . . . )
� reflects user’s idea of complexity
� implementation independent
� semi-automatic
� requires support for uninterpreted functions

� combination of abstract interpretation of linear arithmetic +
abstract interpretation of uninterpreted functions

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 19/26



User Defined Data-Structures

Singly Linked List

� quantitative functions:

Len(L) := length of list L
Pos(e, L) := position of element e of list L

� effects:

e = L.GetNext(f ) := Pos(e, L) = Pos(f , L) + 1;
Assume(0 ≤ Pos(f , L) < Len(L))

Example

iterate (List e,f)
for(e=f; e!= null;

e=L. GetNext (e));

c =Pos(e, L)− Pos(f , L)∧
Pos(e, L) ≤ Len(L)

U =Len(L)− Pos(f , L)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 20/26



User Defined Data-Structures

Singly Linked List

� quantitative functions:

Len(L) := length of list L
Pos(e, L) := position of element e of list L

� effects:

e = L.GetNext(f ) := Pos(e, L) = Pos(f , L) + 1;
Assume(0 ≤ Pos(f , L) < Len(L))

Example

iterate (List e,f)
for(e=f; e!= null;

e=L. GetNext (e));

c =Pos(e, L)− Pos(f , L)∧
Pos(e, L) ≤ Len(L)

U =Len(L)− Pos(f , L)

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 20/26



Further Approaches

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 21/26



Further Approaches

S. Falke and D. Kapur
A Term Rewriting Approach to the Automated Termination
Analysis of Imperative Programs
In Proc. of CADE, 2009

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 22/26



Further Approaches

Example

simpleloop (n)
x = 0;
while (x < n)

x++;

eval1(x , y)→ eval2(0, y)
eval2(x , y)→ eval2(x + 1, y)[x < y ]

� transformation (in a natural way) to PA-based TRSs
� used for proving termination

� notion of complexity for PA-based TRSs
� adaption of existing techniques
� expandable to heap analysis

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 23/26



Summary

Outline

Proof Structure

User Defined Data-Structures

Further Approaches

Summary

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 24/26



Summary

Summary

� Microsoft product code + C++ Standard Template Library
� claim: bounds for more than the half of encountered examples

� multiple counters + composing of linear invariants
� maximal polynomial bounds
� quantitative functions + effects for abstract data-structures

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 25/26



Summary

Summary

� Microsoft product code + C++ Standard Template Library
� claim: bounds for more than the half of encountered examples

� multiple counters + composing of linear invariants
� maximal polynomial bounds
� quantitative functions + effects for abstract data-structures

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 25/26



Summary

End

Thank you for your attention!

MS (CL @ ICS @ UIBK) Bound Analysis of Imperative Programs 26/26


	Proof Structure
	User Defined Data-Structures
	Further Approaches
	Summary

