Bound Analysis of Imperative Programs Seminar Report

Michael Schaper

Computational Logic Institute of Computer Science

University of Innsbruck

June 13, 2012

Bibliography

S. Gulwani, K. Mehra and T. ChilimbiSPEED: Precise and Efficient Static Estimation of Program Computational Complexity In Proc. of POPL, 2009

Motivation

Example

```
void simpleLoop(int n)\{
    int \(x=0\);
    int \(y=n\);
    while (x < \(n\) ) \{
        \(\mathrm{x}=\mathrm{x}+2\);
        \(\mathrm{y}=\mathrm{y} * \mathrm{x}\);
        \}
    printf("\%d", y);
\}
```


Motivation

Complexity

Number of loop iterations of a procedure P, in terms of the size of its input.

Motivation

Complexity

Number of loop iterations of a procedure P, in terms of the size of its input.
precise: precise computational complexity + precise constants efficient: quadratic (modulo invariant generation) with respect to the number of back-edges
static: based on static analysis

Motivation

Example

```
void simpleLoop(int n){
    int x = 0;
    int y = n;
    while(x < n){
        x = x + 2;
        y = y * x;
    }
        print("%d",y);
}
```


Motivation

```
Example
void simpleLoop(int n){
    int x = 0;
    while(x < n){
        x = x + 2;
    }
}
```


Motivation

Example

$$
\begin{aligned}
& \text { simpleLoop (n) } \\
& \text { x }=0 ; \\
& \text { while }(x<n) \\
& x=x+2 ;
\end{aligned}
$$

- ignore condition-irrelevant statements (slicing)
- convention: omit types and parenthesis

Motivation

Example

$$
\begin{aligned}
& \text { simpleLoop }(\mathrm{n}) \\
& \mathrm{x}=0 ; \\
& \mathrm{c}=0 ; \\
& \text { while }(x<\mathrm{n}) \\
& \mathrm{x}=\mathrm{x}+2 \\
& \mathrm{c}++
\end{aligned}
$$

- instrument back-edges with counter

Motivation

Example

$$
\begin{aligned}
& \text { simpleLoop (n) } \\
& \text { x }=0 ; \\
& \text { c }=0 ; \\
& \text { while }(x<n) \\
& x=x+2 ; \\
& c++;
\end{aligned}
$$

$$
\mathrm{c} \leq \max (0,1 / 2 * \mathrm{n})
$$

Motivation

But

There is no almighty invariant generator.

Invariant Generation

- abstract interpretation
- iterative fixed point analysis over abstract domain
- linear arithmetic abstract domain over \mathbb{R}
- convex domain (constraints over conjuncts)

Limitation

Example (disjunctive bound)

$$
\begin{gathered}
\text { disjunctive }(x 0, y 0, n) \\
x=x 0 ; \\
y=y 0 ; \\
\text { while }(x<n) \\
\text { if }(y>x) \\
x++; \\
\text { else } \\
y++;
\end{gathered}
$$

Limitation

Example (disjunctive bound)

$$
\begin{gathered}
\text { disjunctive }(x 0, y 0, n) \\
x=x 0 ; \\
y=y 0 ; \\
\text { while }(x<n) \\
\text { if }(y>x) \\
x++; \\
\text { else } \\
y++;
\end{gathered}
$$

Example (non-linear bound)

$$
\begin{aligned}
& \text { nonLinear }(\mathrm{n}, \mathrm{~m}) \\
& \mathrm{x}=0 ; \\
& \text { while }(\mathrm{x}<\mathrm{n}) \\
& \mathrm{y}=0 ; \\
& \mathrm{x}++; \\
& \text { while }(\mathrm{y}<\mathrm{m}) \\
& \mathrm{y}++;
\end{aligned}
$$

Limitation

Example (disjunctive bound)

$$
\begin{gathered}
\text { disjunctive }(x 0, y 0, n) \\
x=x 0 ; \\
y=y 0 ; \\
\text { while }(x<n) \\
\text { if }(y>x) \\
x++; \\
\text { else } \\
y++;
\end{gathered}
$$

Example (non-linear bound)

$$
\begin{aligned}
& \text { nonLinear }(\mathrm{n}, \mathrm{~m}) \\
& \mathrm{x}=0 ; \\
& \text { while }(\mathrm{x}<\mathrm{n}) \\
& \mathrm{y}=0 ; \\
& \mathrm{x}++; \\
& \text { while }(\mathrm{y}<\mathrm{m}) \\
& \mathrm{y}++;
\end{aligned}
$$

Example (data-structures)

iterate (List e,f)

$$
\text { for }(e=f ; e!=n u l l ; e=L . G e t N e x t(e)) \text {; }
$$

Key Ideas

- instrumentation of multiple counters
- generation of a linear (invariant) bound for each counter
- composition of generated (linear) bounds
- quantitative functions + effects

It line
line
Proof Structure
User Defined Data－Structures
Summary Approaches
ICS © uIBK）
Bound Analysis of Imperative Programs
Sum
－Proof Structure
－User Defined Data－Structures
－Further Approaches
Summary
Bound Analysis of Imperative Programs
－Further Approaches

```
a-Structures
```

\square

Defined Data－Structures
her Approaches
Bound Analysis of Imperative Programs
Defined Data－Structures
her Approaches
Bound Analysis of Imperative Programs
Bury
Br es
Defined Data－Structures
her Approaches
mary
Defined Data－Structures
her Approaches
Bound Analysis of Imperative Programs
Bury
Br es
Proof Structure
User Defined Data－Structures
Further Approaches
Summary
Bound Analysis of Imperative Programs
－Summary

－
\qquad
五
\qquad

\qquad
\qquad

\qquad

\qquad

－Proof Structure －User Defined Data－Structures －Summary Approaches
D Structure

Defined Data－Structures
of Structure

Defined Data－Structures
Bor Approaches
Bound Analysis of Imperative Programs
BK）

\qquad
D Structure
D Structure
\qquad
D Structure
\square
.
都
\bigcirc

\section*{

 \begin{abstract} \end{abstract}

 \square

 Proof Structure Outline o Proof Str Outline －Proof Str
 －Proof Structure Outline －Proof Str

 －Proof Structure

 －Proof Structure

 －Proof Structure

 －Proof Structure
 Outlir

 Outlir － －

 ．

 ． － － － － $+2$ $+2$ $+2$ $+2$ $+$

 $+$}Proof Structure
Outline
－Proof Structure
User Defined Data－Structures
Further Approaches
Summary
Bound Analysis of Imperative Programs
Ms（CL＠IAs＠ulBk）
？
\qquad
\qquad
\qquad
\qquad
\qquad
都

Instrumentation

Definition

S set of counter variables
M mapping from back-edges to counter variables from S
$G D A G$ over $S \cup\{r\}$, where r is the root symbol
B mapping from back-edges to bounds

Instrumentation

Definition

S set of counter variables
M mapping from back-edges to counter variables from S
G DAG over $S \cup\{r\}$, where r is the root symbol
B mapping from back-edges to bounds

Definition (Instrumentation $(P(S, M, G))$)

- each back-edge q is instrumented with an increment ($c++$), where $M(q)=c$
- if $(r, c) \in G$, then c is initialized $(c=0)$ at entry point
- if $\left(c, c^{\prime}\right) \in G$, then c^{\prime} is initialized at q, where $M(q)=c$

Continued Example

$$
S=\{c 1, c 2\}
$$

$$
\begin{aligned}
& \text { disjunctive (x0,y0,n) } \\
& \mathrm{x}=\mathrm{x} 0 \text {; } \\
& y=y 0 \text {; } \\
& \text { while (} \mathrm{x}<\mathrm{n} \text {) } \\
& \text { if }(y>x) \\
& \text { x++; } \\
& q 1 \\
& \text { else } \\
& y++ \text {; } \\
& q 2
\end{aligned}
$$

Continued Example

$$
\begin{aligned}
& \text { Example (disjunctive bound) } \\
& \text { disjunctive }(\mathrm{x} 0, \mathrm{y} 0, \mathrm{n}) \\
& \mathrm{x}=\mathrm{x} 0 ; \mathrm{c} 1=0 ; \\
& \mathrm{y}=\mathrm{y} 0 ; \mathrm{c} 2=0 ; \\
& \text { while }(\mathrm{x}<\mathrm{n}) \\
& \text { if }(\mathrm{y}>\mathrm{x}) \\
& \mathrm{x++} ; \\
& \text { q1 } \mathrm{c} 1++; \\
& \\
& \text { else } \\
& \text { q2 } \quad \mathrm{y}++;
\end{aligned}
$$

$$
S=\{c 1, c 2\}
$$

Proof Structure

Definition (Proof Structure)

Let P be a procedure then (S, M, G, B) is a proof structure for P, if for all back-edges q in P, the invariant generation tool can establish bound $B(q)$ on counter variable $M(q)$ at q in instrumentation $(P(S, M, G))$.

Continued Example

$$
\begin{aligned}
& \text { Example (disjunctive bound) } \\
& \text { disjunctive }(\mathrm{x} 0, \mathrm{y} 0, \mathrm{n}) \\
& \mathrm{x}=\mathrm{x} 0 ; \mathrm{c} 1=0 ; \\
& \mathrm{y}=\mathrm{y} 0 ; \mathrm{c} 2=0 ; \\
& \text { while }(\mathrm{x}<\mathrm{n}) \\
& \text { if }(\mathrm{y}>\mathrm{x}) \\
& \mathrm{x++} ; \\
& \text { q1 } \mathrm{c} 1++; \\
& \\
& \text { else } \\
& \text { q2 } \quad \mathrm{y}++;
\end{aligned}
$$

$$
S=\{c 1, c 2\}
$$

Continued Example

$$
S=\{c 1, c 2\}
$$

$$
\begin{aligned}
& \text { Example (disjunctive bound) } \\
& \text { disjunctive (x0,y0, n) } \\
& \mathrm{x}=\mathrm{x} 0 ; \mathrm{c} 1=0 \text {; } \\
& y=y 0 ; c 2=0 \text {; } \\
& \text { while (} x \text { < } n \text {) } \\
& \text { if }(y>x) \\
& \mathrm{x}++ \text {; } \\
& \text { q1 c1++; } \\
& \text { else } \\
& \mathrm{y}++ \text {; } \\
& q 2 \quad \mathrm{c} 2++ \text {; }
\end{aligned}
$$

Computing Bounds

Theorem

Let (S, M, G, B) be a proof structure for P, then U defines an upper bound on the total number of iterations of all loops in P.

$$
U=\sum_{c \in S} \text { TotalBound }(c)
$$

TotalBound $(r)=0$
TotalBound $(c)=\max (\{0\} \bigcup\{B(q) \mid M(q)=c\})$

$$
\times\left(1+\sum_{\left(c^{\prime}, c\right) \in G} \text { TotalBound }\left(c^{\prime}\right)\right)
$$

Continued Example

$$
S=\{c 1, c 2\}
$$

$$
\begin{aligned}
& \text { Example (disjunctive bound) } \\
& \text { disjunctive (x0,y0, n) } \\
& \mathrm{x}=\mathrm{x} 0 ; \mathrm{c} 1=0 \text {; } \\
& y=y 0 ; c 2=0 \text {; } \\
& \text { while (} x \text { < } n \text {) } \\
& \text { if }(y>x) \\
& \mathrm{x}++ \text {; } \\
& \text { q1 c1++; } \\
& \text { else } \\
& \mathrm{y}++ \text {; } \\
& q 2 \quad \mathrm{c} 2++ \text {; }
\end{aligned}
$$

Continued Example

Example (disjunctive bound)

$$
\begin{aligned}
S & =\{c 1, c 2\} \\
M & =\{q 1 \mapsto c 1, q 2 \mapsto c 2\} \\
G & =\{(r, c 1),(r, c 2)\} \\
B & =\{q 1 \mapsto n-x 0, q 2 \mapsto n-y 0\} \\
U & =\text { TotalBound }(c 1) \\
& + \text { TotalBound }(c 2)
\end{aligned}
$$

Continued Example

Example (disjunctive bound)

$$
S=\{c 1, c 2\}
$$

disjunctive(x0,y0,n)

$$
x=x 0 ; c 1=0 ;
$$

$$
y=y 0 ; c 2=0 ;
$$

$$
\text { while }(x<n)
$$

$$
\text { if }(y>x)
$$

x++;
q1 c1++;
else
y++;
q2 c2++;

Continued Example

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x} 0 \text {; } \mathrm{c} 1=0 \text {; } \\
& y=y 0 ; c 2=0 ; \\
& \text { while(} \mathrm{x} \text { < } \mathrm{n} \text {) } \\
& \text { if }(y>x) \\
& \text { x++; } \\
& \text { q1 c1++; } \\
& \text { else } \\
& \mathrm{y}++ \text {; } \\
& \text { q2 c2++; }
\end{aligned}
$$

$$
\begin{aligned}
S & =\{c 1, c 2\} \\
M & =\{q 1 \mapsto c 1, q 2 \mapsto c 2\} \\
G & =\{(r, c 1),(r, c 2)\} \\
B & =\{q 1 \mapsto n-x 0, q 2 \mapsto n-y 0\} \\
U & =\max (0, n-x 0)+\max (0, n-y 0)
\end{aligned}
$$

Continued Example

$$
\begin{aligned}
S & =\{c 1, c 2\} \\
M & =\{q 1 \mapsto c 1, q 2 \mapsto c 2\} \\
G & =\{(r, c 1),(r, c 2),(c 1, c 2)\} \\
B & =\{q 1 \mapsto n, q 2 \mapsto m\}
\end{aligned}
$$

Continued Example

$$
\begin{aligned}
S & =\{c 1, c 2\} \\
M & =\{q 1 \mapsto c 1, q 2 \mapsto c 2\} \\
G & =\{(r, c 1),(r, c 2),(c 1, c 2)\} \\
B & =\{q 1 \mapsto n, q 2 \mapsto m\} \\
U & =\text { TotalBound }(c 1) \\
+ & \text { TotalBound }(c 2)
\end{aligned}
$$

Continued Example

$$
\begin{aligned}
& \text { Example (non-linear bound) } \\
& \text { nonLinear }(\mathrm{n}, \mathrm{~m}) \\
& \mathrm{x}=0 ; \mathrm{c}=0 ; \mathrm{c}=0 \\
& \text { while }(\mathrm{x}<\mathrm{n}) \\
& \mathrm{y}=0 ; \\
& \mathrm{x}++; \\
& \text { q1 c1++; c2 }=0 ; \\
& \text { while }(\mathrm{y}<\mathrm{m}) \\
& \text { y++ } \\
& \text { q2 c2++ }
\end{aligned}
$$

$$
\begin{aligned}
S & =\{c 1, c 2\} \\
M & =\{q 1 \mapsto c 1, q 2 \mapsto c 2\} \\
G & =\{(r, c 1),(r, c 2),(c 1, c 2)\} \\
B & =\{q 1 \mapsto n, q 2 \mapsto m\}
\end{aligned}
$$

$$
U=
$$

$$
\max (0, n) \times(1+\text { TotalBound }(r))+
$$

$$
\max (0, m) \times(1+\text { TotalBound }(r)+
$$

TotalBound(c1))

Continued Example

Outline

\qquad
 tructures
f Structure
Defined Data－Structures
her Approaches
mary tructures
f Structure
Defined Data－Structures
her Approaches
mary

$$
\begin{aligned}
& \text { ta-Structures } \\
& \text { ser Defined Data-Structures } \\
& \text { anther Approaches }
\end{aligned}
$$

$$
\text { Proof Structure } \text { - User Defined Data-Structures }
$$

f Structure structures
Defined Data－Structures
fer Approaches
nary structures
Defined Data－Structures
Structure
ier Approaches
mary
\qquad

－Summary structures

Defined Data－Structures
mary Approaches
her Are
mary
\qquad
\qquad

Abstract

 line
Prota－Structures
Proof Str

\begin{abstract}

Abstract

\end{abstract}

r
正 $+5$ ， $+$

Properties

- iteration over abstract data-structures
- quantitative functions + effects

Properties

- iteration over abstract data-structures
- quantitative functions + effects
- no analysis of heap properties (shape, size, ...)
- reflects user's idea of complexity
- implementation independent
- semi-automatic
- requires support for uninterpreted functions
- combination of abstract interpretation of linear arithmetic + abstract interpretation of uninterpreted functions

Singly Linked List

- quantitative functions:

$$
\begin{array}{ll}
\operatorname{Len}(L) & :=\text { length of list } L \\
\operatorname{Pos}(e, L) & :=\text { position of element } e \text { of list } L
\end{array}
$$

- effects:

$$
\begin{aligned}
e=\operatorname{L} \cdot \operatorname{GetNext}(f):= & \operatorname{Pos}(e, L)=\operatorname{Pos}(f, L)+1 ; \\
& \operatorname{Assume}(0 \leq \operatorname{Pos}(f, L)<\operatorname{Len}(L))
\end{aligned}
$$

Singly Linked List

- quantitative functions:

$$
\begin{array}{ll}
\operatorname{Len}(L) & :=\text { length of list } L \\
\operatorname{Pos}(e, L) & :=\text { position of element } e \text { of list } L
\end{array}
$$

- effects:

$$
\begin{aligned}
e=\operatorname{L.GetNext}(f):= & \operatorname{Pos}(e, L)=\operatorname{Pos}(f, L)+1 ; \\
& \operatorname{Assume}(0 \leq \operatorname{Pos}(f, L)<\operatorname{Len}(L))
\end{aligned}
$$

Example

```
iterate(List e,f)
    for(e=f; e!=null;
    e=L.GetNext(e));
```

$$
\begin{aligned}
c= & \operatorname{Pos}(e, L)-\operatorname{Pos}(f, L) \wedge \\
& \operatorname{Pos}(e, L) \leq \operatorname{Len}(L) \\
U= & \operatorname{Len}(L)-\operatorname{Pos}(f, L)
\end{aligned}
$$

Outline
Proof Structure
User Defined Data-Structures
Further Approaches
Summary
Furn er
Outline Approaches
Proof Structure
User Defined Data-Structures
Further Approaches
Summary
Out
Sumner
Outline
Proof Structure
User Defined Data-Structures
Further Approaches
Summary -
Outline
Proof Structure
User Defined Data-Structures
Further Approaches
Summary
Outline
Proof Structure
User Defined Data-Structures
Further Approaches
Summary

\qquad
\qquad
\qquad

Abstract

\qquad
\qquad
\qquad
\qquad

\qquad
A

\qquad

目 S. Falke and D. Kapur
A Term Rewriting Approach to the Automated Termination Analysis of Imperative Programs
In Proc. of CADE, 2009

Example

$$
\begin{aligned}
& \text { simpleloop }(\mathrm{n}) \\
& \mathrm{x}=0 ; \\
& \text { while }(\mathrm{x}<\mathrm{n}) \\
& \mathrm{x}++;
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{eval}_{1}(x, y) \rightarrow \operatorname{eval}_{2}(0, y) \\
& \operatorname{eval}_{2}(x, y) \rightarrow \operatorname{eval}_{2}(x+1, y)[x<y]
\end{aligned}
$$

- transformation (in a natural way) to $\mathcal{P} \mathcal{A}$-based TRSs
- used for proving termination
- notion of complexity for $\mathcal{P} \mathcal{A}$-based TRSs
- adaption of existing techniques
- expandable to heap analysis

\qquad

\square

\qquad

 \qquad
 - Proof Structure - User Defined Data-Structures - Further Approaches

 - Proof Structure - User Defined Data-Structures
 \square

 \qquad

?

Abstract

\qquad
(

Summary

- Microsoft product code + C++ Standard Template Library
- claim: bounds for more than the half of encountered examples

Summary

- Microsoft product code + C++ Standard Template Library
- claim: bounds for more than the half of encountered examples
- multiple counters + composing of linear invariants
- maximal polynomial bounds
- quantitative functions + effects for abstract data-structures

End

Thank you for your attention!

