

Signature Extensions for Termination

René Thiemann (joint work with Christian Sternagel)

Institute of Computer Science University of Innsbruck

Master Seminar 3, March 28, 2012

- Introduction
- Termination
- Relative Termination
- Innermost Termination
- Dependency Pairs
- Summary

Motivation

• consider TRS

$$f(s(s(x))) \rightarrow f(s(f(x)))$$
$$+(0, y) \rightarrow y$$
$$+(s(x), y) \rightarrow s(+(x, y))$$

- after applying LPO with precedence $+>\mathsf{s}\equiv\mathsf{f},$ only

$$f(s(s(x))) \rightarrow f(s(f(x)))$$

remains

- Question: does it suffice to prove termination on $\mathcal{T}(\{f,s\},\mathcal{V})$?
- if so, then we can apply string reversal

$$s(s(f(x))) \rightarrow f(s(f(x)))$$

and are done, as there are no dependency pairs

Signature Extensions and Restrictions

• term t is strongly normalizing w.r.t. relation \rightarrow (SN $_{\rightarrow}(t)$) iff there is no infinite derivation

$$t \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \ldots$$

- relation \rightarrow is strongly normalizing $(SN(\rightarrow))$ iff $\forall t.SN_{\rightarrow}(t)$
- for any relation on terms \rightarrow and signature ${\cal F}$ define

$$\stackrel{\mathcal{F}}{\longrightarrow} = \rightarrow \cap \mathcal{T}(\mathcal{F}, \mathcal{V})^2$$

- for TRS \mathcal{R} , let $ightarrow_{\mathcal{R}}$ be rewrite relation, $\mathcal{F}(\mathcal{R})$ be symbols in \mathcal{R}
- signature extension: $SN(\xrightarrow{\mathcal{F}(\mathcal{R})}_{\mathcal{R}})$ implies $SN(\rightarrow_{\mathcal{R}})$
- signature restriction: given infinite derivation w.r.t. →_R, construct infinite derivation w.r.t. ^{F(R)}/_→_R

Aliens and cleaning

Let \mathcal{F} be signature.

- aliens of t are maximal subterms of t where root is not in \mathcal{F}
 - aliens $(x) = \{\}$
 - $\operatorname{aliens}(f(t_1,\ldots,t_n)) = \bigcup_{i=1}^n \operatorname{aliens}(t_i)$, if $f \in \mathcal{F}$
 - aliens $(f(t_1,\ldots,t_n)) = {f(t_1,\ldots,t_n)}$, if $f \notin \mathcal{F}$
- cleaning replaces alien subterms by terms over *F*; major parameter: one-alien-clean-function
 c: alien × *T*(*F*, *V*)list ⇒ *T*(*F*, *V*)
 - $\operatorname{clean}(x) = x$
 - $\operatorname{clean}(f(t_1,\ldots,t_n)) = f(\operatorname{clean}(t_1),\ldots,\operatorname{clean}(t_n)), \text{ if } f \in \mathcal{F}$
 - $\operatorname{clean}(f(t_1,\ldots,t_n)) = \operatorname{c}(f(t_1,\ldots,t_n),[\operatorname{clean}(t_1),\ldots,\operatorname{clean}(t_n)]),$ if $f \notin \mathcal{F}$

Examples

Let $\mathcal{F} = \{0, s, +\}$, let t = +(g(s(x)), h(+(x, y), g(y)))

• cleaning by identical fresh variable z (clean_z): c(a, list) = z

$$\operatorname{clean}_{z}(t) = +(z, z)$$

• cleaning by indexed fresh variable z_a (clean_{z_a}): c(a, list) = z_a

$$\mathsf{clean}_{z_a}(t) = +(z_{\mathsf{g}(\mathsf{s}(\mathsf{x}))}, z_{\mathsf{h}(+(\mathsf{x},\mathsf{y}),\mathsf{g}(\mathsf{y}))})$$

• cleaning with collecting (clean_{coll}): $c(a, [t_1, ..., t_n]) = +(t_1, +(t_2, ... +(t_n, z)))$ $clean_{coll}(t) = +(+(s(x), z), +(+(x, y), +(+(y, z), z)))$

Properties of cleaning $(\mathcal{F}(\mathcal{R}) \subseteq \mathcal{F})$

$c(a, [t_1, \ldots, t_n])$	z	Za	$f(t_1, f(t_2,),)$
	clean _z	$clean_{z_a}$	clean _{coll}
simulation of root step	1	1	1
simulation of arbitrary step	0 - 1	—	1
reverse simulation	no	yes	no

- simulation of root step:
 - $s \rightarrow_{\varepsilon,\mathcal{R}} t \text{ implies } \operatorname{clean}(s) \rightarrow^{?}_{\varepsilon,\mathcal{R}} \operatorname{clean}(t)$
- simulation of arbitrary step:

 $s \rightarrow_{\mathcal{R}} t$ implies $\operatorname{clean}(s) \rightarrow^{?}_{\mathcal{R}} \operatorname{clean}(t)$

reverse simulation:

 $\operatorname{clean}(s) \rightarrow_{\mathcal{R}} u \text{ implies } \exists t.s \rightarrow_{\mathcal{R}} t \land u = \operatorname{clean}(t)$

Problems

Let $\mathcal{F} = \{b, f, g\}$

 $g(f(x, y)) \rightarrow b$ $f(x, x) \rightarrow b$

- $h(f(x,x)) \rightarrow h(b)$, but $\operatorname{clean}_{z_a}(h(f(x,x))) = z_{h(f(x,x))} \not\to^* z_{h(b)} = \operatorname{clean}_{z_a}(h(b))$
- $\operatorname{clean}_{z}(f(h(x),h(y))) = f(z,z) \rightarrow b$, but $f(h(x),h(y)) \not\rightarrow$
- $\operatorname{clean}_{\operatorname{coll}}(\operatorname{g}(\operatorname{h}(x))) = \operatorname{g}(\operatorname{f}(x, z)) \rightarrow \operatorname{b}$, but $\operatorname{g}(\operatorname{h}(x)) \not\rightarrow$

- Introduction
- Termination
- Relative Termination
- Innermost Termination
- Dependency Pairs
- Summary

- Introduction
- Termination
- Relative Termination
- Innermost Termination
- Dependency Pairs
- Summary

Goal: $\neg SN(\rightarrow_{\mathcal{R}})$ implies $\neg SN(\stackrel{\mathcal{F}(\mathcal{R})}{\longrightarrow}_{\mathcal{R}})$

• goal: map infinite $\rightarrow_{\mathcal{R}}$ -derivation to infinite $\stackrel{\mathcal{F}(\mathcal{R})}{\longrightarrow}_{\mathcal{R}}$ -derivation

	clean _z	$clean_{z_a}$	clean _{coll}
simulation of root step	1	1	1
simulation of arbitrary step	0-1	—	1

- clean_{za} is obviously not applicable
- clean_{coll} directly achieves result but not applicable on unary signatures
- \Rightarrow for general result use clean_z

Goal: $\neg SN(\rightarrow_{\mathcal{R}})$ implies $\neg SN(\stackrel{\mathcal{F}(\mathcal{R})}{\longrightarrow}_{\mathcal{R}})$

- from simulation of root steps obtain:
 - $s \rightarrow_{\varepsilon,\mathcal{R}} t$ implies $\operatorname{clean}_z(s) \rightarrow_{\varepsilon,\mathcal{R}} \operatorname{clean}_z(t)$
- from simulation of arbitrary steps obtain:
 s →^{*}_R t implies clean_z(s) →^{*}_R clean_z(t)
- to obtain infinitely many root steps use dependency pairs (minimal non-terminating terms)

•
$$\neg SN(\rightarrow_{\mathcal{R}})$$
 implies
exists infinite $\rightarrow_{\varepsilon,DP(\mathcal{R})} \circ \rightarrow_{\mathcal{R}}^{*}$ derivation:
 $t \rightarrow_{\varepsilon,DP(\mathcal{R})} t_{1} \rightarrow_{\mathcal{R}}^{*} t_{2} \rightarrow_{\varepsilon,DP(\mathcal{R})} t_{3} \rightarrow_{\mathcal{R}}^{*} \dots$ implies
 $\operatorname{clean}_{z}(t) \rightarrow_{\varepsilon,DP(\mathcal{R})} \operatorname{clean}_{z}(t_{1}) \rightarrow_{\mathcal{R}}^{*} \dots$ implies
 $\neg SN(\xrightarrow{\mathcal{F}(\mathcal{R})}_{\mathcal{R}})$

- Introduction
- Termination
- Relative Termination
- Innermost Termination
- Dependency Pairs

• Summary

Relative Termination

$|\mathsf{Goal:} \ \neg \mathsf{SN}(\rightarrow_{\mathcal{R}} / \rightarrow_{\mathcal{S}}) \text{ implies } \neg \mathsf{SN}(\overset{\mathcal{F}}{\longrightarrow}_{\mathcal{R}} / \overset{\mathcal{F}}{\longrightarrow}_{\mathcal{S}})$

Let $\mathcal{F} = \mathcal{F}(\mathcal{R}) \cup \mathcal{F}(\mathcal{S})$

• relative rewriting: $(\rightarrow_{\mathcal{R}} / \rightarrow_{\mathcal{S}}) = (\rightarrow_{\mathcal{S}}^* \circ \rightarrow_{\mathcal{R}} \circ \rightarrow_{\mathcal{S}}^*)$

 $\begin{array}{|c|c|c|}\hline & clean_z & clean_{z_a} & clean_{coll} \\ \hline \\ simulation of root step & 1 & 1 & 1 \\ simulation of arbitrary step & 0-1 & - & 1 \\ \hline \end{array}$

- clean_{za} is obviously not applicable
- clean_{coll} directly achieves result but not applicable on unary signatures
- to complement clean_{coll} use clean_z for TRSs with unary signature
- dependency pairs are not applicable
- minimal non-terminating terms are again convenient

Relative Termination

$|\mathsf{Goal:}\ \neg \mathsf{SN}(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}}) \text{ implies } \neg \mathsf{SN}(\overset{\mathcal{F}}{\longrightarrow}_{\mathcal{R}}/\overset{\mathcal{F}}{\longrightarrow}_{\mathcal{S}})$

- key lemma: $s \to t$ implies $\operatorname{clean}_z(s) \to \operatorname{clean}_z(t)$ or $\operatorname{clean}_z(s) = \operatorname{clean}_z(t) \land \operatorname{aliens}(s) \to_{\varepsilon}^{mul} \operatorname{aliens}(t)$
- $s \rightarrow_{\mathcal{R}} t$ implies $\operatorname{clean}_{z}(s) \rightarrow_{\mathcal{R}} \operatorname{clean}_{z}(t)$ or $\operatorname{clean}_{z}(s) = \operatorname{clean}_{z}(t) \land \operatorname{aliens}(s) \rightarrow^{mul}_{>\varepsilon,\mathcal{R}} \operatorname{aliens}(t)$
- $s \rightarrow^*_{\mathcal{S}} t$ implies $\operatorname{clean}_z(s) \rightarrow^*_{\mathcal{S}} \operatorname{clean}_z(t)$
- simplifying idea: consider infinite reduction of minimal non-terminating term w.r.t. $\rightarrow_{\mathcal{R}} / \rightarrow_{\mathcal{S}}$
 - if infinitely many →_R-steps are preserved via clean_z, we have proven ¬SN(^F→_R / ^F→_S)
 - otherwise, after a while each strict step becomes alien step $aliens(s) \rightarrow_{> \in \mathcal{R}}^{mul} aliens(t)$
 - non-duplication of S ensures that $s \to_S t$ implies aliens $(s) \to_{>\varepsilon,S}^{mul,*}$ aliens(t)
 - hence, there is some alien that is non-terminating w.r.t. $\rightarrow_{>\varepsilon,\mathcal{R}}/\rightarrow_{>\varepsilon,\mathcal{S}}$ in contradiction to minimality

$$SN(\stackrel{\mathcal{F}}{\longrightarrow}_{\mathcal{R}}/\stackrel{\mathcal{F}}{\longrightarrow}_{\mathcal{S}})$$
 implies $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$

signature extensions for relative rewriting are sound if

- signature contains symbol with arity ≥ 2
- signature contains at most unary symbols if
 - ${\mathcal R}$ and ${\mathcal S}$ satisfy variable condition of TRSs
 - V(ℓ) ⊇ V(r) for all ℓ → r ∈ R ∪ S (previous proof does not require ℓ ∉ V)
 - $\mathcal{V}(\ell) \supseteq \mathcal{V}(r)$ for all $\ell \to r \in S$ (if $\mathcal{V}(\ell) \not\supseteq \mathcal{V}(r)$ for $\ell \to r \in \mathcal{R}$, conclude $\neg SN(\xrightarrow{\mathcal{F}}_{\mathcal{R}} / \xrightarrow{\mathcal{F}}_{\mathcal{S}}))$

signature extension for relative rewriting is unsound for

$$\mathcal{R} = \{f(a) \rightarrow b\}$$

 $\mathcal{S} = \{a \rightarrow x\}$

(where $\mathcal{F} = \{a, b, f\}$)

(use clean_{coll})

(use clean_z)

- Introduction
- Termination
- Relative Termination
- Innermost Termination
- Dependency Pairs

• Summary

Signature Extensions for Innermost Termination

	clean _z	$clean_{z_a}$	clean _{coll}
simulation of root step	1	1	1
simulation of arbitrary step	0 - 1	1(<i>inn</i> .)	1
reverse simulation	no	yes	no

- without reverse simulation, we cannot guarantee that NF(t) implies NF(clean(t))
- \Rightarrow clean_z and clean_{coll} are not applicable for innermost rewriting
 - however, $\operatorname{clean}_{z_a}$ becomes applicable, key lemma: aliens $(s) \subseteq NF(\mathcal{R})$ and $s \xrightarrow{i}_{\mathcal{R}} t$ implies aliens $(t) \subseteq NF(\mathcal{R})$ and $\operatorname{clean}_{z_a}(s) \xrightarrow{i}_{\mathcal{R}} \operatorname{clean}_{z_a}(t)$
 - to obtain non-terminating term with aliens(s) ⊆ NF(R) start from first root reduction of a minimal non-terminating term

- Introduction
- Termination
- Relative Termination
- Innermost Termination
- Dependency Pairs

• Summary

Signature Extensions for Dependency Pairs

	clean _z	clean _{za}	clean _{coll}
simulation of root step	1	1	1
simulation of arbitrary step	0 - 1	1(<i>inn</i> .)	1
reverse simulation	no	yes	no

- without reverse simulation, SN(t) does not imply SN(clean(t))
- \Rightarrow clean_z and clean_{coll} are problematic when dealing with minimal infinite chains
 - clean_z has the reverse simulation property if \mathcal{R} is left-linear
 - known results:
 - signature extensions are sound for minimal chains and left-linear \mathcal{R} (clean_z)
 - signature extensions are sound for innermost minimal chains (clean_{z₂})
 - signature extensions are unsound for minimal chains

- Introduction
- Termination
- Relative Termination
- Innermost Termination
- Dependency Pairs

• Summary

Related Work

- modularity results of Middeldorp entail signature extension result for termination (not for relative termination)
- sometimes similar reasoning (usage of multiset-extensions, aliens, ...)
- however, Middeldorp uses alternating layers of aliens
- with minimality-trick, for our purpose two layers suffice

Summary

- Signature extensions are sound for
 - termination (clean_z)
 - relative termination (clean_z, clean_{coll})
 - innermost termination (clean_{z_a})
 - innermost minimal chains (clean_{za})
 - minimal chains and left-linear \mathcal{R} (clean_z)
- Signature extensions are unsound for
 - relative termination without variable condition
 - minimal chains
- using minimal non-terminating terms, no alternating layers of aliens are required
- everything has been formalized in IsaFoR