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R is confluent, terminating, reduced and ~¢ = <3

Example (Group Theory)
ey~ \\y<—!n(><’~><)’~(e-({;i))%y~e—>!ny/\
& X xR~ e =
(x-y)-z~x-(y-2)
e- X — X X-e — X
X X —e X X —e
R (xy)-z—=>x-(y-2) X7 = x
e —e (x-y)” =y -x
X (xy) =y x-(x7y) =y
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Comparison of Completion Tools

Aim 1: Combined Approach

mkbtT maxcomp
uses selection heuristic to advance can advance several branches at
one branch once
vulnerable to bad selection more robust
adds new CPs for one branch can only add new CPs for all
branches
interreduction of rules no interreduction
fewer equations lots of equations
relies on existing proofs simple correctness proof

Aim 2: Extensions

mkbtT approach was extended to ordered completion, AC-completion —
how about maxcomp?
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Preliminaries

Definition (termination constraint)
Cu=4—r|T|L|-C|CVC|CAC
for TRS R define R |= C inductively:

RELSriffe—sreR RET
RbéJ_ R’:C1VC2iffR':C]_OI’R':C2
R E-Ciff R £ C REGAGIfFRECGandRE G

Definition (constrained equalities)

> constrained equality (s & t, C) is pair of equality s = t and
termination constraint C

> constrained equation system (CES) C is set of constrained equalities
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Notation
T={(s=t,T)|s~tcé&}
C[Rl={s~t|(s~=t,C)eCand R | C} R-projection
(C@R:{(szt,C/\ﬂ/\R|(szt,C)e(C}
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C[Rl={s~t|(s~=t,C)eCand R | C} R-projection
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E: Lis(p(x))=x  2:p(s(x)) =~ x 3:s(x)+y ~s(x+y)
R:  s(p(x)) = x s(x +y) = s(x) +y
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Definition
> £ is R-joinableif s [z tforalls~te&

» & is ground R-joinable if so | g to for all s ~ t € £ and ground
so, to

Definition
mapping S from CESs to CESs is (ground) reduction if ¥ CES C, TRS R

S(C)[R] (ground) R-joinable = C[R] (ground) R-joinable

Definition
SR(C)=(CoR) U Clp U F(R)" 1%
5@ = |J Se(©
ReR(C)
Lemma

S is a (ground) reduction.
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> & = &%, since R C <% by assumption and
& C lr as Sig is reduction (by induction on n and Lemma)
» R is terminating by assumption

-
TA, NH, DK & SW (Seminar 3) Constrained Equations 10/21



Completion Standard Completion

Definition
Ske(C)=(COR) U Clg U F(R)"Ix

F(R)=CP(R) and R € R(C) is terminating with R C<«>% (for fixed &)

Theorem
IfC = Sig(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Proof.
» n=0: if C[R]=@ then £ = &, thus R = &
> n>0:

> p =%, since R C <% by assumption and
& C lr as Sig is reduction (by induction on n and Lemma)
» R is terminating by assumption
» R is confluent because for C’ = Spz'(€7) the set
SKB((C/)[[R]] =, so CP(R) Clr

-
TA, NH, DK & SW (Seminar 3) Constrained Equations 10/21



Completion Standard Completion
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Ske(C)=(COR) U Clg U F(R)"Ix

F(R)=CP(R) and R € R(C) is terminating with R C<«>% (for fixed &)

Theorem
IfC = Sig(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Proof. easy!
» n=0: if C[R]=@ then £ = &, thus R = &
> n>0:

> &p =%, since R C <% by assumption and
& C g as Sig is reduction (by induction on n and Lemma)
» R is terminating by assumption
» R is confluent because for C’ = Sz (€7) the set
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Completion Standard Completion

Definition
Ske(C)=(COR) U Clg U F(R)"Ix

F(R)=CP(R) and R € R(C) is terminating with R C<«>% (for fixed &)

Theorem
IfC = Sig(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Example

E: 1:s(p(x)) = x 2: p(s(x)) =~ x 3:s(x)+y=s(x+y)
4:x+yms(p(x)+y) B:p(s(x)+y)=x+y 6:p(x+y)~p(x)+y

Co ={(1,T),(2,7),(3,T)} Ri={1,2,3}
C1 =Sks(Co) = {(1,-R1),(2,-R1),(3,~R1), (4, T)} Ro ={1,2,3,4"}
Co =Skg(C1) = {(1,7R1 A = R2), (2, "R A = R2),

(3,~Ri1 A —R»), (4,-R2),(5,T),(6, T)} Rs=Ri1U{4',5,6'}
C3 =Ske(C2) = {(1,7Ri A =R2),(2,-Ry A =R»),

(3,7R1 A =R»), (4,-Rs A =Rs), (5,—Rs), (6, ~R3)}

TA, NH, DK & SW (Seminar 3) Constrained Equations 10/21




Completion Standard Completion
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Ske(C)=(COR) U Clg U F(R)"Ix

F(R)=CP(R) and R € R(C) is terminating with R C<«>% (for fixed &)

Theorem
IfC = Sig(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Example

E: 1:s(p(x)) = x 2: p(s(x)) =~ x 3:s(x)+y=s(x+y)
4:x+yms(p(x)+y) B:p(s(x)+y)=x+y 6:p(x+y)~p(x)+y

Co ={(1,7),(2,T7),(3, T)} R1={1,2,3}
C1 =Sks(Co) = {(1,-R1),(2,-R1),(3,~R1), (4, T)} Ro ={1,2,3,4"}
Co =Skg(C1) = {(1,7R1 A = R2), (2, "R A = R2),

(3,7Ri A =R2), (4,-R2), (5, T),(6, T Cs[Rs] = 2, so Rs convergent for £ }
C3 =Ske(C2) = {(1,7Ri A =R2),(2,-Ry A =R»),

(3,7R1 A =R2), (4,=R> A =R3), (5, Rs), (6,7 Rs3)}
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Definition

> R is ground convergent if R is terminating and for all ground terms
s <% t there is some v such that s =5 v < t
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> R is ground convergent if R is terminating and for all ground terms
s <% t there is some v such that s =5 v < t

> (£,R) is ground convergent with respect to total reduction order >
if & UTR is ground convergent
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Definition

> R is ground convergent if R is terminating and for all ground terms
s <% t there is some v such that s =5 v < t

> (£, R) is ground convergent with respect to total reduction order >
if & UTR is ground convergent

Definition
So(C)=(CoR) U Clr U F(R,C) |

» F(R,C)=CP.(RUC[R])

TA, NH, DK & SW (Seminar 3) Constrained Equations 11/21



Ordered Completion

Definition

> R is ground convergent if R is terminating and for all ground terms
s <% t there is some v such that s =5 v < t

> (£, R) is ground convergent with respect to total reduction order >
if & UTR is ground convergent

Definition
So(C) =(CoR) U Clp U F(R,C)"lx

extended critical pairs

» F(R,C)=CP<(RUC[R])
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Ordered Completion

Definition

> R is ground convergent if R is terminating and for all ground terms
s <% t there is some v such that s =5 v < t

> (£, R) is ground convergent with respect to total reduction order >
if & UTR is ground convergent

Definition
So(C)=(CoR) U Clr U F(R,C) |

» F(R,C)=CP-(RUC[R])
> R € R(C) is totally terminating with R C<>%
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Ordered Completion
Definition
> R is ground convergent if R is terminating and for all ground terms
s <% t there is some v such that s =5 v < t
> (£,R) is ground convergent with respect to total reduction order >~
if & UTR is ground convergent

Definition
So(C)=(CoR) U Clr U F(R,C) |

» F(R,C)=CP-(RUC[R])
> R € R(C) is totally terminating with R C<>%

Theorem

IfC = S5(ET) and So(C)[R]=C[R] for R € R(C) then (C[R],R) is
ground convergent for £
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Inductionless Induction
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Inductionless Induction

Definition (inductive theory)

> Robis~tif so <% to forall ground substitutions o
Ro
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Inductive Theorem Proving

Inductionless Induction

Definition (inductive theory)

> Robis~tif so <% to forall ground substitutions o
Ro

» Robi Hif RoFjs~tforalls~tinH

Inductionless Induction

Example
For Rg being
0—x—x s(x) — 0 — s(x) s(x)—s(y) = x—y
p(0) =0 p(s(x)) = x

we have Ro - p(x — y) = p(x) — y
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Inductive Theorem Proving Inductionless Induction

Inductionless Induction

Definition (inductive theory)

> Robis~tif so <% to forall ground substitutions o
Ro

» Robi Hif RoFjs~tforalls~tinH

Example
For Rg being
0—x—x s(x) — 0 — s(x) s(x)—s(y) = x—y
p(0) =0 p(s(x)) = x

we have g I p(x — y) ~ p(x) — y (but not p(x — y) <% p(x) —y)

TA, NH, DK & SW (Seminar 3) Constrained Equations 13/21



Inductive Theorem Proving Inductionless Induction

Definition

> term t is Ro-inductively reducible if
for all ground substitutions o term to is Rp-reducible
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Inductive Theorem Proving Inductionless Induction

Definition
> term t is Ro-inductively reducible if

for all ground substitutions o term to is Rp-reducible

» TRS R is left-Rg-inductively reducible if
for all £ — r in R term ¢ is Ro-inductively reducible
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Inductive Theorem Proving Inductionless Induction

Definition
> term t is Ro-inductively reducible if

for all ground substitutions o term to is Rp-reducible

» TRS R is left-Ro-inductively reducible if
for all £ — r in R term ¢ is Ro-inductively reducible

Lemma (Gramlich 90)

If R = Ro UH is terminating and left-Ro-inductively reducible TRS and
CP(RQ,H) Clgr then Ro Hi H

TA, NH, DK & SW (Seminar 3) Constrained Equations
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Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
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S(C)=(CeR) UClg UFMR) |x

» F(R) = CP(Ro,R \ Ro)
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Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € PR(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o
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Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Theorem
IfC=S(ET) and C[R] = @ for R € R(C) then Ro +; €
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Inductive Theorem Proving

Definition
For fixed Rg and &

SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Inductionless Induction

Theorem

IfC=S(ET) and C[R] =

@ for R € R(C) then Ro F; €

Example
Ro: L0—x—x
4:p(0) — 0

E: Gpx—y)~pkx) -y
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Definition
For fixed Rg and &

SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Inductionless Induction

Theorem

IfC=S(ET) and C[R] =

@ for R € R(C) then Ro F; €

Example
Ro: L0—x—x
4:p(0) — 0

E: Gpx—y)~pkx) -y

Co ={(6, T)}
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Inductive Theorem Proving

Definition
For fixed Rg and &

SI(C)=(CeR) UClg UFMR) |x
> F(R)=CP(Ro,R\ Ro)
> R € R(C) is terminating, left-Ro-inductively reducible,

and fo <+% g ro for all £ — r in R and ground substitutions o
0

Inductionless Induction

Theorem

IfC=S(ET) and C[R] =

@ for R € R(C) then Ro F; €

Example
Ro: L0—x—x
4:p(0) — 0

E: Gpx—y)~pkx) -y

Co ={(6, T)}
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Definition
For fixed Rg and &

SI(C)=(CeR) UClg UFMR) |x
> F(R)=CP(Ro,R\ Ro)
> R € R(C) is terminating, left-Ro-inductively reducible,

and fo <+% g ro for all £ — r in R and ground substitutions o
0

Inductionless Induction

Theorem

IfC=S(ET) and C[R] =

@ for R € R(C) then Ro F; €

Example
Ro: L0—x—x
4:p(0) — 0

E: Gpx—y)~pkx) -y
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Inductive Theorem Proving
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Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Theorem
IfC=S(ET) and C[R] = @ for R € R(C) then Ro +; €

Example
Ro: 1:0—x—x 2:s5(x) — 0 — s(x) 3s(x)—s(y) > x—y
4:p(0) —» 0 5: p(s(x)) — x

E: Gpx—y)~pkx) -y

Co ={(6,T)} Ri=A{1,...,6}
C1 =5/(Co) ={(6,-R1),(7,T),(8,T)}

Constrained Equations
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Inductive Theorem Proving

Inductionless Induction

Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Theorem
IfC=S(ET) and C[R] = @ for R € R(C) then Ro +; €

Example
Ro: 1:0—x—x 2:s5(x) — 0 — s(x) 3s(x)—s(y) > x—y
4:p(0) —» 0 5: p(s(x)) — x
£ Gp(x—y)~p(x) -y
7x—0~x 8 p(x)—y=x—s(y)
Co={(6,T)} Ri={1,...,6}

Cy1 =5/(Co) ={(6,~R1),(7,T),(8, T)}
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Inductive Theorem Proving

Inductionless Induction

Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Theorem
IfC=S(ET) and C[R] = @ for R € R(C) then Ro +; €

Example
Ro: 1:0—x—x 2:s5(x) — 0 — s(x) 3s(x)—s(y) > x—y
4:p(0) —» 0 5: p(s(x)) — x
£ Gp(x—y)~p(x) -y
7x—0~x 8 p(x)—y=x—s(y)
Co={(6,T)} Ri={1,...,6}
C1 =51(Co) ={(6,~R1),(7,T),(8,T)} Ro={1,...,8}
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Inductive Theorem Proving Inductionless Induction

Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Theorem
IfC=S(ET) and C[R] = @ for R € R(C) then Ro +; €

Example
Ro: 1:0—x—x 2:s5(x) — 0 — s(x) 3s(x)—s(y) > x—y
4:p(0) —» 0 5: p(s(x)) — x
£ Gp(x—y)~p(x) -y
7x—0~x 8 p(x)—y=x—s(y)
Co={(6,T)} Ri={1,...,6}
C1 =51(Co) ={(6,~R1),(7,T),(8,T)} Ro={1,...,8}

Co =Si(C1) = {(6,~R1 A ~R>), (4,—R>), (5, ~R2)}
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Inductive Theorem Proving Inductionless Induction

Definition
For fixed Rg and &
SI(C)=(CeR) UClg UFMR) |x
» F(R) = CP(Ro, R\ Ro)

> R € R(C) is terminating, left-Ro-inductively reducible,
and lo 3%, ¢ ro for all £ — rin R and ground substitutions o

Theorem
IfC=S(ET) and C[R] = @ for R € R(C) then Ro +; €

Example
Ro: 1:0—x — x 2:s(x) — 0 — s(x) 3s(x) —s(y) > x—y
4:p(0) —» 0 5: p(s(x)) — x
E: 6 p(x—y)=px)—y
7'x—-0~x 8 p(x) —y~x—s(y)
Ca[R2] = @, so Ro Fi p(x — y) ~ p(x) —
Co ={(6, T)} [l =12, z0 R o pl =) S Bl =y
G :S/(CO) = {(67"R1)7 (77T)7 (87T)} Ro = {17 B 78}

Cs :Sl(cl) = {(67 -Ri A jR2)7 (47 jR2)7 (57 jR2)}
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Rewriting Induction

Definition
Given TRS Ry,
> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
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> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
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TA, NH, DK & SW (Seminar 3) Constrained Equations 16/21



Inductive Theorem Proving Rewriting Induction

Rewriting Induction

Definition

Given TRS Ry,
> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
> constructor symbols C = F\ D
> term t = f(ty,...,t,) is basicif f € D and all t; € T(C,V)

TA, NH, DK & SW (Seminar 3) Constrained Equations 16/21



Inductive Theorem Proving Rewriting Induction

Rewriting Induction

Definition
Given TRS Ry,
> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
> constructor symbols C = F\ D
> term t = f(ty,...,t,) is basicif f € D and all t; € T(C,V)
> basic positions B(t) = {p € Pos(t) | t|, is basic}

TA, NH, DK & SW (Seminar 3) Constrained Equations 16/21



Inductive Theorem Proving Rewriting Induction

Rewriting Induction

Definition
Given TRS Ry,
> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
> constructor symbols C = F\ D
> term t = f(ty,...,t,) is basicif f € D and all t; € T(C,V)
> basic positions B(t) = {p € Pos(t) | t|, is basic}

Ry is quasi-reducible if no basic term is in normal form
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> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
> constructor symbols C = F\ D
> term t = f(ty,...,t,) is basicif f € D and all t; € T(C,V)
> basic positions B(t) = {p € Pos(t) | t|, is basic}

Ry is quasi-reducible if no basic term is in normal form
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Rewriting Induction

Definition
Given TRS Ry,
> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
> constructor symbols C = F\ D
> term t = f(ty,...,t,) is basicif f € D and all t; € T(C,V)
> basic positions B(t) = {p € Pos(t) | t|, is basic}

Ry is quasi-reducible if no basic term is in normal form

Definition
For Ro quasi-reducible,

» TRS R is Rp-expandable if every £ for £ — r € R has basic position
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Inductive Theorem Proving Rewriting Induction

Rewriting Induction

Definition
Given TRS Ry,
> defined symbols D = {f | f is root symbol of ¢ for £ — r € Ry}
> constructor symbols C = F\ D
> term t = f(ty,...,t,) is basicif f € D and all t; € T(C,V)
> basic positions B(t) = {p € Pos(t) | t|, is basic}

Ry is quasi-reducible if no basic term is in normal form

Definition
For Ro quasi-reducible,
» TRS R is Rp-expandable if every £ for £ — r € R has basic position

» Expd(Ro, R) is set of CPs from overlaps ({1 — r1,p,l> = 1),
where /1 — r € Rg, {o — rn € R, and p is basic in {5
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Definition
For fixed Rg and &
Sri(C)=(COR) U Clg U F(R)'Ir
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> F(R) = Expd(Ro, R)
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For fixed Rg and &
Sri(C)=(COR) U Clg U F(R) Ir
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Definition
For fixed Rg and &
Sri(C)=(COR) U Clg U F(R) Ir

> F(R) = Expd(Ro, R)

> R € R(C) is terminating and R¢-expandable such that Ry C R
and lo <%, e ro forall £ — rin R and ground substitutions o

Theorem
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Rewriting Induction

Definition
For fixed Rg and &
Sri(C)=(COR) U Clg U F(R) Ir

> F(R) = Expd(Ro, R)

> R € R(C) is terminating and R¢-expandable such that Ry C R
and lo <%, e ro forall £ — rin R and ground substitutions o

Theorem
IfC=Sp(ET) and C[R] = @ for R € R(C) then Ro - €

Example

Ro: 1:x+0—x 2:x+s(y) —=s(x+y)
E: 3:ix+y)+zrx+(y+2)
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For fixed Rg and &
Sri(C)=(COR) U Clg U F(R) Ir

> F(R) = Expd(Ro, R)

> R € R(C) is terminating and R¢-expandable such that Ry C R
and lo <%, e ro forall £ — rin R and ground substitutions o

Theorem
IfC=Sp(ET) and C[R] = @ for R € R(C) then Ro - €

Example

Ro: 1:x+0—x 2:x+s(y) —=s(x+y)
E: 3:ix+y)+zrx+(y+2)
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Inductive Theorem Proving

Definition
For fixed Rg and &
Sri(C)=(COR) U Clg U F(R) Ir

> F(R) = Expd(Ro, R)

> R € R(C) is terminating and R¢-expandable such that Ry C R
and lo <%, e ro forall £ — rin R and ground substitutions o

Rewriting Induction

Theorem
IfC=Sp(ET) and C[R] = @ for R € R(C) then Ro - €

Example

Ro: 1:x+0—x 2:x+s(y) —=s(x+y)
E: 3:ix+y)+zrx+(y+2)

Co ={(3,T)} Ri1=1{1,2,3}

Cy :SRI((CO) - {(37 _‘Rl)a (47 T)? (57 T)}
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Inductive Theorem Proving

Definition
For fixed Rg and &
Sri(C)=(COR) U Clg U F(R) Ir

> F(R) = Expd(Ro, R)

> R € R(C) is terminating and R¢-expandable such that Ry C R
and lo <%, e ro forall £ — rin R and ground substitutions o

Theorem
IfC=Sp(ET) and C[R] = @ for R € R(C) then Ro - €

Example
Ro: 1:x+0—x 2:x+s(y) = s(x+y)
E: 3:ix+y)+zrx+(y+2)
4:x+z~x+(0+2) 5:s(x+y)+zr=x+(s(y)+ z)
Co={(3,T)} Ri={1,2,3}

Cy :SRI((CO) - {(37 _‘Rl)a (47 T)? (57 T)}
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Outline

Automation
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Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%
Theorem
IfC = Sig(E") and C[R] =2 for R € R(C) then R is convergent for £.
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Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem
IfC = Skg(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Procedure
Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

TA, NH, DK & SW (Seminar 3) Constrained Equations



Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem
IfC = Skg(ET) and C[R] =2 for R € R(C) then R is convergent for £.

how to find Rs,...?
Procedure ow to find R, R>.R3,

Co=E" ©C;=5r,(Cy) Cy=5x,(C;) C3=5r,(Cy)
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Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem

IfC = Skg(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Procedure

Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

Maximal Completion Approach

(mCVTs>tTVIt>sT)
(s=t,C)eCy
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Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem

IfC = Skg(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Procedure

Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

Maximal Completion Approach
SAT/SMT encoding of >kpo, >Ipo OF >mpo

(mCVTs>tTVIt>sT)
(s=t,C)eCy
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Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem
IfC = Skg(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Procedure
Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

Maximal Completion Approach

maximize \/ (mCVTs>tTVIt>sT)
(s=t,C)eCy

TA, NH, DK & SW (Seminar 3) Constrained Equations



Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem
IfC = Skg(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Procedure
Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

Maximal Completion Approach

K
maximize \/ (-CVT s>tV t>s") subject to /\ = /\R;
(s~t,C)eCy i=1
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Completion
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem
IfC = Skg(ET) and C[R] =2 for R € R(C) then R is convergent for £.

Procedure
Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

Maximal Completion Approach
to obtain assignment «

K
maximize \/ (-CVT s>tV t>s") subject to /\ = /\R;
(s~t,C)eCy i=1

andlet Ry ={s—t|(s~t,C)eCrandaE="s>t"}
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Rewriting Induction
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem
IfC=Sp(E") and C[R] = @ for R € R(C) then Ry - &€

Procedure
Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

Maximal Completion Approach
to obtain assignment «

K
maximize \/ (-CVT s>tV t>s") subject to /\ = /\R;
(s~t,C)eCy i=1

andlet Ry ={s—t|(s~t,C)eCrandaE="s>t"}
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Rewriting Induction
Definition
SR(C)=(CoR) U Clr U F(R)" 1%

Theorem
IfC=Sp(ET) and C[R] = @ for R € R(C) then Ro ; €

Procedure
Co=E"T ©C;=5r,(Cy Cy=5g,(C;) C3=Sr,(Cy)

Maximal Completion Approach

to obtain assignment « is maximization appropriate?

K
maximize \/ (-CVT s>tV t>s") subject to /\ = /\R;
(s~t,C)eCy i=1

andlet Ry ={s—t|(s~t,C)eCrandaE="s>t"}
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Preliminary Results

Completion

115 systems in mkbrt distribution

LPO
Maxcomp Constraints
completed 86 51
failure 6 0
timeout 23 64
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Preliminary Results

Completion

115 systems in mkbrt distribution

LPO
Maxcomp Constraints
completed 86 51
failure 6 0
timeout 23 64

Rewriting Induction

103 systems from Dream Corpus of Inductive Conjectures

LPO
success 30
timeout 73
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Conclusion

Summary

» constrained equation framework adds rewriting to maximal
completion approach

» constrained equation framework allows for simple correctness proofs

> maximal completion was extended to ordered completion and
inductive theorem proving
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Conclusion

Summary

» constrained equation framework adds rewriting to maximal
completion approach

» constrained equation framework allows for simple correctness proofs

> maximal completion was extended to ordered completion and
inductive theorem proving

Further Work

cover AC/normalized completion

v

» implement approach for ordered and AC completion

v

automation of theorem proving: what to maximize?

v

can completeness be expressed in framework?
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