
Constrained Equations
for Completion and the Like

Progress Report

T. Aoto N. Hirokawa D. Klein S. Winkler

Seminar 3
Computational Logic Group

April 25, 2012

http://cl-informatik.uibk.ac.at


Motivation

Knuth-Bendix Completion

�
reduction ordering

+
E

equations
−→KB

R
rewrite system

R is confluent, terminating, reduced and ≈E = ↔∗R

Example (Group Theory)

y ←!
R

(x− · x)− · (e · (y · e))

?

≈ y · e

→!
R y

e · x ≈ x
E x− · x ≈ e

(x · y) · z ≈ x · (y · z)

e · x → x x · e → x
x− · x → e x · x− → e

R (x · y) · z → x · (y · z) x−− → x
e− → e (x · y)− → y− · x−

x− · (x · y) → y x · (x− · y) → y
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Motivation

Comparison of Completion Tools

mkbTT

maxcomp

Aim 1: Combined Approach

mkbTT maxcomp

uses selection heuristic to advance
one branch

can advance several branches at
once

vulnerable to bad selection more robust

adds new CPs for one branch can only add new CPs for all
branches

interreduction of rules no interreduction

fewer equations lots of equations

relies on existing proofs simple correctness proof

Aim 2: Extensions
mkbTT approach was extended to ordered completion, AC-completion –
how about maxcomp?
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Motivation

Outline

Preliminaries

Completion
Standard Completion
Ordered Completion

Inductive Theorem Proving
Inductionless Induction
Rewriting Induction

Automation

Conclusion
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Preliminaries

Definition (termination constraint)

C ::= `→ r | > | ⊥ | ¬C | C ∨ C | C ∧ C

for TRS R define R |= C inductively:

R |=`→ r iff `→ r ∈ R R |=>
R 6|=⊥ R |=C1 ∨ C2 iff R |= C1 or R |= C2

R |=¬C iff R 6|= C R |=C1 ∧ C2 iff R |= C1 and R |= C2

Definition (constrained equalities)

I constrained equality (s ≈ t,C ) is pair of equality s ≈ t and
termination constraint C

I constrained equation system (CES) C is set of constrained equalities
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Preliminaries

Notation

E> = {(s ≈ t,>) | s ≈ t ∈ E}

CJRK = {s ≈ t | (s ≈ t,C ) ∈ C and R |= C} R-projection

C	R =
{(

s ≈ t,C ∧ ¬
∧
R | (s ≈ t,C ) ∈ C

}
C↓R =

{(
s↓R ≈ t↓R,C ∧

∧
R
)
| (s ≈ t,C ) ∈ C and s↓R 6= t↓R

}
Example

E : 1 : s(p(x)) ≈ x 2: p(s(x)) ≈ x 3: s(x) + y ≈ s(x + y)

R : s(p(x))→ x s(x + y)→ s(x) + y

E> ={(1,>), (2,>), (3,>)}

E>JRK ={1, 2, 3}

C ={(1, s(p(x))→ x), (2, s(x) + y → s(x + y)), (3, s(x + y)→ s(x) + y)}
CJRK ={1, 3}

E> 	R ={(1, s(p(x))→ x), (2, s(x) + y → s(x + y)), (3, s(x + y)→ s(x) + y)}
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Preliminaries

Definition

I E is R-joinable if s ↓R t for all s ≈ t ∈ E

I E is ground R-joinable if sσ ↓R tσ for all s ≈ t ∈ E and ground
sσ, tσ

Definition

mapping S from CESs to CESs is (ground) reduction if ∀ CES C, TRS R
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Completion Standard Completion

Definition
SKB(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

F (R) = CP(R) and R ∈ R(C) is terminating with R ⊆↔∗E (for fixed E)

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .
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Completion Ordered Completion

Ordered Completion

Definition

I R is ground convergent if R is terminating and for all ground terms
s ↔∗R t there is some v such that s →∗R v ←∗R t

I (E ,R) is ground convergent with respect to total reduction order �
if E� ∪R is ground convergent

set of �-oriented ground instances of E

Definition
SO(C) = (C	R) ∪ C↓R ∪ F (R,C)>↓R

I F (R,C) = CP�(R∪ CJRK)

I R ∈ R(C) is totally terminating with R ⊆↔∗E

extended critical pairs

Theorem

If C = Sn
O(E>) and SO(C)JRK=CJRK for R ∈ R(C) then (CJRK,R) is

ground convergent for E
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Inductive Theorem Proving Inductionless Induction

Inductionless Induction

Definition (inductive theory)

I R0 `i s ≈ t if sσ ↔∗R0
tσ for all ground substitutions σ

I R0 `i H if R0 `i s ≈ t for all s ≈ t in H

Example

For R0 being

0− x → x s(x)− 0→ s(x) s(x)− s(y)→ x − y

p(0)→ 0 p(s(x))→ x

we have R0 `i p(x − y) ≈ p(x)− y

(but not p(x − y)↔∗R0
p(x)− y)
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Inductive Theorem Proving Inductionless Induction

Definition

I term t is R0-inductively reducible if
for all ground substitutions σ term tσ is R0-reducible

I TRS R is left-R0-inductively reducible if
for all `→ r in R term ` is R0-inductively reducible

Lemma (Gramlich 90)

If R = R0 ∪H is terminating and left-R0-inductively reducible TRS and
CP(R0,H) ⊆↓R then R0 `i H
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Inductive Theorem Proving Inductionless Induction

Definition
For fixed R0 and E

SI (C) = (C	R) ∪ C↓R ∪ F (R)>↓R

I F (R) = CP(R0,R \R0)

I R ∈ R(C) is terminating, left-R0-inductively reducible,
and `σ ↔∗R0∪E rσ for all `→ r in R and ground substitutions σ

Theorem
If C = Sn

I (E>) and CJRK = ∅ for R ∈ R(C) then R0 `i E

Example
R0 : 1: 0− x → x 2: s(x)− 0→ s(x) 3: s(x)− s(y)→ x − y

4: p(0)→ 0 5: p(s(x))→ x

E : 6: p(x − y) ≈ p(x)− y

7: x − 0 ≈ x 8: p(x)− y ≈ x − s(y)

C0 ={(6,>)} R1 = {1, . . . , 6}
C1 =SI (C0) = {(6,¬R1), (7,>), (8,>)} R2 = {1, . . . , 8}
C2 =SI (C1) = {(6,¬R1 ∧ ¬R2), (4,¬R2), (5,¬R2)}

C2JR2K = ∅, so R0 `i p(x − y) ≈ p(x)− y
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Inductive Theorem Proving Rewriting Induction

Rewriting Induction

Definition
Given TRS R0,

I defined symbols D = {f | f is root symbol of ` for `→ r ∈ R0}

I constructor symbols C = F \ D
I term t = f (t1, . . . , tn) is basic if f ∈ D and all ti ∈ T (C,V)

I basic positions B(t) = {p ∈ Pos(t) | t|p is basic}

R0 is quasi-reducible if no basic term is in normal form

Definition
For R0 quasi-reducible,

I TRS R is R0-expandable if every ` for `→ r ∈ R has basic position

I Expd(R0,R) is set of CPs from overlaps (`1 → r1, p, `2 → r2)µ
where `1 → r1 ∈ R0, `2 → r2 ∈ R, and p is basic in `2
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Inductive Theorem Proving Rewriting Induction

Definition
For fixed R0 and E

SRI (C) = (C	R) ∪ C↓R ∪ F (R)>↓R

I F (R) = Expd(R0,R)

I R ∈ R(C) is terminating and R0-expandable such that R0 ⊆ R
and `σ ↔∗R0∪E rσ for all `→ r in R and ground substitutions σ

Theorem

If C = Sn
RI (E>) and CJRK = ∅ for R ∈ R(C) then R0 `i E

Example

R0 : 1 : x + 0→ x 2 : x + s(y)→ s(x + y)

E : 3 : (x + y) + z ≈ x + (y + z)

4 : x + z ≈ x + (0 + z) 5 : s(x + y) + z ≈ x + (s(y) + z)

C0 ={(3,>)} R1 = {1, 2, 3}
C1 =SRI (C0) = {(3,¬R1), (4,>), (5,>)} R2 = {1, 2, 3′}
C2 =SRI (C1) = {(3,¬R1 ∧ ¬R2), (4,¬R2), (5,¬R2)}

C2JR2K = ∅, so R0 `i (x + y) + z ≈ x + (y + z)
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Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach

to obtain assignment α SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize

∨
(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq)

subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}

TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach

to obtain assignment α SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize

∨
(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq)

subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}

TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach

to obtain assignment α SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize

∨
(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq)

subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}

TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach

to obtain assignment α SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize

∨
(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq)

subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}

TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach

to obtain assignment α

SAT/SMT encoding of >kbo, >lpo or >mpo

is maximization appropriate?

maximize

∨
(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq)

subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}

TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach

to obtain assignment α SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize
∨

(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq)

subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}

TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach

to obtain assignment α SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize
∨

(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq) subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}

TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Completion

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
KB(E>) and CJRK=∅ for R ∈ R(C) then R is convergent for E .

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach
to obtain assignment α

SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize
∨

(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq) subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}
TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Rewriting Induction

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
RI (E>) and CJRK = ∅ for R ∈ R(C) then R0 `i E

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach
to obtain assignment α

SAT/SMT encoding of >kbo, >lpo or >mpo
is maximization appropriate?

maximize
∨

(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq) subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}
TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Rewriting Induction

Definition

SR(C) = (C	R) ∪ C↓R ∪ F (R)>↓R

Theorem

If C = Sn
RI (E>) and CJRK = ∅ for R ∈ R(C) then R0 `i E

Procedure

C0 = E> C1 = SR1(C0) C2 = SR2(C1) C3 = SR3(C2) . . .

how to find R1,R2.R3, . . .?

Maximal Completion Approach
to obtain assignment α

SAT/SMT encoding of >kbo, >lpo or >mpo

is maximization appropriate?

maximize
∨

(s≈t,C)∈Ck

(¬C ∨ ps > tq ∨ pt > sq) subject to
k∧

i=1

¬
∧
Ri

and let Rk = {s → t | (s ' t,C ) ∈ Ck and α |= ps > tq}
TA, NH, DK & SW (Seminar 3) Constrained Equations 19/21



Automation

Preliminary Results

Completion
115 systems in mkbTT distribution

LPO
Maxcomp Constraints

completed 86 51
failure 6 0
timeout 23 64

Rewriting Induction
103 systems from Dream Corpus of Inductive Conjectures

LPO
success 30
timeout 73
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Conclusion

Summary

I constrained equation framework adds rewriting to maximal
completion approach

I constrained equation framework allows for simple correctness proofs

I maximal completion was extended to ordered completion and
inductive theorem proving

Further Work

I cover AC/normalized completion

I implement approach for ordered and AC completion

I automation of theorem proving: what to maximize?

I can completeness be expressed in framework?
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