

Constrained Equations for Completion and the Like Progress Report

T. Aoto

N. Hirokawa

D. Klein

S. Winkler

Seminar 3 Computational Logic Group

April 25, 2012

 $\begin{array}{c} \succ \\ \mbox{reduction ordering} \end{array} + \begin{array}{c} \mathcal{E} \\ \mbox{equations} \end{array} \xrightarrow{\mathcal{K}B} \begin{array}{c} \mathcal{R} \\ \mbox{rewrite system} \end{array}$ $\mathcal{R} \mbox{ is confluent, terminating, reduced and } \approx_{\mathcal{E}} = \leftrightarrow_{\mathcal{R}}^{*}$

Example (Group Theory)

$$\mathcal{E} \qquad \begin{array}{c} e \cdot x \approx x \\ x^- \cdot x \approx e \\ (x \cdot y) \cdot z \approx x \cdot (y \cdot z) \end{array}$$

Έ \mathcal{R} \longrightarrow_{KB} reduction ordering equations rewrite system $\mathcal R$ is confluent, terminating, reduced and $pprox_{\mathcal E} = \leftrightarrow^*_{\mathcal R}$ Example (Group Theory) $e \cdot x \approx x$ Е $x^- \cdot x \approx e$ $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$ $e \cdot x \rightarrow x$ $x \cdot e \rightarrow x$ $x \cdot x^- \rightarrow e$ $x^- \cdot x \rightarrow e$ \mathcal{R} $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ $x^{--} \rightarrow x$ $(x \cdot y)^- \rightarrow y^- \cdot x^$ $e^- \rightarrow e$ $x^{-} \cdot (x \cdot y) \rightarrow y$ $x \cdot (x^- \cdot y) \rightarrow y$

TA, NH, DK & SW (Seminar 3)

 \mathcal{R} \longrightarrow_{KB} reduction ordering equations rewrite system $\mathcal R$ is confluent, terminating, reduced and $pprox_{\mathcal E} = \leftrightarrow^*_{\mathcal R}$ Example (Group Theory) $\mathbf{e} \cdot \mathbf{x} \approx \mathbf{x} \qquad \underbrace{\mathbf{y} \leftarrow_{\mathcal{R}}^{\mathbf{I}} (\mathbf{x}^{-} \cdot \mathbf{x})^{-} \cdot (\mathbf{e} \cdot (\mathbf{y} \cdot \mathbf{e})) \approx \mathbf{y} \cdot \mathbf{e} \rightarrow_{\mathcal{R}}^{\mathbf{I}} \mathbf{y}}_{\mathbf{x} \in \mathbf{x}}$ ε $x^- \cdot x \approx e$ $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$ $x \cdot e \rightarrow x$ $e \cdot x \rightarrow x$ $x^- \cdot x \rightarrow e$ $x \cdot x^- \to e$ \mathcal{R} $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ $x^{--} \rightarrow x$ $(x \cdot y)^- \rightarrow y^- \cdot x^$ $e^- \rightarrow e$ $x^{-} \cdot (x \cdot y) \rightarrow y$ $x \cdot (x^- \cdot y) \rightarrow y$

TA, NH, DK & SW (Seminar 3)

Aim 1: Combined Approach

TA, NH, DK & SW (Seminar 3)

maxcomp
can advance several branches at
once
more robust

mkb _{TT}	maxcomp
uses selection heuristic to advance	can advance several branches at
one branch	once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all branches

mkb _{TT}	maxcomp
uses selection heuristic to advance	can advance several branches at
one branch	once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all
	branches
interreduction of rules	no interreduction

mkb _{TT}	maxcomp
uses selection heuristic to advance	can advance several branches at
one branch	once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all branches
interreduction of rules	no interreduction
fewer equations	lots of equations

mkb _{TT}	maxcomp
uses selection heuristic to advance	can advance several branches at
one branch	once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all
	branches
interreduction of rules	no interreduction
fewer equations	lots of equations
relies on existing proofs	simple correctness proof

mkb _{TT}	maxcomp
uses selection heuristic to advance	can advance several branches at
one branch	once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all
	branches
interreduction of rules	no interreduction
fewer equations	lots of equations
relies on existing proofs	simple correctness proof

Aim 1: Combined Approach

mkb _{TT}	maxcomp
uses selection heuristic to advance	can advance several branches at
one branch	once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all
	branches
interreduction of rules	no interreduction
fewer equations	lots of equations
relies on existing proofs	simple correctness proof

Aim 2: Extensions

 mkb_TT approach was extended to ordered completion, AC-completion – how about maxcomp?

TA, NH, DK & SW (Seminar 3)

Outline

Preliminaries

Completion Standard Completion Ordered Completion

Inductive Theorem Proving Inductionless Induction Rewriting Induction

Automation

Conclusion

Outline

Preliminaries

ompletion Standard Completion Ordered Completion

Inductive Theorem Proving Inductionless Induction Rewriting Induction

Automation

Conclusion

$$C ::= \ell \to r \mid \top \mid \bot \mid \neg C \mid C \lor C \mid C \land C$$

$$C ::= \ell \to r \mid \top \mid \bot \mid \neg C \mid C \lor C \mid C \land C$$

for TRS \mathcal{R} define $\mathcal{R} \models C$ inductively:

 $\begin{array}{ll} \mathcal{R} \models \ell \to r \text{ iff } \ell \to r \in \mathcal{R} & \mathcal{R} \models \top \\ \mathcal{R} \not\models \bot & \mathcal{R} \models C_1 \lor C_2 \text{ iff } \mathcal{R} \models C_1 \text{ or } \mathcal{R} \models C_2 \\ \mathcal{R} \models \neg C \text{ iff } \mathcal{R} \not\models C & \mathcal{R} \models C_1 \land C_2 \text{ iff } \mathcal{R} \models C_1 \text{ and } \mathcal{R} \models C_2 \end{array}$

$$C ::= \ell \to r \mid \top \mid \bot \mid \neg C \mid C \lor C \mid C \land C$$

for TRS \mathcal{R} define $\mathcal{R} \models C$ inductively:

 $\begin{array}{ll} \mathcal{R} \models \ell \to r \text{ iff } \ell \to r \in \mathcal{R} & \mathcal{R} \models \top \\ \mathcal{R} \not\models \bot & \mathcal{R} \models C_1 \lor C_2 \text{ iff } \mathcal{R} \models C_1 \text{ or } \mathcal{R} \models C_2 \\ \mathcal{R} \models \neg C \text{ iff } \mathcal{R} \not\models C & \mathcal{R} \models C_1 \land C_2 \text{ iff } \mathcal{R} \models C_1 \text{ and } \mathcal{R} \models C_2 \end{array}$

Definition (constrained equalities)

► constrained equality (s ≈ t, C) is pair of equality s ≈ t and termination constraint C

$$C ::= \ell \to r \mid \top \mid \bot \mid \neg C \mid C \lor C \mid C \land C$$

for TRS \mathcal{R} define $\mathcal{R} \models C$ inductively:

 $\begin{array}{ll} \mathcal{R} \models \ell \to r \text{ iff } \ell \to r \in \mathcal{R} & \mathcal{R} \models \top \\ \mathcal{R} \not\models \bot & \mathcal{R} \models C_1 \lor C_2 \text{ iff } \mathcal{R} \models C_1 \text{ or } \mathcal{R} \models C_2 \\ \mathcal{R} \models \neg C \text{ iff } \mathcal{R} \not\models C & \mathcal{R} \models C_1 \land C_2 \text{ iff } \mathcal{R} \models C_1 \text{ and } \mathcal{R} \models C_2 \end{array}$

Definition (constrained equalities)

- ► constrained equality (s ≈ t, C) is pair of equality s ≈ t and termination constraint C
- constrained equation system (CES) \mathbb{C} is set of constrained equalities

$$\mathcal{E}^{ op} = \{(s pprox t, op) \mid s pprox t \in \mathcal{E}\}$$

$$\mathcal{E}^{ op} = \{(s pprox t, op) \mid s pprox t \in \mathcal{E}\}$$

Example

 $\mathcal{E}: \quad 1: s(p(x)) \approx x \quad 2: p(s(x)) \approx x \quad 3: s(x) + y \approx s(x + y)$

 $\mathcal{E}^{\top} = \{(1,\top),(2,\top),(3,\top)\}$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\mathcal{R}] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathcal{R}\text{-projection}$$

Example

 $\mathcal{E}: \quad 1: s(p(x)) \approx x \quad 2: p(s(x)) \approx x \quad 3: s(x) + y \approx s(x + y)$

 $\mathcal{E}^{\top}=\!\{(1,\top),(2,\top),(3,\top)\}$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\mathcal{R}] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathcal{R}\text{-projection}$$

Example

$$\begin{array}{ll} \mathcal{E}: & 1: \mathsf{s}(\mathsf{p}(x)) \approx x & 2: \mathsf{p}(\mathsf{s}(x)) \approx x & 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ \mathcal{R}: & \mathsf{s}(\mathsf{p}(x)) \to x & \mathsf{s}(x + y) \to \mathsf{s}(x) + y \end{array}$$

 $\mathcal{E}^{ op} = \{(1, op), (2, op), (3, op)\}$ $\mathcal{E}^{ op} [\![\mathcal{R}]\!] = \{1, 2, 3\}$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\mathcal{R}] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathcal{R}\text{-projection}$$

Example

$$\begin{array}{ll} \mathcal{E}\colon & 1\colon \mathsf{s}(\mathsf{p}(x))\approx x & 2\colon \mathsf{p}(\mathsf{s}(x))\approx x & 3\colon \mathsf{s}(x)+y\approx \mathsf{s}(x+y) \\ \mathcal{R}\colon & \mathsf{s}(\mathsf{p}(x))\to x & \mathsf{s}(x+y)\to\mathsf{s}(x)+y \\ \end{array} \\ \mathcal{E}^{\top}=\{(1,\top),(2,\top),(3,\top)\} \\ \mathcal{E}^{\top}\llbracket\mathcal{R}\rrbracket=\{1,2,3\} \\ & \mathbb{C}=\{(1,\mathsf{s}(\mathsf{p}(x))\to x),(2,\mathsf{s}(x)+y\to\mathsf{s}(x+y)),(3,\mathsf{s}(x+y)\to\mathsf{s}(x)+y)\} \end{array}$$

i

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\mathcal{R}] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathcal{R}\text{-projection}$$

$$\begin{split} \mathcal{E} &: \quad 1: \mathsf{s}(\mathsf{p}(x)) \approx x \quad 2: \mathsf{p}(\mathsf{s}(x)) \approx x \quad 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ \mathcal{R} &: \quad \mathsf{s}(\mathsf{p}(x)) \to x \quad \mathsf{s}(x + y) \to \mathsf{s}(x) + y \\ \mathcal{E}^\top = \{(1, \top), (2, \top), (3, \top)\} \\ \mathcal{E}^\top \llbracket \mathcal{R} \rrbracket = \{1, 2, 3\} \\ &\mathbb{C} = \{(1, \mathsf{s}(\mathsf{p}(x)) \to x), (2, \mathsf{s}(x) + y \to \mathsf{s}(x + y)), (3, \mathsf{s}(x + y) \to \mathsf{s}(x) + y)\} \\ \mathbb{C} \llbracket \mathcal{R} \rrbracket = \{1, 3\} \end{split}$$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\mathcal{R}] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathcal{R}\text{-projection}$$

$$\begin{split} \mathcal{E}: & 1: s(p(x)) \approx x & 2: p(s(x)) \approx x & 3: s(x) + y \approx s(x+y) \\ \mathcal{R}: & s(p(x)) \to x & s(x+y) \to s(x) + y \\ \mathcal{E}^{\top} = \{ (1, \top), (2, \top), (3, \top) \} \\ \mathcal{E}^{\top} [\![\mathcal{R}]\!] = \{ 1, 2, 3 \} \\ & \mathbb{C} = \{ (1, 1), (2, 3), (3, 3') \} \\ & \mathbb{C} [\![\mathcal{R}]\!] = \{ 1, 3 \} \end{split}$$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\![\mathcal{R}]\!] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathbb{C} \ominus \mathcal{R} = \left\{ (s \approx t, C \land \neg \bigwedge \mathcal{R} \mid (s \approx t, C) \in \mathbb{C} \right\}$$

$$\mathcal{R}\text{-projection}$$

$$\begin{split} \mathcal{E} &: \quad 1: \mathsf{s}(\mathsf{p}(x)) \approx x \quad 2: \mathsf{p}(\mathsf{s}(x)) \approx x \\ \mathcal{R} &: \quad \mathsf{s}(\mathsf{p}(x)) \to x \quad \mathsf{s}(x+y) \to \mathsf{s}(x) + y \\ \mathcal{E}^\top &= \{(1,\top), (2,\top), (3,\top)\} \end{split}$$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\![\mathcal{R}]\!] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathbb{C} \ominus \mathcal{R} = \left\{ (s \approx t, C \land \neg \bigwedge \mathcal{R} \mid (s \approx t, C) \in \mathbb{C} \right\}$$

$$\mathcal{R}\text{-projection}$$

Example

$$\mathcal{E}: \quad 1: \mathsf{s}(\mathsf{p}(x)) \approx x \quad 2: \mathsf{p}(\mathsf{s}(x)) \approx x \quad 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y)$$

$$\mathcal{R}$$
: $s(p(x)) \to x$ $s(x+y) \to s(x) + y$

$$\begin{split} \mathcal{E}^{\top} = & \{ (1, \top), (2, \top), (3, \top) \} \\ \mathcal{E}^{\top} \ominus \mathcal{R} = & \{ (1, \neg (1 \land 3')), (2, \neg (1 \land 3')), (3, \neg (1 \land 3')) \} \end{split}$$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\![\mathcal{R}]\!] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathbb{C} \ominus \mathcal{R} = \left\{ (s \approx t, C \land \neg \bigwedge \mathcal{R} \mid (s \approx t, C) \in \mathbb{C} \}$$

$$\mathbb{C} \downarrow_{\mathcal{R}} = \left\{ (s \downarrow_{\mathcal{R}} \approx t \downarrow_{\mathcal{R}}, C \land \bigwedge \mathcal{R}) \mid (s \approx t, C) \in \mathbb{C} \text{ and } s \downarrow_{\mathcal{R}} \neq t \downarrow_{\mathcal{R}} \right\}$$

$$\begin{split} \mathcal{E}: & 1: \mathsf{s}(\mathsf{p}(x)) \approx x & 2: \mathsf{p}(\mathsf{s}(x)) \approx x & 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ \mathcal{R}: & \mathsf{s}(\mathsf{p}(x)) \to x & \mathsf{s}(x + y) \to \mathsf{s}(x) + y \\ \mathcal{E}^\top = \{(1, \top), (2, \top), (3, \top)\} \end{split}$$

$$\mathcal{E}^{\top} = \{ (s \approx t, \top) \mid s \approx t \in \mathcal{E} \}$$

$$\mathbb{C}[\![\mathcal{R}]\!] = \{ s \approx t \mid (s \approx t, C) \in \mathbb{C} \text{ and } \mathcal{R} \models C \}$$

$$\mathbb{C} \ominus \mathcal{R} = \left\{ (s \approx t, C \land \neg \bigwedge \mathcal{R} \mid (s \approx t, C) \in \mathbb{C} \}$$

$$\mathbb{C} \downarrow_{\mathcal{R}} = \left\{ (s \downarrow_{\mathcal{R}} \approx t \downarrow_{\mathcal{R}}, C \land \bigwedge \mathcal{R}) \mid (s \approx t, C) \in \mathbb{C} \text{ and } s \downarrow_{\mathcal{R}} \neq t \downarrow_{\mathcal{R}} \right\}$$

$$\begin{split} \mathcal{E} &: \quad 1: \mathsf{s}(\mathsf{p}(x)) \approx x \quad 2: \mathsf{p}(\mathsf{s}(x)) \approx x \quad 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ \mathcal{R} &: \quad \mathsf{s}(\mathsf{p}(x)) \to x \quad \mathsf{s}(x + y) \to \mathsf{s}(x) + y \\ \mathcal{E}^\top &= \{(1, \top), (2, \top), (3, \top)\} \\ \mathcal{E}^\top &\downarrow_{\mathcal{R}} = \{(2, 1 \land 3')\} \end{split}$$

• \mathcal{E} is \mathcal{R} -joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$

- \mathcal{E} is \mathcal{R} -joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- ► \mathcal{E} is ground \mathcal{R} -joinable if $s\sigma \downarrow_{\mathcal{R}} t\sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s\sigma, t\sigma$

- \mathcal{E} is \mathcal{R} -joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- ▶ \mathcal{E} is ground \mathcal{R} -joinable if $s\sigma \downarrow_{\mathcal{R}} t\sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s\sigma, t\sigma$

Definition

mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C} , TRS \mathcal{R}

 $S(\mathbb{C})\llbracket \mathcal{R} \rrbracket \text{ (ground) } \mathcal{R}\text{-joinable} \Longrightarrow \mathbb{C}\llbracket \mathcal{R} \rrbracket \text{ (ground) } \mathcal{R}\text{-joinable}$

- \mathcal{E} is \mathcal{R} -joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- ▶ \mathcal{E} is ground \mathcal{R} -joinable if $s\sigma \downarrow_{\mathcal{R}} t\sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s\sigma, t\sigma$

Definition

mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C} , TRS \mathcal{R}

 $S(\mathbb{C})\llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R} -joinable $\Longrightarrow \mathbb{C}\llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R} -joinable

Definition

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$
- \mathcal{E} is \mathcal{R} -joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- ▶ \mathcal{E} is ground \mathcal{R} -joinable if $s\sigma \downarrow_{\mathcal{R}} t\sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s\sigma, t\sigma$

Definition

mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C} , TRS \mathcal{R}

 $S(\mathbb{C})\llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R} -joinable $\Longrightarrow \mathbb{C}\llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R} -joinable

Definition $S_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$ $S(\mathbb{C}) = \bigcup_{\mathcal{R} \in \mathfrak{R}(\mathbb{C})} S_{\mathcal{R}}(\mathbb{C})$

- \mathcal{E} is \mathcal{R} -joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- ▶ \mathcal{E} is ground \mathcal{R} -joinable if $s\sigma \downarrow_{\mathcal{R}} t\sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s\sigma, t\sigma$

Definition

mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C} , TRS \mathcal{R}

 $S(\mathbb{C})\llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R} -joinable $\Longrightarrow \mathbb{C}\llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R} -joinable

Definition

$$S_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$
$$S(\mathbb{C}) = \bigcup_{\mathcal{R} \in \mathfrak{R}(\mathbb{C})} S_{\mathcal{R}}(\mathbb{C})$$

Lemma

S is a (ground) reduction.

Outline

Preliminaries

Completion Standard Completion Ordered Completion

Inductive Theorem Proving

Inductionless Induction Rewriting Induction

Automation

Conclusion

$S_{\mathsf{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C} \downarrow_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = CP(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R}) \text{ and } \mathcal{R} \in \mathfrak{R}(\mathbb{C}) \text{ is terminating with } \mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*} \text{ (for fixed } \mathcal{E})$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Proof.

•
$$n = 0$$
: if $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ then $\mathcal{E} = \emptyset$, thus $\mathcal{R} = \emptyset$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Proof.

- n = 0: if $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ then $\mathcal{E} = \emptyset$, thus $\mathcal{R} = \emptyset$
- ► *n* > 0:

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Proof.

• n = 0: if $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ then $\mathcal{E} = \emptyset$, thus $\mathcal{R} = \emptyset$

• $\leftrightarrow_{\mathcal{R}}^* = \leftrightarrow_{\mathcal{E}}^*$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^*$ by assumption and $\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as S_{KB}^n is reduction (by induction on *n* and Lemma)

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Proof.

- n = 0: if $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ then $\mathcal{E} = \emptyset$, thus $\mathcal{R} = \emptyset$
- ► *n* > 0:
 - $\leftrightarrow_{\mathcal{R}}^* = \leftrightarrow_{\mathcal{E}}^*$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^*$ by assumption and $\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as S_{KB}^n is reduction (by induction on *n* and Lemma)
 - *R* is terminating by assumption

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Proof.

• n = 0: if $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ then $\mathcal{E} = \emptyset$, thus $\mathcal{R} = \emptyset$

► *n* > 0:

- $\leftrightarrow_{\mathcal{R}}^* = \leftrightarrow_{\mathcal{E}}^*$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^*$ by assumption and $\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as S_{KB}^n is reduction (by induction on *n* and Lemma)
- \mathcal{R} is terminating by assumption
- ▶ \mathcal{R} is confluent because for $\mathbb{C}' = S_{KB}^{n-1}(\mathcal{E}^{\top})$ the set $S_{KB}(\mathbb{C}')[\![\mathcal{R}]\!] = \emptyset$, so $CP(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Proof. • n = 0: if $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ then $\mathcal{E} = \emptyset$, thus $\mathcal{R} = \emptyset$ • n > 0: • $\leftrightarrow^*_{\mathcal{R}} = \leftrightarrow^*_{\mathcal{E}}$, since $\mathcal{R} \subseteq \leftrightarrow^*_{\mathcal{E}}$ by assumption and $\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as S^n_{KB} is reduction (by induction on n and Lemma) • \mathcal{R} is terminating by assumption • \mathcal{R} is confluent because for $\mathbb{C}' = S^{n-1}_{KB}(\mathcal{E}^{\top})$ the set $S_{KB}(\mathbb{C}')[\![\mathcal{R}]\!] = \emptyset$, so $CP(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 \mathcal{E} : 1: s(p(x)) \approx x 2: p(s(x)) \approx x 3: s(x) + y \approx s(x + y)

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 \mathcal{E} : 1: s(p(x)) \approx x 2: p(s(x)) \approx x 3: s(x) + y \approx s(x + y)

 $\mathbb{C}_0 = \! \{ (1,\top), (2,\top), (3,\top) \}$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 \mathcal{E} : 1: s(p(x)) \approx x 2: p(s(x)) \approx x 3: s(x) + y \approx s(x + y)

 $\mathbb{C}_0 = \{(1, \top), (2, \top), (3, \top)\} \qquad \qquad \mathcal{R}_1 = \{1, 2, 3\}$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 $\mathcal{E}: \quad 1: \mathsf{s}(\mathsf{p}(x)) \approx x \qquad 2: \mathsf{p}(\mathsf{s}(x)) \approx x \qquad 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ 4: x + y \approx \mathsf{s}(\mathsf{p}(x) + y)$

$$\begin{split} \mathbb{C}_0 = & \{ (1, \top), (2, \top), (3, \top) \} \\ \mathbb{C}_1 = & S_{\mathcal{KB}}(\mathbb{C}_0) = \{ (1, \neg R_1), (2, \neg R_1), (3, \neg R_1), (4, \top) \} \end{split}$$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 $\begin{array}{ll} \mathcal{E}: & 1: \mathsf{s}(\mathsf{p}(x)) \approx x & 2: \mathsf{p}(\mathsf{s}(x)) \approx x & 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ & 4: x + y \approx \mathsf{s}(\mathsf{p}(x) + y) \end{array} \\ \\ \mathbb{C}_0 = \{(1, \top), (2, \top), (3, \top)\} & R_1 = 1 \land 2 \land 3 \\ \mathbb{C}_1 = S_{\mathcal{KB}}(\mathbb{C}_0) = \{(1, \neg R_1), (2, \neg R_1), (3, \neg R_1), (4, \top)\} \end{array} \\ \end{array}$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 $\mathcal{E}: \quad 1: \mathsf{s}(\mathsf{p}(x)) \approx x \qquad 2: \mathsf{p}(\mathsf{s}(x)) \approx x \qquad 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ 4: x + y \approx \mathsf{s}(\mathsf{p}(x) + y)$

 $\begin{array}{ll} \mathbb{C}_0 = \{(1, \top), (2, \top), (3, \top)\} & \mathcal{R}_1 = \{1, 2, 3\} \\ \mathbb{C}_1 = \mathcal{S}_{\mathcal{KB}}(\mathbb{C}_0) = \{(1, \neg R_1), (2, \neg R_1), (3, \neg R_1), (4, \top)\} & \mathcal{R}_2 = \{1, 2, 3', 4'\} \end{array}$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 $\begin{aligned} \mathcal{E}: \quad 1: \mathsf{s}(\mathsf{p}(x)) &\approx x & 2: \mathsf{p}(\mathsf{s}(x)) \approx x & 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ 4: x + y &\approx \mathsf{s}(\mathsf{p}(x) + y) & 5: \mathsf{p}(\mathsf{s}(x) + y) \approx x + y & 6: \mathsf{p}(x + y) \approx \mathsf{p}(x) + y \end{aligned}$

$$\begin{split} \mathbb{C}_{0} = &\{(1, \top), (2, \top), (3, \top)\} & \mathcal{R}_{1} = \{1, 2, 3\} \\ \mathbb{C}_{1} = &S_{\mathcal{KB}}(\mathbb{C}_{0}) = \{(1, \neg R_{1}), (2, \neg R_{1}), (3, \neg R_{1}), (4, \top)\} & \mathcal{R}_{2} = \{1, 2, 3', 4'\} \\ \mathbb{C}_{2} = &S_{\mathcal{KB}}(\mathbb{C}_{1}) = \{(1, \neg R_{1} \land \neg R_{2}), (2, \neg R_{1} \land \neg R_{2}), \\ & (3, \neg R_{1} \land \neg R_{2}), (4, \neg R_{2}), (5, \top), (6, \top)\} \end{split}$$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 $\begin{aligned} \mathcal{E}: \quad 1: \mathsf{s}(\mathsf{p}(x)) &\approx x & 2: \mathsf{p}(\mathsf{s}(x)) \approx x & 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ 4: x + y &\approx \mathsf{s}(\mathsf{p}(x) + y) & 5: \mathsf{p}(\mathsf{s}(x) + y) \approx x + y & 6: \mathsf{p}(x + y) \approx \mathsf{p}(x) + y \end{aligned}$

$$\begin{split} \mathbb{C}_{0} =& \{(1,\top),(2,\top),(3,\top)\} & \mathcal{R}_{1} = \{1,2,3\} \\ \mathbb{C}_{1} =& S_{KB}(\mathbb{C}_{0}) = \{(1,\neg R_{1}),(2,\neg R_{1}),(3,\neg R_{1}),(4,\top)\} & \mathcal{R}_{2} = \{1,2,3',4'\} \\ \mathbb{C}_{2} =& S_{KB}(\mathbb{C}_{1}) = \{(1,\neg R_{1} \land \neg R_{2}),(2,\neg R_{1} \land \neg R_{2}), \\ & (3,\neg R_{1} \land \neg R_{2}),(4,\neg R_{2}),(5,\top),(6,\top)\} & \mathcal{R}_{3} = \mathcal{R}_{1} \cup \{4',5,6'\} \end{split}$$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 $\begin{aligned} \mathcal{E}: \quad 1: \mathsf{s}(\mathsf{p}(x)) &\approx x & 2: \mathsf{p}(\mathsf{s}(x)) \approx x & 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ 4: x + y &\approx \mathsf{s}(\mathsf{p}(x) + y) & 5: \mathsf{p}(\mathsf{s}(x) + y) \approx x + y & 6: \mathsf{p}(x + y) \approx \mathsf{p}(x) + y \end{aligned}$

$$\begin{split} \mathbb{C}_{0} = & \{(1, \top), (2, \top), (3, \top)\} & \mathcal{R}_{1} = \{1, 2, 3\} \\ \mathbb{C}_{1} = & S_{KB}(\mathbb{C}_{0}) = \{(1, \neg R_{1}), (2, \neg R_{1}), (3, \neg R_{1}), (4, \top)\} & \mathcal{R}_{2} = \{1, 2, 3', 4'\} \\ \mathbb{C}_{2} = & S_{KB}(\mathbb{C}_{1}) = \{(1, \neg R_{1} \land \neg R_{2}), (2, \neg R_{1} \land \neg R_{2}), \\ & (3, \neg R_{1} \land \neg R_{2}), (4, \neg R_{2}), (5, \top), (6, \top)\} & \mathcal{R}_{3} = & \mathcal{R}_{1} \cup \{4', 5, 6'\} \\ \mathbb{C}_{3} = & S_{KB}(\mathbb{C}_{2}) = \{(1, \neg R_{1} \land \neg R_{2}), (2, \neg R_{1} \land \neg R_{2}), \\ & (3, \neg R_{1} \land \neg R_{2}), (4, \neg R_{2} \land \neg R_{3}), (5, \neg R_{3}), (6, \neg R_{3})\} \end{split}$$

$$S_{\mathcal{KB}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

 $F(\mathcal{R}) = \mathsf{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Example

 $\begin{aligned} \mathcal{E}: & 1: \mathsf{s}(\mathsf{p}(x)) \approx x & 2: \mathsf{p}(\mathsf{s}(x)) \approx x & 3: \mathsf{s}(x) + y \approx \mathsf{s}(x + y) \\ & 4: x + y \approx \mathsf{s}(\mathsf{p}(x) + y) & 5: \mathsf{p}(\mathsf{s}(x) + y) \approx x + y & 6: \mathsf{p}(x + y) \approx \mathsf{p}(x) + y \end{aligned}$

$$\begin{split} \mathbb{C}_{0} = & \{(1, \top), (2, \top), (3, \top)\} & \mathcal{R}_{1} = \{1, 2, 3\} \\ \mathbb{C}_{1} = & S_{KB}(\mathbb{C}_{0}) = \{(1, \neg R_{1}), (2, \neg R_{1}), (3, \neg R_{1}), (4, \top)\} & \mathcal{R}_{2} = \{1, 2, 3', 4'\} \\ \mathbb{C}_{2} = & S_{KB}(\mathbb{C}_{1}) = \{(1, \neg R_{1} \land \neg R_{2}), (2, \neg R_{1} \land \neg R_{2}), \\ & (3, \neg R_{1} \land \neg R_{2}), (4, \neg R_{2}), (5, \top), (6, \top \mathbb{C}_{3} \llbracket \mathcal{R}_{3} \rrbracket = \emptyset, \text{ so } \mathcal{R}_{3} \text{ convergent for } \mathcal{E} \} \\ \mathbb{C}_{3} = & S_{KB}(\mathbb{C}_{2}) = \{(1, \neg R_{1} \land \neg R_{2}), (2, \neg R_{1} \land \neg R_{2}), \\ & (3, \neg R_{1} \land \neg R_{2}), (4, \neg R_{2} \land \neg R_{3}), (5, \neg R_{3}), (6, \neg R_{3}) \} \end{split}$$

Definition

▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow^*_{\mathcal{R}} t$ there is some v such that $s \rightarrow^*_{\mathcal{R}} v \leftarrow^*_{\mathcal{R}} t$

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow^*_{\mathcal{R}} t$ there is some v such that $s \rightarrow^*_{\mathcal{R}} v \leftarrow^*_{\mathcal{R}} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms set of \succ -oriented ground instances of \mathcal{E} hat $s \to_{\mathcal{R}}^* v \leftarrow_{\mathcal{R}}^* t$
- (*E*, *R*) is ground convergent with respect to total reduction order ≻ if *E*_≻ ∪ *R* is ground convergent

Definition

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow^*_{\mathcal{R}} t$ there is some v such that $s \rightarrow^*_{\mathcal{R}} v \leftarrow^*_{\mathcal{R}} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

$$S_{\mathcal{O}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R}, \mathbb{C})^{\top} \downarrow_{\mathcal{R}}$$

Definition

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow^*_{\mathcal{R}} t$ there is some v such that $s \rightarrow^*_{\mathcal{R}} v \leftarrow^*_{\mathcal{R}} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

$$\mathcal{S}_{\mathcal{O}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow_{\mathcal{R}}} \ \cup \ \mathcal{F}(\mathcal{R},\mathbb{C})^{\top}{\downarrow_{\mathcal{R}}}$$

$$\blacktriangleright \ F(\mathcal{R},\mathbb{C}) = \mathsf{CP}_{\rhd}(\mathcal{R} \cup \mathbb{C}[\![\mathcal{R}]\!])$$

Definition

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow^*_{\mathcal{R}} t$ there is some v such that $s \rightarrow^*_{\mathcal{R}} v \leftarrow^*_{\mathcal{R}} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

$$S_O(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup_{\text{extended critical pairs}} \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R}, \mathbb{C})^\top \downarrow_{\mathcal{R}}$$

$$\blacktriangleright F(\mathcal{R},\mathbb{C}) = \mathsf{CP}_{\triangleright}(\mathcal{R} \cup \mathbb{C}[\![\mathcal{R}]\!])$$

Definition

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow^*_{\mathcal{R}} t$ there is some v such that $s \rightarrow^*_{\mathcal{R}} v \leftarrow^*_{\mathcal{R}} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$\mathcal{S}_{\mathcal{O}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow_{\mathcal{R}}} \ \cup \ \mathcal{F}(\mathcal{R},\mathbb{C})^{ op}{\downarrow_{\mathcal{R}}}$$

$$\blacktriangleright F(\mathcal{R},\mathbb{C}) = \mathsf{CP}_{\rhd}(\mathcal{R} \cup \mathbb{C}[\![\mathcal{R}]\!])$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is totally terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^*$

Definition

- ▶ \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow^*_{\mathcal{R}} t$ there is some v such that $s \rightarrow^*_{\mathcal{R}} v \leftarrow^*_{\mathcal{R}} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$\mathcal{S}_O(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow_\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R},\mathbb{C})^{ op}{\downarrow_\mathcal{R}}$$

$$\blacktriangleright F(\mathcal{R},\mathbb{C}) = \mathsf{CP}_{\rhd}(\mathcal{R} \cup \mathbb{C}[\![\mathcal{R}]\!])$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is totally terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$

Theorem

If $\mathbb{C} = S_O^n(\mathcal{E}^{\top})$ and $S_O(\mathbb{C})[\![\mathcal{R}]\!] = \mathbb{C}[\![\mathcal{R}]\!]$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $(\mathbb{C}[\![\mathcal{R}]\!], \mathcal{R})$ is ground convergent for \mathcal{E}

Outline

Preliminaries

Completion Standard Completion Ordered Completion

Inductive Theorem Proving Inductionless Induction Rewriting Induction

Automation

Conclusion

Definition (inductive theory)

• $\mathcal{R}_0 \vdash_i s \approx t$ if $s\sigma \leftrightarrow^*_{\mathcal{R}_0} t\sigma$ for all ground substitutions σ

Definition (inductive theory)

- $\mathcal{R}_0 \vdash_i s \approx t$ if $s\sigma \leftrightarrow^*_{\mathcal{R}_0} t\sigma$ for all ground substitutions σ
- $\blacktriangleright \ \mathcal{R}_0 \vdash_i \mathcal{H} \text{ if } \mathcal{R}_0 \vdash_i s \approx t \text{ for all } s \approx t \text{ in } \mathcal{H}$

Definition (inductive theory)

- $\mathcal{R}_0 \vdash_i s \approx t$ if $s\sigma \leftrightarrow^*_{\mathcal{R}_0} t\sigma$ for all ground substitutions σ
- $\mathcal{R}_0 \vdash_i \mathcal{H}$ if $\mathcal{R}_0 \vdash_i s \approx t$ for all $s \approx t$ in \mathcal{H}

Example

For \mathcal{R}_0 being

$$\begin{array}{ll} 0-x\to x & \mathsf{s}(x)-0\to\mathsf{s}(x) & \mathsf{s}(x)-\mathsf{s}(y)\to x-y \\ \mathsf{p}(0)\to 0 & \mathsf{p}(\mathsf{s}(x))\to x \end{array}$$

we have $\mathcal{R}_0 \vdash_i p(x - y) \approx p(x) - y$

Definition (inductive theory)

- $\mathcal{R}_0 \vdash_i s \approx t$ if $s\sigma \leftrightarrow^*_{\mathcal{R}_0} t\sigma$ for all ground substitutions σ
- $\mathcal{R}_0 \vdash_i \mathcal{H}$ if $\mathcal{R}_0 \vdash_i s \approx t$ for all $s \approx t$ in \mathcal{H}

Example

For \mathcal{R}_0 being

$$\begin{array}{ll} 0-x\to x & \mathsf{s}(x)-0\to\mathsf{s}(x) & \mathsf{s}(x)-\mathsf{s}(y)\to x-y \\ \mathsf{p}(0)\to 0 & \mathsf{p}(\mathsf{s}(x))\to x \end{array}$$

we have $\mathcal{R}_0 \vdash_i p(x-y) \approx p(x) - y$ (but not $p(x-y) \leftrightarrow^*_{\mathcal{R}_0} p(x) - y$)
Definition

term t is R₀-inductively reducible if for all ground substitutions σ term tσ is R₀-reducible

Definition

- term t is R₀-inductively reducible if for all ground substitutions σ term tσ is R₀-reducible
- ► TRS R is left-R₀-inductively reducible if for all l → r in R term l is R₀-inductively reducible

Definition

- term t is R₀-inductively reducible if for all ground substitutions σ term tσ is R₀-reducible
- ► TRS R is left-R₀-inductively reducible if for all ℓ → r in R term ℓ is R₀-inductively reducible

Lemma (Gramlich 90)

If $\mathcal{R} = \mathcal{R}_0 \cup \mathcal{H}$ is terminating and left- \mathcal{R}_0 -inductively reducible TRS and $CP(\mathcal{R}_0, \mathcal{H}) \subseteq \downarrow_{\mathcal{R}}$ then $\mathcal{R}_0 \vdash_i \mathcal{H}$

$$S_I(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^\top \downarrow_{\mathcal{R}}$$

$\begin{array}{l} \text{Definition} \\ \text{For fixed } \mathcal{R}_0 \text{ and } \mathcal{E} \\ \\ \mathcal{S}_l(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C} {\downarrow_{\mathcal{R}}} \ \cup \ \mathbf{\textit{F}}(\mathcal{R})^\top {\downarrow_{\mathcal{R}}} \end{array}$

 $\blacktriangleright F(\mathcal{R}) = \mathsf{CP}(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

\mathcal{R}_0 :	1: $0 - x \rightarrow x$	2: $s(x) - 0 \rightarrow s(x)$	3: $s(x) - s(y) \rightarrow x - y$
	4: p(0) $ ightarrow$ 0	5: $p(s(x)) \rightarrow x$	

 \mathcal{E} : 6: p(x - y) \approx p(x) - y

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

\mathcal{R}_0 :	1: $0 - x \rightarrow x$	2: $s(x) - 0 \rightarrow s(x)$	3: $s(x) - s(y) \rightarrow x - y$
	4: p(0) $ ightarrow$ 0	5: $p(s(x)) \rightarrow x$	

 \mathcal{E} : 6: $p(x - y) \approx p(x) - y$

 $\mathbb{C}_0 = \{(6, \top)\}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

\mathcal{R}_0 :	1: $0 - x \rightarrow x$	2: $s(x) - 0 \rightarrow s(x)$	3: $s(x) - s(y) \rightarrow x - y$
	4: p(0) $ ightarrow$ 0	5: $p(s(x)) \rightarrow x$	

 \mathcal{E} : 6: $p(x - y) \approx p(x) - y$

 $\mathbb{C}_0 = \{(6,\top)\} \qquad \qquad \mathcal{R}_1 = \{1,\ldots,6\}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

\mathcal{R}_0 :	1: $0 - x \rightarrow x$	2: $s(x) - 0 \rightarrow s(x)$	3: $s(x) - s(y) \rightarrow x - y$
	4: p(0) $ ightarrow$ 0	5: $p(s(x)) \rightarrow x$	

 \mathcal{E} : 6: $p(x - y) \approx p(x) - y$

 $\mathbb{C}_0 = \{(6,\top)\} \qquad \qquad \mathcal{R}_1 = \{1,\ldots,6\}$

x - y

$\begin{array}{l} \text{Definition} \\ \text{For fixed} \ \mathcal{R}_0 \ \text{and} \ \mathcal{E} \end{array}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

\mathcal{R}_0 :	1: $0 - x \rightarrow x$	2: $s(x) - 0 \rightarrow s(x)$	3: $s(x) - s(y) \rightarrow$
	4: $p(0) \rightarrow 0$	5: $p(s(x)) \rightarrow x$	

$$\mathcal{E}$$
: 6: p(x - y) \approx p(x) - y

 $\mathbb{C}_0 = \{ (6, \top) \}$ $\mathbb{C}_1 = S_I(\mathbb{C}_0) = \{ (6, \neg R_1), (7, \top), (8, \top) \}$ $\mathbb{R}_1 = \{ 1, \dots, 6 \}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{cccc} \mathcal{R}_0 \colon & 1 \colon 0 - x \to x & & 2 \colon \mathsf{s}(x) - 0 \to \mathsf{s}(x) & & 3 \colon \mathsf{s}(x) - \mathsf{s}(y) \to x - y \\ & 4 \colon \mathsf{p}(0) \to 0 & & 5 \colon \mathsf{p}(\mathsf{s}(x)) \to x \end{array}$

 $\mathcal{E}: \quad 6: \ \mathsf{p}(x-y) \approx \mathsf{p}(x) - y \\ 7: \ x - 0 \approx x \qquad \qquad 8: \ \mathsf{p}(x) - y \approx x - \mathsf{s}(y)$

 $\begin{aligned} \mathbb{C}_0 = \{ (6, \top) \} & \mathcal{R}_1 = \{ 1, \dots, 6 \} \\ \mathbb{C}_1 = S_I (\mathbb{C}_0) = \{ (6, \neg R_1), (7, \top), (8, \top) \} \end{aligned}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{cccc} \mathcal{R}_0 \colon & 1 \colon 0 - x \to x & & 2 \colon \mathsf{s}(x) - 0 \to \mathsf{s}(x) & & 3 \colon \mathsf{s}(x) - \mathsf{s}(y) \to x - y \\ & 4 \colon \mathsf{p}(0) \to 0 & & 5 \colon \mathsf{p}(\mathsf{s}(x)) \to x \end{array}$

 $\begin{array}{ll} \mathbb{C}_0 = \{(6, \top)\} & \mathcal{R}_1 = \{1, \dots, 6\} \\ \mathbb{C}_1 = S_I(\mathbb{C}_0) = \{(6, \neg R_1), (7, \top), (8, \top)\} & \mathcal{R}_2 = \{1, \dots, 8\} \end{array}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{cccc} \mathcal{R}_0 \colon & 1 \colon 0 - x \to x & & 2 \colon \mathsf{s}(x) - 0 \to \mathsf{s}(x) & & 3 \colon \mathsf{s}(x) - \mathsf{s}(y) \to x - y \\ & 4 \colon \mathsf{p}(0) \to 0 & & 5 \colon \mathsf{p}(\mathsf{s}(x)) \to x \end{array}$

$$\mathcal{E}: \quad 6: \ p(x-y) \approx p(x) - y$$
$$7: x - 0 \approx x \qquad \qquad 8: \ p(x) - y \approx x - s(y)$$

 $\begin{array}{ll} \mathbb{C}_0 = \{(6, \top)\} & \mathcal{R}_1 = \{1, \dots, 6\} \\ \mathbb{C}_1 = S_I(\mathbb{C}_0) = \{(6, \neg R_1), (7, \top), (8, \top)\} & \mathcal{R}_2 = \{1, \dots, 8\} \\ \mathbb{C}_2 = S_I(\mathbb{C}_1) = \{(6, \neg R_1 \land \neg R_2), (4, \neg R_2), (5, \neg R_2)\} \end{array}$

$$S_{I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

•
$$F(\mathcal{R}) = CP(\mathcal{R}_0, \mathcal{R} \setminus \mathcal{R}_0)$$

▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_0 -inductively reducible, and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_I^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{cccc} \mathcal{R}_0 \colon & 1 \colon 0 - x \to x & & 2 \colon \mathsf{s}(x) - 0 \to \mathsf{s}(x) & & 3 \colon \mathsf{s}(x) - \mathsf{s}(y) \to x - y \\ & 4 \colon \mathsf{p}(0) \to 0 & & 5 \colon \mathsf{p}(\mathsf{s}(x)) \to x \end{array}$

 $\begin{aligned} \mathcal{E}: & \text{ 6: } p(x - y) \approx p(x) - y \\ & 7: x - 0 \approx x \\ & \text{ 8: } p(x) - y \approx x - s(y) \\ & \mathbb{C}_0 = \{(6, \top)\} \\ & \mathbb{C}_1 = S_l(\mathbb{C}_0) = \{(6, \neg R_1), (7, \top), (8, \top)\} \\ & \mathbb{C}_2 = S_l(\mathbb{C}_1) = \{(6, \neg R_1 \land \neg R_2), (4, \neg R_2), (5, \neg R_2)\} \end{aligned}$

Definition Given TRS \mathcal{R}_0 ,

• defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$

Definition

- Given TRS \mathcal{R}_0 ,
 - defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
 - constructor symbols $C = \mathcal{F} \setminus D$

Definition Given TRS \mathcal{R}_0 ,

- defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
- constructor symbols $C = \mathcal{F} \setminus D$
- term $t = f(t_1, \ldots, t_n)$ is basic if $f \in \mathcal{D}$ and all $t_i \in \mathcal{T}(\mathcal{C}, \mathcal{V})$

Definition Given TRS \mathcal{R}_0 ,

- defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
- constructor symbols $\mathcal{C} = \mathcal{F} \setminus \mathcal{D}$
- ▶ term $t = f(t_1, ..., t_n)$ is basic if $f \in D$ and all $t_i \in T(C, V)$
- ▶ basic positions $\mathcal{B}(t) = \{p \in \mathcal{P}os(t) \mid t|_p \text{ is basic}\}$

Definition Given TRS \mathcal{R}_{0} ,

- defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
- constructor symbols $\mathcal{C} = \mathcal{F} \setminus \mathcal{D}$
- ▶ term $t = f(t_1, ..., t_n)$ is basic if $f \in D$ and all $t_i \in T(C, V)$
- ▶ basic positions $\mathcal{B}(t) = \{p \in \mathcal{P}os(t) \mid t|_p \text{ is basic}\}$

 \mathcal{R}_0 is quasi-reducible if no basic term is in normal form

Definition Given TRS \mathcal{R}_{0} ,

- defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
- constructor symbols $\mathcal{C} = \mathcal{F} \setminus \mathcal{D}$
- ▶ term $t = f(t_1, ..., t_n)$ is basic if $f \in D$ and all $t_i \in T(C, V)$
- ▶ basic positions $\mathcal{B}(t) = \{p \in \mathcal{P}os(t) \mid t|_p \text{ is basic}\}$

 \mathcal{R}_0 is quasi-reducible if no basic term is in normal form

Definition

For \mathcal{R}_0 quasi-reducible,

Definition Given TRS \mathcal{R}_{0} ,

- defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
- constructor symbols $\mathcal{C} = \mathcal{F} \setminus \mathcal{D}$
- ▶ term $t = f(t_1, ..., t_n)$ is basic if $f \in D$ and all $t_i \in T(C, V)$
- ▶ basic positions $\mathcal{B}(t) = \{p \in \mathcal{P}os(t) \mid t|_p \text{ is basic}\}$

 \mathcal{R}_0 is quasi-reducible if no basic term is in normal form

Definition

For \mathcal{R}_0 quasi-reducible,

▶ TRS \mathcal{R} is \mathcal{R}_0 -expandable if every ℓ for $\ell \rightarrow r \in \mathcal{R}$ has basic position

Definition Given TRS \mathcal{R}_{0} ,

- defined symbols $\mathcal{D} = \{f \mid f \text{ is root symbol of } \ell \text{ for } \ell \to r \in \mathcal{R}_0\}$
- constructor symbols $\mathcal{C} = \mathcal{F} \setminus \mathcal{D}$
- ▶ term $t = f(t_1, ..., t_n)$ is basic if $f \in D$ and all $t_i \in T(C, V)$
- ▶ basic positions $\mathcal{B}(t) = \{p \in \mathcal{P}os(t) \mid t|_p \text{ is basic}\}$

 \mathcal{R}_0 is quasi-reducible if no basic term is in normal form

Definition

For \mathcal{R}_0 quasi-reducible,

- ▶ TRS \mathcal{R} is \mathcal{R}_0 -expandable if every ℓ for $\ell \rightarrow r \in \mathcal{R}$ has basic position
- Expd(R₀, R) is set of CPs from overlaps (ℓ₁ → r₁, p, ℓ₂ → r₂)_µ where ℓ₁ → r₁ ∈ R₀, ℓ₂ → r₂ ∈ R, and p is basic in ℓ₂

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

• $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$

$$S_{\mathcal{R}I}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- ▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- ▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r \sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- *R* ∈ ℜ(ℂ) is terminating and *R*₀-expandable such that *R*₀ ⊆ *R* and *ℓσ* ↔^{*}_{*R*₀∪*ε*} *rσ* for all *ℓ* → *r* in *R* and ground substitutions *σ*

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{ll} \mathcal{R}_0: & 1: x+0 \to x \\ \mathcal{E}: & 3: (x+y)+z \approx x+(y+z) \end{array} \\ \end{array} \qquad \qquad 2: x+\mathsf{s}(y) \to \mathsf{s}(x+y) \\ \end{array}$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- *R* ∈ ℜ(ℂ) is terminating and *R*₀-expandable such that *R*₀ ⊆ *R* and *ℓσ* ↔^{*}_{*R*₀∪*ε*} *rσ* for all *ℓ* → *r* in *R* and ground substitutions *σ*

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{ll} \mathcal{R}_0: & 1: x+0 \to x & 2: x+\mathsf{s}(y) \to \mathsf{s}(x+y) \\ \mathcal{E}: & 3: (x+y)+z \approx x+(y+z) \end{array}$

 $\mathbb{C}_0 = \{(3, \top)\}$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- ▶ $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell\sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r\sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{ll} \mathcal{R}_0: & 1:x+0 \rightarrow x & 2:x+\mathsf{s}(y) \rightarrow \mathsf{s}(x+y) \\ \mathcal{E}: & 3:(x+y)+z \approx x+(y+z) \end{array}$

 $\mathbb{C}_0 = \{(3, \top)\} \qquad \qquad \mathcal{R}_1 = \{1, 2, 3\}$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- *R* ∈ ℜ(ℂ) is terminating and *R*₀-expandable such that *R*₀ ⊆ *R* and *ℓσ* ↔^{*}_{*R*₀∪*ε*} *rσ* for all *ℓ* → *r* in *R* and ground substitutions *σ*

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

 $\begin{array}{ll} \mathcal{R}_0: & 1: x+0 \to x & 2: x+\mathsf{s}(y) \to \mathsf{s}(x+y) \\ \mathcal{E}: & 3: (x+y)+z \approx x+(y+z) \end{array}$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r \sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

$$\begin{array}{ll} \mathcal{R}_{0}: & 1:x+0 \to x & 2:x+\mathsf{s}(y) \to \mathsf{s}(x+y) \\ \mathcal{E}: & 3:(x+y)+z \approx x+(y+z) \\ & 4:x+z \approx x+(0+z) & 5:\mathsf{s}(x+y)+z \approx x+(\mathsf{s}(y)+z) \\ \mathbb{C}_{0}=\{(3,\top)\} & \mathcal{R}_{1}=\{1,2,3\} \\ \mathbb{C}_{1}=S_{RI}(\mathbb{C}_{0})=\{(3,\neg R_{1}),(4,\top),(5,\top)\} \end{array}$$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r \sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{\top})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

$$\begin{array}{ll} \mathcal{R}_{0}: & 1:x+0 \to x & 2:x+\mathsf{s}(y) \to \mathsf{s}(x+y) \\ \mathcal{E}: & 3:(x+y)+z \approx x+(y+z) \\ & 4:x+z \approx x+(0+z) & 5:\mathsf{s}(x+y)+z \approx x+(\mathsf{s}(y)+z) \\ \mathbb{C}_{0}=\{(3,\top)\} & \mathcal{R}_{1}=\{1,2,3\} \\ \mathbb{C}_{1}=S_{RI}(\mathbb{C}_{0})=\{(3,\neg R_{1}),(4,\top),(5,\top)\} & \mathcal{R}_{2}=\{1,2,3'\} \end{array}$$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r \sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{ op})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

TA, NH.

$$\begin{array}{ll} \mathcal{R}_{0}: & 1: x + 0 \to x & 2: x + \mathsf{s}(y) \to \mathsf{s}(x + y) \\ \mathcal{E}: & 3: (x + y) + z \approx x + (y + z) \\ & 4: x + z \approx x + (0 + z) & 5: \mathsf{s}(x + y) + z \approx x + (\mathsf{s}(y) + z) \end{array}$$

$$\begin{array}{ll} \mathbb{C}_{0} = \{(3, \top)\} & \mathcal{R}_{1} = \{1, 2, 3\} \\ \mathbb{C}_{1} = S_{RI}(\mathbb{C}_{0}) = \{(3, \neg R_{1}), (4, \top), (5, \top)\} & \mathcal{R}_{2} = \{1, 2, 3'\} \end{array}$$

$$\begin{array}{ll} \mathbb{C}_{2} = S_{RI}(\mathbb{C}_{1}) = \{(3, \neg R_{1} \land \neg R_{2}), (4, \neg R_{2}), (5, \neg R_{2})\} \end{array}$$

$$S_{RI}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}$$

- $F(\mathcal{R}) = \operatorname{Expd}(\mathcal{R}_0, \mathcal{R})$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_0 -expandable such that $\mathcal{R}_0 \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow^*_{\mathcal{R}_0 \cup \mathcal{E}} r \sigma$ for all $\ell \to r$ in \mathcal{R} and ground substitutions σ

Theorem

If
$$\mathbb{C} = S_{RI}^n(\mathcal{E}^{ op})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Example

TA, NH

$$\begin{array}{ll} \mathcal{R}_{0}: & 1: x + 0 \rightarrow x & 2: x + \mathsf{s}(y) \rightarrow \mathsf{s}(x + y) \\ \mathcal{E}: & 3: (x + y) + z \approx x + (y + z) \\ & 4: x + z \approx x + (0 + z) & 5: \mathsf{s}(x + y) + z \approx x + (\mathsf{s}(y) + z) \\ \mathbb{C}_{0} = \{(3, \top)\} & \mathbb{C}_{2}[\mathbb{R}_{2}] = \varnothing, \ \mathsf{so} \ \mathcal{R}_{0} \vdash_{i} (x + y) + z \approx x + (y + z) \\ & \mathcal{R}_{1} = -(1, 2, 3) \\ \mathbb{C}_{1} = S_{RI}(\mathbb{C}_{0}) = \{(3, \neg R_{1}), (4, \top), (5, \top)\} & \mathcal{R}_{2} = \{1, 2, 3'\} \\ \mathbb{C}_{2} = S_{RI}(\mathbb{C}_{1}) = \{(3, \neg R_{1} \land \neg R_{2}), (4, \neg R_{2}), (5, \neg R_{2})\} \end{array}$$
Outline

Preliminaries

ompletion Standard Completion Ordered Completion

Inductive Theorem Proving Inductionless Induction Rewriting Induction

Automation

Conclusion

$$S_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ F(\mathcal{R})^{\top}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{\top}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure

$$\mathbb{C}_0 = \mathcal{E}^\top \quad \mathbb{C}_1 = S_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = S_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = S_{\mathcal{R}_3}(\mathbb{C}_2) \quad \dots$$

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{ op}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure $\mathbb{C}_{0} = \mathcal{E}^{\top} \quad \mathbb{C}_{1} = S_{\mathcal{R}_{1}}(\mathbb{C}_{0}) \quad \mathbb{C}_{2} = S_{\mathcal{R}_{2}}(\mathbb{C}_{1}) \quad \mathbb{C}_{3} = S_{\mathcal{R}_{3}}(\mathbb{C}_{2}) \quad \dots$

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{\top}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure

$$\mathbb{C}_0 = \mathcal{E}^ op \quad \mathbb{C}_1 = S_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = S_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = S_{\mathcal{R}_3}(\mathbb{C}_2) \quad \dots$$

Maximal Completion Approach

$$\bigvee_{(s\approx t,C)\in\mathbb{C}_k} (\neg C \vee \lceil s > t \rceil \vee \lceil t > s \rceil)$$

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{\top}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure

$$\mathbb{C}_0 = \mathcal{E}^{ op} \quad \mathbb{C}_1 = S_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = S_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = S_{\mathcal{R}_3}(\mathbb{C}_2) \quad \dots$$

Maximal Completion Approach

SAT/SMT encoding of $>_{kbo}$, $>_{lpo}$ or $>_{mpo}$

$$\bigvee_{\substack{(s\approx t,C)\in\mathbb{C}_k}} (\neg C \vee \lceil s > t \rceil \vee \lceil t > s \rceil)$$

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{\top}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure

$$\mathbb{C}_0 = \mathcal{E}^{\top} \quad \mathbb{C}_1 = S_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = S_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = S_{\mathcal{R}_3}(\mathbb{C}_2) \quad \dots$$

Maximal Completion Approach

maximize
$$\bigvee_{(s \approx t, C) \in \mathbb{C}_k} (\neg C \lor \lceil s > t \rceil \lor \lceil t > s \rceil)$$

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{\top}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure

$$\mathbb{C}_0 = \mathcal{E}^{ op} \quad \mathbb{C}_1 = S_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = S_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = S_{\mathcal{R}_3}(\mathbb{C}_2) \quad \dots$$

Maximal Completion Approach

$$maximize \quad \bigvee_{(s \approx t, C) \in \mathbb{C}_k} (\neg C \lor \ulcorner s > t \urcorner \lor \ulcorner t > s \urcorner) \quad subject \ to \quad \bigwedge_{i=1}^{\kappa} \neg \bigwedge \mathcal{R}_i$$

1.

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{\top}{\downarrow}_{\mathcal{R}}$$

Theorem

If $\mathbb{C} = S_{KB}^n(\mathcal{E}^{\top})$ and $\mathbb{C}[\![\mathcal{R}]\!] = \emptyset$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E} .

Procedure

$$\mathbb{C}_0 = \mathcal{E}^ op \quad \mathbb{C}_1 = \mathcal{S}_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = \mathcal{S}_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = \mathcal{S}_{\mathcal{R}_3}(\mathbb{C}_2) \quad \dots$$

Maximal Completion Approach to obtain assignment α

$$maximize \quad \bigvee_{(s \approx t, C) \in \mathbb{C}_k} (\neg C \lor \ulcorner s > t \urcorner \lor \ulcorner t > s \urcorner) \quad subject \ to \quad \bigwedge_{i=1}^n \neg \bigwedge \mathcal{R}_i$$

and let $\mathcal{R}_k = \{ s \to t \mid (s \simeq t, C) \in \mathbb{C}_k \text{ and } \alpha \models \lceil s > t \rceil \}$

k

Rewriting Induction

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow}_{\mathcal{R}} \ \cup \ \mathcal{F}(\mathcal{R})^{ op}{\downarrow}_{\mathcal{R}}$$

Theorem

If
$$\mathbb{C} = S^n_{\mathcal{R}I}(\mathcal{E}^{ op})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Procedure

$$\mathbb{C}_0 = \mathcal{E}^ op \quad \mathbb{C}_1 = S_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = S_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = S_{\mathcal{R}_3}(\mathbb{C}_2) \quad \dots$$

Maximal Completion Approach to obtain assignment α

$$\textit{maximize} \quad \bigvee_{(s \approx t, C) \in \mathbb{C}_k} (\neg C \lor \lceil s > t \rceil \lor \lceil t > s \rceil) \quad \textit{subject to} \quad \bigwedge_{i=1}^n \neg$$

and let $\mathcal{R}_k = \{ s \to t \mid (s \simeq t, C) \in \mathbb{C}_k \text{ and } \alpha \models \lceil s > t \rceil \}$

L

 $\bigwedge \mathcal{R}_i$

Rewriting Induction

$$\mathcal{S}_{\mathcal{R}}(\mathbb{C}) = (\mathbb{C} \ominus \mathcal{R}) \ \cup \ \mathbb{C}{\downarrow_{\mathcal{R}}} \ \cup \ \mathcal{F}(\mathcal{R})^{ op}{\downarrow_{\mathcal{R}}}$$

Theorem

If
$$\mathbb{C} = S_{\mathcal{R}I}^n(\mathcal{E}^{ op})$$
 and $\mathbb{C}[\![\mathcal{R}]\!] = \varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_0 \vdash_i \mathcal{E}$

Procedure

$$\mathbb{C}_0 = \mathcal{E}^ op \quad \mathbb{C}_1 = \mathcal{S}_{\mathcal{R}_1}(\mathbb{C}_0) \quad \mathbb{C}_2 = \mathcal{S}_{\mathcal{R}_2}(\mathbb{C}_1) \quad \mathbb{C}_3 = \mathcal{S}_{\mathcal{R}_3}(\mathbb{C}_2) \quad .$$

Maximal Completion Approach
to obtain assignment
$$\alpha$$

is maximizeton appropriate?
$$maximize \bigvee_{(s \approx t, C) \in \mathbb{C}_k} (\neg C \lor \lceil s > t \rceil \lor \lceil t > s \rceil) \quad subject \text{ to } \bigwedge_{i=1}^k \neg \bigwedge \mathcal{R}_i$$

and let $\mathcal{R}_k = \{s \to t \mid (s \simeq t, C) \in \mathbb{C}_k \text{ and } \alpha \models \lceil s > t \rceil\}$

. .

Preliminary Results

Completion

115 systems in mkb_{TT} distribution

	LPO	
	Maxcomp	Constraints
completed	86	51
failure	6	0
timeout	23	64

Preliminary Results

Completion

115 systems in mkb_{TT} distribution

	LPO	
	Maxcomp	Constraints
completed	86	51
failure	6	0
timeout	23	64

Rewriting Induction

103 systems from Dream Corpus of Inductive Conjectures

LPO
30
73

Summary

- constrained equation framework adds rewriting to maximal completion approach
- constrained equation framework allows for simple correctness proofs
- maximal completion was extended to ordered completion and inductive theorem proving

Summary

- constrained equation framework adds rewriting to maximal completion approach
- constrained equation framework allows for simple correctness proofs
- maximal completion was extended to ordered completion and inductive theorem proving

Further Work

- cover AC/normalized completion
- implement approach for ordered and AC completion
- automation of theorem proving: what to maximize?
- can completeness be expressed in framework?