Constrained Equations for Completion and the Like Progress Report

T. Aoto
N. Hirokawa
D. Klein
S. Winkler
Seminar 3
Computational Logic Group

April 25, 2012

Knuth-Bendix Completion

\mathcal{R} is confluent, terminating, reduced and $\approx_{\mathcal{E}}=\leftrightarrow_{\mathcal{R}}^{*}$

Knuth-Bendix Completion

$$
\begin{array}{ccc}
\succ \\
\text { reduction ordering }
\end{array}+\underset{\text { equations }}{\mathcal{E}} \quad \longrightarrow K B \quad \begin{gathered}
\mathcal{R} \\
\text { rewrite system }
\end{gathered}
$$

\mathcal{R} is confluent, terminating, reduced and $\approx_{\mathcal{E}}=\leftrightarrow_{\mathcal{R}}^{*}$
Example (Group Theory)

$$
\begin{aligned}
\mathrm{e} \cdot x & \approx x \\
\mathcal{E} \quad & \approx \mathrm{e} \\
& (x \cdot y) \cdot z
\end{aligned}
$$

Knuth-Bendix Completion

$$
\begin{array}{ccc}
\succ \\
\text { reduction ordering }
\end{array}+\underset{\text { equations }}{\mathcal{E}} \quad \longrightarrow K B \quad \underset{\text { rewrite system }}{\mathcal{R}}
$$

\mathcal{R} is confluent, terminating, reduced and $\approx_{\mathcal{E}}=\leftrightarrow_{\mathcal{R}}^{*}$
Example (Group Theory)

$$
\begin{array}{rlr}
\mathrm{e} \cdot x & \approx x \\
\mathcal{E} & x^{-} \cdot x & \approx \mathrm{e} \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & \\
\mathrm{e} \cdot x \rightarrow x & x \cdot \mathrm{e} \rightarrow x \\
x^{-} \cdot x \rightarrow \mathrm{e} & x \cdot x^{-} \rightarrow \mathrm{e} \\
\mathcal{R} \quad(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z) & x^{--} \rightarrow x \\
\mathrm{e}^{-} \rightarrow \mathrm{e} & (x \cdot y)^{-} \rightarrow y^{-} \cdot x^{-} \\
& x \cdot\left(x^{-} \cdot y\right) \rightarrow y
\end{array}
$$

Knuth-Bendix Completion

\mathcal{R} is confluent, terminating, reduced and $\approx_{\mathcal{E}}=\leftrightarrow_{\mathcal{R}}^{*}$
Example (Group Theory)

Knuth-Bendix Completion

\mathcal{R} is confluent, terminating, reduced and $\approx_{\mathcal{E}}=\leftrightarrow_{\mathcal{R}}^{*}$
Example (Group Theory)

$$
\begin{array}{rlrl}
\mathrm{e} \cdot x & \approx x & y \leftarrow \leftarrow_{\mathcal{R}}\left(x^{-} \cdot x\right)^{-} \cdot(\mathrm{e} \cdot(y \cdot \mathrm{e})) & \approx y \cdot \mathrm{e} \rightarrow \frac{1}{\mathcal{R}} y \\
x^{-} \cdot x & \approx \mathrm{e} \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot \mathrm{e} \rightarrow x \\
\mathrm{e} \cdot x & \rightarrow x & x \cdot x^{-} \rightarrow \mathrm{e} \\
x^{-} \cdot x & \rightarrow \mathrm{e} & x^{--} \rightarrow x \\
(x \cdot y) \cdot z & \rightarrow x \cdot(y \cdot z) & (x \cdot y)^{-} \rightarrow y^{-} \cdot x^{-} \\
\mathrm{e}^{-} & \rightarrow \mathrm{e} & x \cdot\left(x^{-} \cdot y\right) \rightarrow y
\end{array}
$$

Comparison of Completion Tools

\qquad
2

$$
=\mathrm{mkD} \mathrm{TT}
$$

ren

Comparison of Completion Tools

Aim 1: Combined Approach

$\mathrm{mkb}_{\text {TT }}$	maxcomp
uses selection heuristic to advance one branch	can advance several branches at
once	

Comparison of Completion Tools

Aim 1: Combined Approach

$\mathrm{mkb}_{\text {TT }}$	maxcomp
uses selection heuristic to advance one branch	can advance several branches at once
vulnerable to bad selection	more robust

Comparison of Completion Tools

Aim 1: Combined Approach

mkbTT	maxcomp	
uses selection heuristic to advance one branch	can advance several branches at once	
vulnerable to bad selection	more robust	
adds new CPs for one branch	can only add new CPs for all branches	

Comparison of Completion Tools

Aim 1: Combined Approach

$\mathrm{mkb}_{\text {TT }}$	maxcomp	
uses selection heuristic to advance one branch	can advance several branches at once	
vulnerable to bad selection	more robust	
adds new CPs for one branch	can only add new CPs for all branches	
interreduction of rules	no interreduction	

Comparison of Completion Tools

Aim 1: Combined Approach

$\mathrm{mkb}_{\text {TT }}$	maxcomp	
uses selection heuristic to advance one branch	can advance several branches at once	
vulnerable to bad selection	more robust	
adds new CPs for one branch	can only add new CPs for all branches	
interreduction of rules	no interreduction	
fewer equations	lots of equations	

Comparison of Completion Tools

Aim 1: Combined Approach

mkb	maxcomp
uses selection heuristic to advance one branch	can advance several branches at once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all branches
interreduction of rules	no interreduction
fewer equations	lots of equations
relies on existing proofs	simple correctness proof

Comparison of Completion Tools

Aim 1: Combined Approach

mkb	maxcomp
uses selection heuristic to advance one branch	can advance several branches at once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all branches
interreduction of rules	no interreduction
fewer equations	lots of equations
relies on existing proofs	simple correctness proof

Comparison of Completion Tools

Aim 1: Combined Approach

mkb	maxcomp
uses selection heuristic to advance one branch	can advance several branches at once
vulnerable to bad selection	more robust
adds new CPs for one branch	can only add new CPs for all branches
interreduction of rules	no interreduction
fewer equations	lots of equations
relies on existing proofs	simple correctness proof

Aim 2: Extensions
mkb ${ }_{\text {TT }}$ approach was extended to ordered completion, AC -completion how about maxcomp?

Outline

Preliminaries

Completion
Standard Completion
Ordered Completion

Inductive Theorem Proving Inductionless Induction
Rewriting Induction

Automation

Conclusion

 \qquad

[^0]保

$\begin{array}{r}\text { Outline } \\ \text { Prelim } \\ \text { Com } \\ \text { Ind } \\ \text { in }\end{array}$
15

Definition (termination constraint)

$$
C::=\ell \rightarrow r|\top| \perp|\neg C| C \vee C \mid C \wedge C
$$

Definition (termination constraint)

$$
C::=\ell \rightarrow r|\top| \perp|\neg C| C \vee C \mid C \wedge C
$$

for $\operatorname{TRS} \mathcal{R}$ define $\mathcal{R} \models C$ inductively:

$$
\begin{array}{ll}
\mathcal{R} \models \ell \rightarrow r \text { iff } \ell \rightarrow r \in \mathcal{R} & \mathcal{R} \models T \\
\mathcal{R} \not \models \perp & \mathcal{R} \models C_{1} \vee C_{2} \text { iff } \mathcal{R} \models C_{1} \text { or } \mathcal{R} \models C_{2} \\
\mathcal{R} \models \neg C \text { iff } \mathcal{R} \not \models C & \mathcal{R} \models C_{1} \wedge C_{2} \text { iff } \mathcal{R} \models C_{1} \text { and } \mathcal{R} \models C_{2}
\end{array}
$$

Definition (termination constraint)

$$
C::=\ell \rightarrow r|\top| \perp|\neg C| C \vee C \mid C \wedge C
$$

for $\operatorname{TRS} \mathcal{R}$ define $\mathcal{R} \models C$ inductively:

$$
\begin{array}{ll}
\mathcal{R} \models \ell \rightarrow r \text { iff } \ell \rightarrow r \in \mathcal{R} & \mathcal{R} \models T \\
\mathcal{R} \not \models \perp & \mathcal{R} \models C_{1} \vee C_{2} \text { iff } \mathcal{R} \models C_{1} \text { or } \mathcal{R} \models C_{2} \\
\mathcal{R} \models \neg C \text { iff } \mathcal{R} \not \models C & \mathcal{R} \models C_{1} \wedge C_{2} \text { iff } \mathcal{R} \models C_{1} \text { and } \mathcal{R} \models C_{2}
\end{array}
$$

Definition (constrained equalities)

- constrained equality $(s \approx t, C)$ is pair of equality $s \approx t$ and termination constraint C

Definition (termination constraint)

$$
C::=\ell \rightarrow r|\top| \perp|\neg C| C \vee C \mid C \wedge C
$$

for $\operatorname{TRS} \mathcal{R}$ define $\mathcal{R} \models C$ inductively:

$$
\begin{array}{ll}
\mathcal{R} \models \ell \rightarrow r \text { iff } \ell \rightarrow r \in \mathcal{R} & \\
\mathcal{R} \models \mathrm{~T} \\
\mathcal{R} \not \models \perp & \mathcal{R} \models C_{1} \vee C_{2} \text { iff } \mathcal{R} \models C_{1} \text { or } \mathcal{R} \models C_{2} \\
\mathcal{R} \models \neg C \text { iff } \mathcal{R} \nLeftarrow C & \mathcal{R} \models C_{1} \wedge C_{2} \text { iff } \mathcal{R} \models C_{1} \text { and } \mathcal{R} \models C_{2}
\end{array}
$$

Definition (constrained equalities)

- constrained equality $(s \approx t, C)$ is pair of equality $s \approx t$ and termination constraint C
- constrained equation system (CES) \mathbb{C} is set of constrained equalities

Notation

$$
\mathcal{E}^{\top}=\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\}
$$

Notation

$$
\mathcal{E}^{\top}=\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\}
$$

Example

$$
\begin{aligned}
& \mathcal{E}: \quad 1: s(p(x)) \approx x \quad 2: p(s(x)) \approx x \quad 3: s(x)+y \approx s(x+y) \\
& \mathcal{E}^{\top}=\{(1, T),(2, T),(3, T)\}
\end{aligned}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathcal{E}: \quad 1: s(p(x)) \approx x \quad 2: p(s(x)) \approx x \quad 3: s(x)+y \approx s(x+y) \\
& \mathcal{E}^{\top}=\{(1, T),(2, T),(3, T)\}
\end{aligned}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\}
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x \quad 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathcal{R}: & \mathrm{s}(\mathrm{p}(x)) \rightarrow x \quad \mathrm{~s}(x+y) \rightarrow \mathrm{s}(x)+y \\
\mathcal{E}^{\top}= & \{(1, \top),(2, \top),(3, \top)\} \\
\mathcal{E}^{\top} \llbracket \mathcal{R} \rrbracket= & \{1,2,3\}
\end{array}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\}
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x \quad 2: \mathrm{p}(\mathrm{~s}(x)) \approx x \quad 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathcal{R}: \quad & \mathrm{s}(\mathrm{p}(x)) \rightarrow x \quad \mathrm{~s}(x+y) \rightarrow \mathrm{s}(x)+y \\
\mathcal{E}^{\top}= & \{(1, \top),(2, \top),(3, \top)\} \\
\mathcal{E}^{\top} \llbracket \mathcal{R} \rrbracket= & \{1,2,3\} \\
\mathbb{C}= & \{(1, \mathrm{~s}(\mathrm{p}(x)) \rightarrow x),(2, \mathrm{~s}(x)+y \rightarrow \mathrm{~s}(x+y)),(3, \mathrm{~s}(x+y) \rightarrow \mathrm{s}(x)+y)\}
\end{aligned}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathcal{E}: \quad 1: s(p(x)) \approx x \quad 2: p(s(x)) \approx x \quad 3: s(x)+y \approx s(x+y) \\
& \mathcal{R}: \quad s(p(x)) \rightarrow x \quad s(x+y) \rightarrow s(x)+y \\
& \mathcal{E}^{\top}=\{(1, \top),(2, \top),(3, \top)\} \\
& \mathcal{E}^{\top} \llbracket \mathcal{R} \rrbracket=\{1,2,3\} \\
& \mathbb{C}=\{(1, \mathrm{~s}(p(x)) \rightarrow x),(2, s(x)+y \rightarrow s(x+y)),(3, s(x+y) \rightarrow s(x)+y)\} \\
& \mathbb{C} \llbracket \mathcal{R} \rrbracket=\{1,3\}
\end{aligned}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\}
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: s(p(x)) \approx x \quad 2: p(s(x)) \approx x & 3: s(x)+y \approx s(x+y) \\
\mathcal{R}: & s(p(x)) \rightarrow x \quad s(x+y) \rightarrow s(x)+y & \\
\mathcal{E}^{\top}= & \{(1, \top),(2, \top),(3, \top)\} & \\
\mathcal{E}^{\top} \llbracket \mathcal{R} \rrbracket=\{1,2,3\} & \\
\mathbb{C} & =\left\{(1,1),(2,3),\left(3,3^{\prime}\right)\right\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{1,3\} &
\end{array}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\} \quad \text { R-projection } \\
\mathbb{C} \ominus \mathcal{R} & =\{(s \approx t, C \wedge \neg \bigwedge \mathcal{R} \mid(s \approx t, C) \in \mathbb{C}\}
\end{aligned}
$$

Example

$$
\begin{array}{llll}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathcal{R}: & \mathrm{s}(\mathrm{p}(x)) \rightarrow x \quad \mathrm{~s}(x+y) \rightarrow \mathrm{s}(x)+y & \\
\mathcal{E}^{\top}=\{(1, \top),(2, \top),(3, \top)\} &
\end{array}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\} \quad \text { R-projection } \\
\mathbb{C} \ominus \mathcal{R} & =\{(s \approx t, C \wedge \neg \bigwedge \mathcal{R} \mid(s \approx t, C) \in \mathbb{C}\}
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x \quad 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathcal{R}: & \mathrm{s}(\mathrm{p}(x)) \rightarrow x \quad \mathrm{~s}(x+y) \rightarrow \mathrm{s}(x)+y \\
\mathcal{E}^{\top}= & \{(1, \top),(2, \top),(3, \top)\} \\
\mathcal{E}^{\top} \ominus \mathcal{R}= & \left\{\left(1, \neg\left(1 \wedge 3^{\prime}\right)\right),\left(2, \neg\left(1 \wedge 3^{\prime}\right)\right),\left(3, \neg\left(1 \wedge 3^{\prime}\right)\right)\right\}
\end{array}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\} \quad \text { R-projection } \\
\mathbb{C} \ominus \mathcal{R} & =\{(s \approx t, C \wedge \neg \bigwedge \mathcal{R} \mid(s \approx t, C) \in \mathbb{C}\} \\
\mathbb{C} \downarrow_{\mathcal{R}} & =\left\{\left(s \downarrow_{\mathcal{R}} \approx t \downarrow_{\mathcal{R}}, C \wedge \bigwedge \mathcal{R}\right) \mid(s \approx t, C) \in \mathbb{C} \text { and } s \downarrow_{\mathcal{R}} \neq t \downarrow_{\mathcal{R}}\right\}
\end{aligned}
$$

Example

$$
\begin{array}{llll}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathcal{R}: & \mathrm{s}(\mathrm{p}(x)) \rightarrow x \quad \mathrm{~s}(x+y) \rightarrow \mathrm{s}(x)+y & \\
\mathcal{E}^{\top}=\{(1, \top),(2, \top),(3, \top)\} &
\end{array}
$$

Notation

$$
\begin{aligned}
\mathcal{E}^{\top} & =\{(s \approx t, \top) \mid s \approx t \in \mathcal{E}\} \\
\mathbb{C} \llbracket \mathcal{R} \rrbracket & =\{s \approx t \mid(s \approx t, C) \in \mathbb{C} \text { and } \mathcal{R} \models C\} \quad \text { R-projection } \\
\mathbb{C} \ominus \mathcal{R} & =\{(s \approx t, C \wedge \neg \bigwedge \mathcal{R} \mid(s \approx t, C) \in \mathbb{C}\} \\
\mathbb{C} \downarrow_{\mathcal{R}} & =\left\{\left(s \downarrow_{\mathcal{R}} \approx t \downarrow_{\mathcal{R}}, C \wedge \bigwedge \mathcal{R}\right) \mid(s \approx t, C) \in \mathbb{C} \text { and } s \downarrow_{\mathcal{R}} \neq t \downarrow_{\mathcal{R}}\right\}
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x \quad 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathcal{R}: & \mathrm{s}(\mathrm{p}(x)) \rightarrow x \quad \mathrm{~s}(x+y) \rightarrow \mathrm{s}(x)+y \\
\mathcal{E}^{\top}= & \{(1, \top),(2, \top),(3, \top)\} \\
\mathcal{E}^{\top} \downarrow_{\mathcal{R}}= & \left\{\left(2,1 \wedge 3^{\prime}\right)\right\}
\end{array}
$$

Definition

- \mathcal{E} is \mathcal{R}-joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$

Definition

- \mathcal{E} is \mathcal{R}-joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- \mathcal{E} is ground \mathcal{R}-joinable if $s \sigma \downarrow_{\mathcal{R}} t \sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s \sigma, t \sigma$

Definition

- \mathcal{E} is \mathcal{R}-joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- \mathcal{E} is ground \mathcal{R}-joinable if $s \sigma \downarrow_{\mathcal{R}} t \sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s \sigma, t \sigma$

Definition mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C}, TRS \mathcal{R} $S(\mathbb{C}) \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable $\Longrightarrow \mathbb{C} \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable

Definition

- \mathcal{E} is \mathcal{R}-joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- \mathcal{E} is ground \mathcal{R}-joinable if $s \sigma \downarrow_{\mathcal{R}} t \sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s \sigma, t \sigma$

Definition mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C}, TRS \mathcal{R} $S(\mathbb{C}) \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable $\Longrightarrow \mathbb{C} \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C}_{\downarrow_{\mathcal{R}}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Definition

- \mathcal{E} is \mathcal{R}-joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- \mathcal{E} is ground \mathcal{R}-joinable if $s \sigma \downarrow_{\mathcal{R}} t \sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s \sigma, t \sigma$

Definition mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C}, TRS \mathcal{R} $S(\mathbb{C}) \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable $\Longrightarrow \mathbb{C} \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable

Definition

$$
\begin{aligned}
S_{\mathcal{R}}(\mathbb{C}) & =(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}} \\
S(\mathbb{C}) & =\bigcup_{\mathcal{R} \in \mathfrak{R}(\mathbb{C})} S_{\mathcal{R}}(\mathbb{C})
\end{aligned}
$$

Definition

- \mathcal{E} is \mathcal{R}-joinable if $s \downarrow_{\mathcal{R}} t$ for all $s \approx t \in \mathcal{E}$
- \mathcal{E} is ground \mathcal{R}-joinable if $s \sigma \downarrow_{\mathcal{R}} t \sigma$ for all $s \approx t \in \mathcal{E}$ and ground $s \sigma, t \sigma$

Definition mapping S from CESs to CESs is (ground) reduction if \forall CES \mathbb{C}, TRS \mathcal{R} $S(\mathbb{C}) \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable $\Longrightarrow \mathbb{C} \llbracket \mathcal{R} \rrbracket$ (ground) \mathcal{R}-joinable

Definition

$$
\begin{aligned}
S_{\mathcal{R}}(\mathbb{C}) & =(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}} \\
S(\mathbb{C}) & =\bigcup_{\mathcal{R} \in \mathfrak{R}(\mathbb{C})} S_{\mathcal{R}}(\mathbb{C})
\end{aligned}
$$

Lemma

S is a (ground) reduction.

Outline

Preliminaries

Completion
Standard Completion
Ordered Completion

Inductive Theorem Proving
Inductionless Induction

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\operatorname{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed $\left.\mathcal{E}\right)$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\operatorname{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Proof.

- $n=0$: if $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ then $\mathcal{E}=\varnothing$, thus $\mathcal{R}=\varnothing$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Proof.

- $n=0$: if $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ then $\mathcal{E}=\varnothing$, thus $\mathcal{R}=\varnothing$
- $n>0$:

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Proof.

- $n=0$: if $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ then $\mathcal{E}=\varnothing$, thus $\mathcal{R}=\varnothing$
- $n>0$:
- $\leftrightarrow_{\mathcal{R}}^{*}=\leftrightarrow_{\mathcal{E}}^{*}$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ by assumption and
$\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as $S_{K B}^{n}$ is reduction (by induction on n and Lemma)

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Proof.

- $n=0$: if $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ then $\mathcal{E}=\varnothing$, thus $\mathcal{R}=\varnothing$
- $n>0$:
- $\leftrightarrow_{\mathcal{R}}^{*}=\leftrightarrow_{\mathcal{E}}^{*}$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ by assumption and
$\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as $S_{K B}^{n}$ is reduction (by induction on n and Lemma)
- \mathcal{R} is terminating by assumption

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Proof.

- $n=0$: if $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ then $\mathcal{E}=\varnothing$, thus $\mathcal{R}=\varnothing$
- $n>0$:
- $\leftrightarrow_{\mathcal{R}}^{*}=\leftrightarrow_{\mathcal{E}}^{*}$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ by assumption and
$\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as $S_{K B}^{n}$ is reduction (by induction on n and Lemma)
- \mathcal{R} is terminating by assumption
- \mathcal{R} is confluent because for $\mathbb{C}^{\prime}=S_{K B}^{n-1}\left(\mathcal{E}^{\top}\right)$ the set $S_{K B}\left(\mathbb{C}^{\prime}\right) \llbracket \mathcal{R} \rrbracket=\varnothing$, so $\mathrm{CP}(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Proof.

- $n=0$: if $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ then $\mathcal{E}=\varnothing$, thus $\mathcal{R}=\varnothing$
- $n>0$:
- $\leftrightarrow_{\mathcal{R}}^{*}=\leftrightarrow_{\mathcal{E}}^{*}$, since $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ by assumption and
$\mathcal{E} \subseteq \downarrow_{\mathcal{R}}$ as $S_{K B}^{n}$ is reduction (by induction on n and Lemma)
- \mathcal{R} is terminating by assumption
- \mathcal{R} is confluent because for $\mathbb{C}^{\prime}=S_{K B}^{n-1}\left(\mathcal{E}^{\top}\right)$ the set $S_{K B}\left(\mathbb{C}^{\prime}\right) \llbracket \mathcal{R} \rrbracket=\varnothing$, so $\mathrm{CP}(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example
$\mathcal{E}: \quad 1: \mathrm{s}(\mathrm{p}(x)) \approx x$
2: $\mathrm{p}(\mathrm{s}(x)) \approx x$
3: $s(x)+y \approx s(x+y)$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example
$\mathcal{E}: \quad 1: s(p(x)) \approx x$
2: $\mathrm{p}(\mathrm{s}(x)) \approx x$
3: $s(x)+y \approx s(x+y)$
$\mathbb{C}_{0}=\{(1, T),(2, T),(3, T)\}$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example
$\mathcal{E}: \quad 1: s(p(x)) \approx x$
2: $\mathrm{p}(\mathrm{s}(x)) \approx x$
3: $s(x)+y \approx s(x+y)$
$\mathbb{C}_{0}=\{(1, T),(2, T),(3, T)\}$
$\mathcal{R}_{1}=\{1,2,3\}$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
& 4: x+y \approx \mathrm{~s}(\mathrm{p}(x)+y) & & \\
\mathbb{C}_{0}= & \{(1, \top),(2, \top),(3, \top)\} & & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{K B}\left(\mathbb{C}_{0}\right)=\left\{\left(1, \neg R_{1}\right),\left(2, \neg R_{1}\right),\left(3, \neg R_{1}\right),(4, \top)\right\} &
\end{array}
$$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
& 4: x+y \approx \mathrm{~s}(\mathrm{p}(x)+y) & & \\
\mathbb{C}_{0}= & \{(1, \top),(2, \top),(3, \top)\} & R_{1}=1 \wedge 2 \wedge 3 & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{K B}\left(\mathbb{C}_{0}\right)=\left\{\left(1, \neg R_{1}\right),\left(2, \neg R_{1}\right),\left(3, \neg R_{1}\right),(4, \top)\right\} &
\end{array}
$$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & \\
& 4: x+y: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathbb{C}_{0}= & \{(1, \top),(2, \top),(3, \top)\} & & \\
\mathbb{C}_{1}= & S_{K B}\left(\mathbb{C}_{0}\right)=\left\{\left(1, \neg R_{1}\right),\left(2, \neg R_{1}\right),\left(3, \neg R_{1}\right),(4, \top)\right\} & & \mathcal{R}_{1}=\{1,2,3\} \\
\mathcal{R}_{2}=\left\{1,2,3^{\prime}, 4^{\prime}\right\}
\end{array}
$$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & \\
& 4: x+y: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathbb{C}_{0}=\{(1, \top),(2, \top),(3, \top)\} & & & \\
\mathbb{C}_{1}= & S_{K B}\left(\mathbb{C}_{0}\right)=\left\{\left(1, \neg R_{1}\right),\left(2, \neg R_{1}\right),\left(3, \neg R_{1}\right),(4, \top)\right\} & & \mathcal{R}_{2}=\left\{1,2,3^{\prime}, 4^{\prime}\right\} \\
\mathbb{C}_{2}= & S_{K B}\left(\mathbb{C}_{1}\right)=\left\{\left(1, \neg R_{1} \wedge \neg R_{2}\right),\left(2, \neg R_{1} \wedge \neg R_{2}\right),\right. & & \\
& \left.\left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),(5, \top),(6, \top)\right\} & &
\end{array}
$$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example

$$
\begin{array}{rlrl}
\mathcal{E}: & 1: \mathrm{s}(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & \\
& 4: x+y: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
\mathbb{C}_{0}=\{(1, \top),(2, \top),(3, \top)\} & & & \\
\mathbb{C}_{1}= & S_{K B}\left(\mathbb{C}_{0}\right)=\left\{\left(1, \neg R_{1}\right),\left(2, \neg R_{1}\right),\left(3, \neg R_{1}\right),(4, \top)\right\} & & \mathcal{R}_{2}=\left\{1,2,3^{\prime}, 4^{\prime}\right\} \\
\mathbb{C}_{2}= & S_{K B}\left(\mathbb{C}_{1}\right)=\left\{\left(1, \neg R_{1} \wedge \neg R_{2}\right),\left(2, \neg R_{1} \wedge \neg R_{2}\right),\right. & & \\
& \left.\left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),(5, \top),(6, \top)\right\} & & \mathcal{R}_{3}=\mathcal{R}_{1} \cup\left\{4^{\prime}, 5,6^{\prime}\right\}
\end{array}
$$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example

$$
\begin{array}{rlrlr}
\mathcal{E}: & 1: s(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
& 4: x+y \approx \mathrm{~s}(\mathrm{p}(x)+y) & 5: \mathrm{p}(\mathrm{~s}(x)+y) \approx x+y & & 6: \mathrm{p}(x+y) \approx \mathrm{p}(x)+y \\
\mathbb{C}_{0}=\{(1, \top),(2, \top),(3, \top)\} & & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{K B}\left(\mathbb{C}_{0}\right)=\left\{\left(1, \neg R_{1}\right),\left(2, \neg R_{1}\right),\left(3, \neg R_{1}\right),(4, \top)\right\} & & \mathcal{R}_{2}=\left\{1,2,3^{\prime}, 4^{\prime}\right\} \\
\mathbb{C}_{2}= & S_{K B}\left(\mathbb{C}_{1}\right)=\left\{\left(1, \neg R_{1} \wedge \neg R_{2}\right),\left(2, \neg R_{1} \wedge \neg R_{2}\right),\right. & & \\
& \left.\left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),(5, \top),(6, \top)\right\} & & \mathcal{R}_{3}=\mathcal{R}_{1} \cup\left\{4^{\prime}, 5,6^{\prime}\right\} \\
\mathbb{C}_{3}= & S_{K B}\left(\mathbb{C}_{2}\right)=\left\{\left(1, \neg R_{1} \wedge \neg R_{2}\right),\left(2, \neg R_{1} \wedge \neg R_{2}\right),\right. & & \\
& \left.\left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2} \wedge \neg R_{3}\right),\left(5, \neg R_{3}\right),\left(6, \neg R_{3}\right)\right\}
\end{array}
$$

Definition

$$
S_{K B}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

$F(\mathcal{R})=\mathrm{CP}(\mathcal{R})$ and $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$ (for fixed \mathcal{E})
Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Example

$$
\begin{array}{rlrlr}
\mathcal{E}: & 1: s(\mathrm{p}(x)) \approx x & 2: \mathrm{p}(\mathrm{~s}(x)) \approx x & & 3: \mathrm{s}(x)+y \approx \mathrm{~s}(x+y) \\
& 4: x+y \approx s(\mathrm{p}(x)+y) & 5: \mathrm{p}(\mathrm{~s}(x)+y) \approx x+y & & 6: \mathrm{p}(x+y) \approx \mathrm{p}(x)+y \\
\mathbb{C}_{0}=\{(1, \top),(2, \top),(3, \top)\} & & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{K B}\left(\mathbb{C}_{0}\right)=\left\{\left(1, \neg R_{1}\right),\left(2, \neg R_{1}\right),\left(3, \neg R_{1}\right),(4, \top)\right\} & & \mathcal{R}_{2}=\left\{1,2,3^{\prime}, 4^{\prime}\right\} \\
\mathbb{C}_{2}= & S_{K B}\left(\mathbb{C}_{1}\right)=\left\{\left(1, \neg R_{1} \wedge \neg R_{2}\right),\left(2, \neg R_{1} \wedge \neg R_{2}\right),\right. & & \\
& \left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),(5, \top),\left(6, \top \mathbb{C}_{3}\left[\mathcal{R}_{3}\right]=\varnothing, \text { so } \mathcal{R}_{3} \text { convergent for } \mathcal{E}\right\} \\
\mathbb{C}_{3}= & S_{K B}\left(\mathbb{C}_{2}\right)=\left\{\left(1, \neg R_{1} \wedge \neg R_{2}\right),\left(2, \neg R_{1} \wedge \neg R_{2}\right),\right. & \\
& & \left.\left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2} \wedge \neg R_{3}\right),\left(5, \neg R_{3}\right),\left(6, \neg R_{3}\right)\right\}
\end{array}
$$

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow_{\mathcal{R}}^{*} t$ there is some v such that $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow_{\mathcal{R}}^{*} t$ there is some v such that $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms set of \succ-oriented ground instances of \mathcal{E} hat $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow_{\mathcal{R}}^{*} t$ there is some v such that $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$
S_{O}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R}, \mathbb{C})^{\top} \downarrow_{\mathcal{R}}
$$

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow_{\mathcal{R}}^{*} t$ there is some v such that $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$
S_{O}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R}, \mathbb{C})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R}, \mathbb{C})=\mathrm{CP}_{\triangleright}(\mathcal{R} \cup \mathbb{C} \llbracket \mathcal{R} \rrbracket)$

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow_{\mathcal{R}}^{*} t$ there is some v such that $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$
\underset{\text { extended critical pairs }}{S_{O}(\mathbb{C})=\left(\mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R}, \mathbb{C})^{\top} \downarrow_{\mathcal{R}} .\right.}
$$

- $F(\mathcal{R}, \mathbb{C})=\operatorname{CP} \curvearrowleft(\mathcal{R} \cup \mathbb{C} \llbracket \mathcal{R} \rrbracket)$

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow_{\mathcal{R}}^{*} t$ there is some v such that $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$
S_{O}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R}, \mathbb{C})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R}, \mathbb{C})=\mathrm{CP}_{\triangleright}(\mathcal{R} \cup \mathbb{C} \llbracket \mathcal{R} \rrbracket)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is totally terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$

Ordered Completion

Definition

- \mathcal{R} is ground convergent if \mathcal{R} is terminating and for all ground terms $s \leftrightarrow_{\mathcal{R}}^{*} t$ there is some v such that $s \rightarrow_{\mathcal{R}}^{*} v \leftarrow_{\mathcal{R}}^{*} t$
- $(\mathcal{E}, \mathcal{R})$ is ground convergent with respect to total reduction order \succ if $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground convergent

Definition

$$
S_{O}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R}, \mathbb{C})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R}, \mathbb{C})=\mathrm{CP}_{\triangleright}(\mathcal{R} \cup \mathbb{C} \llbracket \mathcal{R} \rrbracket)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is totally terminating with $\mathcal{R} \subseteq \leftrightarrow_{\mathcal{E}}^{*}$

Theorem
If $\mathbb{C}=S_{O}^{n}\left(\mathcal{E}^{\top}\right)$ and $S_{O}(\mathbb{C}) \llbracket \mathcal{R} \rrbracket=\mathbb{C} \llbracket \mathcal{R} \rrbracket$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $(\mathbb{C} \llbracket \mathcal{R} \rrbracket, \mathcal{R})$ is ground convergent for \mathcal{E}

Outline

Preliminaries

Completion

Standard Completion
Ordered Completion

Inductive Theorem Proving Inductionless Induction
Rewriting Induction

Inductionless Induction

Definition (inductive theory)

- $\mathcal{R}_{0} \vdash_{i} s \approx t$ if $s \sigma \leftrightarrow_{\mathcal{R}_{0}}^{*} t \sigma$ for all ground substitutions σ

Inductionless Induction

Definition (inductive theory)

- $\mathcal{R}_{0} \vdash_{i} s \approx t$ if $s \sigma \leftrightarrow_{\mathcal{R}_{0}}^{*} t \sigma$ for all ground substitutions σ
- $\mathcal{R}_{0} \vdash_{i} \mathcal{H}$ if $\mathcal{R}_{0} \vdash_{i} s \approx t$ for all $s \approx t$ in \mathcal{H}

Inductionless Induction

Definition (inductive theory)

- $\mathcal{R}_{0} \vdash_{i} s \approx t$ if $s \sigma \leftrightarrow_{\mathcal{R}_{0}}^{*} t \sigma$ for all ground substitutions σ
- $\mathcal{R}_{0} \vdash_{i} \mathcal{H}$ if $\mathcal{R}_{0} \vdash_{i} s \approx t$ for all $s \approx t$ in \mathcal{H}

Example

For \mathcal{R}_{0} being

$$
\begin{array}{rlrl}
0-x & \rightarrow x & \mathrm{~s}(x)-0 & \rightarrow \mathrm{~s}(x) \\
\mathrm{p}(0) & \rightarrow 0 & \mathrm{~s}(x)-\mathrm{s}(y) \rightarrow x-y \\
\mathrm{p}(\mathrm{~s}(x)) & \rightarrow x &
\end{array}
$$

we have $\mathcal{R}_{0} \vdash_{;} \mathrm{p}(x-y) \approx \mathrm{p}(x)-y$

Inductionless Induction

Definition (inductive theory)

- $\mathcal{R}_{0} \vdash_{i} s \approx t$ if $s \sigma \leftrightarrow_{\mathcal{R}_{0}}^{*} t \sigma$ for all ground substitutions σ
- $\mathcal{R}_{0} \vdash_{i} \mathcal{H}$ if $\mathcal{R}_{0} \vdash_{;} s \approx t$ for all $s \approx t$ in \mathcal{H}

Example

For \mathcal{R}_{0} being

$$
\begin{array}{rlrl}
0-x & \rightarrow x & \mathrm{~s}(x)-0 & \rightarrow \mathrm{~s}(x) \\
\mathrm{p}(0) & \rightarrow 0 & \mathrm{~s}(x)-\mathrm{s}(y) \rightarrow x-y \\
\mathrm{p}(\mathrm{~s}(x)) & \rightarrow x &
\end{array}
$$

we have $\mathcal{R}_{0} \vdash_{i} \mathrm{p}(x-y) \approx \mathrm{p}(x)-y\left(\right.$ but not $\left.\mathrm{p}(x-y) \leftrightarrow_{\mathcal{R}_{0}}^{*} \mathrm{p}(x)-y\right)$

Definition

- term t is \mathcal{R}_{0}-inductively reducible if for all ground substitutions σ term $t \sigma$ is \mathcal{R}_{0}-reducible

Definition

- term t is \mathcal{R}_{0}-inductively reducible if for all ground substitutions σ term $t \sigma$ is \mathcal{R}_{0}-reducible
- TRS \mathcal{R} is left- \mathcal{R}_{0}-inductively reducible if for all $\ell \rightarrow r$ in \mathcal{R} term ℓ is \mathcal{R}_{0}-inductively reducible

Definition

- term t is \mathcal{R}_{0}-inductively reducible if for all ground substitutions σ term $t \sigma$ is \mathcal{R}_{0}-reducible
- TRS \mathcal{R} is left- \mathcal{R}_{0}-inductively reducible if for all $\ell \rightarrow r$ in \mathcal{R} term ℓ is \mathcal{R}_{0}-inductively reducible

Lemma (Gramlich 90)

If $\mathcal{R}=\mathcal{R}_{0} \cup \mathcal{H}$ is terminating and left- \mathcal{R}_{0}-inductively reducible TRS and $\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{H}\right) \subseteq \downarrow_{\mathcal{R}}$ then $\mathcal{R}_{0} \vdash_{;} \mathcal{H}$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow \stackrel{\mathcal{R}}{0} \boldsymbol{U \mathcal { E }}_{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } s(x)-0 \rightarrow s(x) & \text { 3: } s(x)-s(y) \rightarrow x-y \\
& \text { 4: } p(0) \rightarrow 0 & \text { 5: } p(s(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } p(x-y) \approx p(x)-y &
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlll}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } s(x)-0 \rightarrow s(x) & \text { 3: } s(x)-s(y) \rightarrow x-y \\
& \text { 4: } p(0) \rightarrow 0 & \text { 5: } p(s(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } p(x-y) \approx p(x)-y &
\end{array}
$$

$$
\mathbb{C}_{0}=\{(6, \mathrm{~T})\}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } \mathrm{s}(x)-0 \rightarrow \mathrm{~s}(x) & \text { 3: } \mathrm{s}(x)-\mathrm{s}(y) \rightarrow x-y \\
\text { 4: } \mathrm{p}(0) \rightarrow 0 & \text { 5: } \mathrm{p}(\mathrm{~s}(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } \mathrm{p}(x-y) \approx \mathrm{p}(x)-y & & \\
& & \\
\mathbb{C}_{0}=\{(6, \top)\} & & \mathcal{R}_{1}=\{1, \ldots, 6\}
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } \mathrm{s}(x)-0 \rightarrow \mathrm{~s}(x) & \text { 3: } \mathrm{s}(x)-\mathrm{s}(y) \rightarrow x-y \\
\text { 4: } \mathrm{p}(0) \rightarrow 0 & \text { 5: } \mathrm{p}(\mathrm{~s}(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } \mathrm{p}(x-y) \approx \mathrm{p}(x)-y & & \\
& & \\
\mathbb{C}_{0}=\{(6, \top)\} & & \mathcal{R}_{1}=\{1, \ldots, 6\}
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{l}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } s(x)-0 \rightarrow s(x) & \text { 3: } s(x)-s(y) \rightarrow x-y \\
& \text { 4: } p(0) \rightarrow 0 & \text { 5: } p(s(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } p(x-y) \approx p(x)-y & & \\
& \mathbb{C}_{0}=\{(6, T)\} & & \\
& \mathbb{C}_{1}=S_{1}\left(\mathbb{C}_{0}\right)=\left\{\left(6, \neg R_{1}\right),(7, T),(8, \top)\right\} &
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow \stackrel{\mathcal{R}}{0} \boldsymbol{\cup \mathcal { E }}_{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } \mathrm{s}(x)-0 \rightarrow \mathrm{~s}(x) & \text { 3: } \mathrm{s}(x)-\mathrm{s}(y) \rightarrow x-y \\
& \text { 4: } \mathrm{p}(0) \rightarrow 0 & \text { 5: } \mathrm{p}(\mathrm{~s}(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } \mathrm{p}(x-y) \approx \mathrm{p}(x)-y & & \\
& \text { 7: } x-0 \approx x & \text { 8: } \mathrm{p}(x)-y \approx x-\mathrm{s}(y) & \\
\mathbb{C}_{0}=\{(6, \top)\} & & \mathcal{R}_{1}=\{1, \ldots, 6\} \\
\mathbb{C}_{1}=S_{l}\left(\mathbb{C}_{0}\right)=\left\{\left(6, \neg R_{1}\right),(7, \top),(8, \top)\right\} &
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow \stackrel{\mathcal{R}}{0} \boldsymbol{\cup \mathcal { E }}_{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } \mathrm{s}(x)-0 \rightarrow \mathrm{~s}(x) & \text { 3: } \mathrm{s}(x)-\mathrm{s}(y) \rightarrow x-y \\
& \text { 4: } \mathrm{p}(0) \rightarrow 0 & \text { 5: } \mathrm{p}(\mathrm{~s}(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } \mathrm{p}(x-y) \approx \mathrm{p}(x)-y & & \\
& \text { 7: } x-0 \approx x & \text { 8: } \mathrm{p}(x)-y \approx x-\mathrm{s}(y) & \\
\mathbb{C}_{0}=\{(6, \top)\} & & \mathcal{R}_{1}=\{1, \ldots, 6\} \\
\mathbb{C}_{1}=S_{l}\left(\mathbb{C}_{0}\right)=\left\{\left(6, \neg R_{1}\right),(7, \top),(8, \top)\right\} & \mathcal{R}_{2}=\{1, \ldots, 8\}
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow \stackrel{\mathcal{R}}{0} \boldsymbol{\cup \mathcal { E }}_{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } \mathrm{s}(x)-0 \rightarrow \mathrm{~s}(x) & \text { 3: } \mathrm{s}(x)-\mathrm{s}(y) \rightarrow x-y \\
& \text { 4: } \mathrm{p}(0) \rightarrow 0 & \text { 5: } \mathrm{p}(\mathrm{~s}(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } \mathrm{p}(x-y) \approx \mathrm{p}(x)-y & & \\
& \text { 7: } x-0 \approx x & \text { 8: } \mathrm{p}(x)-y \approx x-\mathrm{s}(y) & \\
\mathbb{C}_{0}=\{(6, \top)\} & & \mathcal{R}_{1}=\{1, \ldots, 6\} \\
\mathbb{C}_{1}=S_{l}\left(\mathbb{C}_{0}\right)=\left\{\left(6, \neg R_{1}\right),(7, \top),(8, \top)\right\} & \mathcal{R}_{2}=\{1, \ldots, 8\} \\
\mathbb{C}_{2}=S_{l}\left(\mathbb{C}_{1}\right)=\left\{\left(6, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),\left(5, \neg R_{2}\right)\right\} & \\
\hline
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\mathrm{CP}\left(\mathcal{R}_{0}, \mathcal{R} \backslash \mathcal{R}_{0}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating, left- \mathcal{R}_{0}-inductively reducible, and $\ell \sigma \leftrightarrow \stackrel{\mathcal{R}}{0} \boldsymbol{\cup \mathcal { E }}_{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{l}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & \text { 1: } 0-x \rightarrow x & \text { 2: } \mathrm{s}(x)-0 \rightarrow \mathrm{~s}(x) & \text { 3: } \mathrm{s}(x)-\mathrm{s}(y) \rightarrow x-y \\
& \text { 4: } \mathrm{p}(0) \rightarrow 0 & \text { 5: } \mathrm{p}(\mathrm{~s}(x)) \rightarrow x & \\
\mathcal{E}: & \text { 6: } \mathrm{p}(x-y) \approx \mathrm{p}(x)-y & & \\
& \text { 7: } x-0 \approx x & \text { 8: } \mathrm{p}(x)-y \approx x-\mathrm{s}(y) & \\
\mathbb{C}_{0}=\{(6, \top)\} & & \mathbb{C}_{2}\left[\mathcal{R}_{2} \rrbracket=\varnothing, \text { so } \mathcal{R}_{0} \vdash_{i} \mathrm{p}(x-y) \approx \mathrm{p}(x)-y\right. \\
\mathbb{C}_{1}=S_{l}\left(\mathbb{C}_{0}\right)=\left\{\left(6, \neg R_{1}\right),(7, \top),(8, \top)\right\} & \mathcal{R}_{2}=\{1, \ldots, 8\} \\
\mathbb{C}_{2}= & S_{l}\left(\mathbb{C}_{1}\right)=\left\{\left(6, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),\left(5, \neg R_{2}\right)\right\} & \\
\text { DK \& SW (Seminar 3) } & \text { Constrained Equations }
\end{array}
$$

Rewriting Induction

Definition
Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$

Rewriting Induction

Definition
Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$
- constructor symbols $\mathcal{C}=\mathcal{F} \backslash \mathcal{D}$

Rewriting Induction

Definition
Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$
- constructor symbols $\mathcal{C}=\mathcal{F} \backslash \mathcal{D}$
- term $t=f\left(t_{1}, \ldots, t_{n}\right)$ is basic if $f \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$

Rewriting Induction

Definition
Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$
- constructor symbols $\mathcal{C}=\mathcal{F} \backslash \mathcal{D}$
- term $t=f\left(t_{1}, \ldots, t_{n}\right)$ is basic if $f \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$
- basic positions $\mathcal{B}(t)=\left\{p \in \mathcal{P o s}(t)|t|_{p}\right.$ is basic $\}$

Rewriting Induction

Definition
Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$
- constructor symbols $\mathcal{C}=\mathcal{F} \backslash \mathcal{D}$
- term $t=f\left(t_{1}, \ldots, t_{n}\right)$ is basic if $f \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$
- basic positions $\mathcal{B}(t)=\left\{p \in \mathcal{P o s}(t)|t|_{p}\right.$ is basic $\}$
\mathcal{R}_{0} is quasi-reducible if no basic term is in normal form

Rewriting Induction

Definition
Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$
- constructor symbols $\mathcal{C}=\mathcal{F} \backslash \mathcal{D}$
- term $t=f\left(t_{1}, \ldots, t_{n}\right)$ is basic if $f \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$
- basic positions $\mathcal{B}(t)=\left\{p \in \mathcal{P o s}(t)|t|_{p}\right.$ is basic $\}$
\mathcal{R}_{0} is quasi-reducible if no basic term is in normal form

Definition

For \mathcal{R}_{0} quasi-reducible,

Rewriting Induction

Definition
Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$
- constructor symbols $\mathcal{C}=\mathcal{F} \backslash \mathcal{D}$
- term $t=f\left(t_{1}, \ldots, t_{n}\right)$ is basic if $f \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$
- basic positions $\mathcal{B}(t)=\left\{p \in \mathcal{P o s}(t)|t|_{p}\right.$ is basic $\}$
\mathcal{R}_{0} is quasi-reducible if no basic term is in normal form

Definition

For \mathcal{R}_{0} quasi-reducible,

- TRS \mathcal{R} is \mathcal{R}_{0}-expandable if every ℓ for $\ell \rightarrow r \in \mathcal{R}$ has basic position

Rewriting Induction

Definition

Given TRS \mathcal{R}_{0},

- defined symbols $\mathcal{D}=\left\{f \mid f\right.$ is root symbol of ℓ for $\left.\ell \rightarrow r \in \mathcal{R}_{0}\right\}$
- constructor symbols $\mathcal{C}=\mathcal{F} \backslash \mathcal{D}$
- term $t=f\left(t_{1}, \ldots, t_{n}\right)$ is basic if $f \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$
- basic positions $\mathcal{B}(t)=\left\{p \in \mathcal{P o s}(t)|t|_{p}\right.$ is basic $\}$
\mathcal{R}_{0} is quasi-reducible if no basic term is in normal form

Definition

For \mathcal{R}_{0} quasi-reducible,

- TRS \mathcal{R} is \mathcal{R}_{0}-expandable if every ℓ for $\ell \rightarrow r \in \mathcal{R}$ has basic position
- $\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$ is set of CPs from overlaps $\left(\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right)_{\mu}$ where $\ell_{1} \rightarrow r_{1} \in \mathcal{R}_{0}, \ell_{2} \rightarrow r_{2} \in \mathcal{R}$, and p is basic in ℓ_{2}

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlr}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x & 2: x+\mathrm{s}(y) \rightarrow \mathrm{s}(x+y) \\
\mathcal{E}: & 3:(x+y)+z \approx x+(y+z) &
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$

Example

$$
\begin{array}{rlr}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x & 2: x+\mathrm{s}(y) \rightarrow \mathrm{s}(x+y) \\
\mathcal{E}: & 3:(x+y)+z \approx x+(y+z) &
\end{array}
$$

$$
\mathbb{C}_{0}=\{(3, \top)\}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$

Example

$$
\begin{aligned}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x \\
\mathcal{E}: 3:(x+y)+z \approx x+(y+z) & 2: x+s(y) \rightarrow s(x+y) \\
& \\
\mathbb{C}_{0}=\{(3, \top)\} & \mathcal{R}_{1}=\{1,2,3\}
\end{aligned}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$

Example

$$
\begin{array}{rlr}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x & 2: x+\mathrm{s}(y) \rightarrow \mathrm{s}(x+y) \\
\mathcal{E}: & 3:(x+y)+z \approx x+(y+z) & \\
& & \\
\mathbb{C}_{0}=\{(3, \top)\} & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{R I}\left(\mathbb{C}_{0}\right)=\left\{\left(3, \neg R_{1}\right),(4, \top),(5, \top)\right\} &
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$

Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x & 2: x+s(y) \rightarrow s(x+y) \\
\mathcal{E}: & 3:(x+y)+z \approx x+(y+z) & & \\
& & 4: x+z \approx x+(0+z) & 5: s(x+y)+z \approx x+(s(y)+z) \\
\mathbb{C}_{0}= & \{(3, \top)\} & & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{R I}\left(\mathbb{C}_{0}\right)=\left\{\left(3, \neg R_{1}\right),(4, \top),(5, \top)\right\} &
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$

Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x & 2: x+s(y) \rightarrow s(x+y) \\
\mathcal{E}: & 3:(x+y)+z \approx x+(y+z) & & \\
& 4: x+z \approx x+(0+z) & 5: s(x+y)+z \approx x+(s(y)+z) \\
\mathbb{C}_{0}=\{(3, \top)\} & & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{R_{l}}\left(\mathbb{C}_{0}\right)=\left\{\left(3, \neg R_{1}\right),(4, \top),(5, \top)\right\} & & \mathcal{R}_{2}=\left\{1,2,3^{\prime}\right\}
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlrl}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x & 2: x+s(y) \rightarrow \mathrm{s}(x+y) \\
\mathcal{E}: & 3:(x+y)+z \approx x+(y+z) & & \\
& 4: x+z \approx x+(0+z) & 5: s(x+y)+z \approx x+(s(y)+z) \\
\mathbb{C}_{0}= & \{(3, \top)\} & & \mathcal{R}_{1}=\{1,2,3\} \\
\mathbb{C}_{1}= & S_{R I}\left(\mathbb{C}_{0}\right)=\left\{\left(3, \neg R_{1}\right),(4, \top),(5, \top)\right\} & \mathcal{R}_{2}=\left\{1,2,3^{\prime}\right\} \\
\mathbb{C}_{2}= & S_{R I}\left(\mathbb{C}_{1}\right)=\left\{\left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),\left(5, \neg R_{2}\right)\right\} & &
\end{array}
$$

Definition

For fixed \mathcal{R}_{0} and \mathcal{E}

$$
S_{R I}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

- $F(\mathcal{R})=\operatorname{Expd}\left(\mathcal{R}_{0}, \mathcal{R}\right)$
- $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ is terminating and \mathcal{R}_{0}-expandable such that $\mathcal{R}_{0} \subseteq \mathcal{R}$ and $\ell \sigma \leftrightarrow_{\mathcal{R}_{0} \cup \mathcal{E}}^{*} r \sigma$ for all $\ell \rightarrow r$ in \mathcal{R} and ground substitutions σ

Theorem
If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Example

$$
\begin{array}{rlr}
\mathcal{R}_{0}: & 1: x+0 \rightarrow x & 2: x+s(y) \rightarrow s(x+y) \\
\mathcal{E}: & 3:(x+y)+z \approx x+(y+z) & \\
& 4: x+z \approx x+(0+z) \quad 5: s(x+y)+z \approx x+(s(y)+z) \\
\mathbb{C}_{0}= & \{(3, \top)\} r\left(\mathbb{C}_{2} \llbracket \mathcal{R}_{2} \rrbracket=\varnothing \text {, so } \mathcal{R}_{0} \vdash_{i}(x+y)+z \approx x+(y+z)\right. \\
\mathbb{C}_{1}= & S_{R 1}\left(\mathbb{C}_{0}\right)=\left\{\left(3, \neg R_{1}\right),(4, \top),(5, \top)\right\} & \mathcal{R}_{2}=\left\{1,2,3^{\prime}\right\} \\
\mathbb{C}_{2}= & S_{R I}\left(\mathbb{C}_{1}\right)=\left\{\left(3, \neg R_{1} \wedge \neg R_{2}\right),\left(4, \neg R_{2}\right),\left(5, \neg R_{2}\right)\right\} &
\end{array}
$$

Completion

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.

Completion

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=S_{\mathcal{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Completion

Definition

$$
s_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem
If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.
Procedure how to find $\mathcal{R}_{1}, \mathcal{R}_{2} \cdot \mathcal{R}_{3}, \ldots$?

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=S_{\mathcal{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Completion

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=S_{\mathbb{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Maximal Completion Approach

$$
\bigvee_{(s \approx t, C) \in \mathbb{C}_{k}}(\neg C \vee\ulcorner s>t\urcorner \vee\ulcorner t>s\urcorner)
$$

Completion

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=s_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=s_{\mathbb{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Maximal Completion Approach

$$
\bigvee_{(s \approx t, C) \in \mathbb{C}_{k}}(\neg C \vee\ulcorner s>t\urcorner \vee\ulcorner t>s\urcorner)
$$

Completion

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=S_{\mathbb{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Maximal Completion Approach
maximize $\underset{(s \approx t, C) \in \mathbb{C}_{k}}{ }(\neg C \vee\ulcorner s>t\urcorner \vee\ulcorner t>s\urcorner)$

Completion

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{\mathcal{R B}}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathbb{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=s_{\mathbb{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Maximal Completion Approach

$$
\text { maximize } \bigvee_{(s \approx t, C) \in \mathbb{C}_{k}}(\neg C \vee\ulcorner s>t\urcorner \vee\ulcorner t>s\urcorner) \text { subject to } \bigwedge_{i=1}^{K} \neg \bigwedge \mathcal{R}_{i}
$$

Completion

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{K B}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then \mathcal{R} is convergent for \mathcal{E}.
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=S_{\mathcal{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Maximal Completion Approach
to obtain assignment α
maximize $\bigvee_{(s \approx t, C) \in \mathbb{C}_{k}}(\neg C \vee\ulcorner s>t\urcorner \vee\ulcorner t>s\urcorner)$ subject to $\bigwedge_{i=1}^{k} \neg \bigwedge \mathcal{R}_{i}$ and let $\mathcal{R}_{k}=\left\{s \rightarrow t \mid(s \simeq t, C) \in \mathbb{C}_{k}\right.$ and $\left.\alpha \models\ulcorner s>t\urcorner\right\}$

Rewriting Induction

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{R I}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=S_{\mathcal{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Maximal Completion Approach
to obtain assignment α
maximize $\bigvee_{(s \approx t, C) \in \mathbb{C}_{k}}(\neg C \vee\ulcorner s>t\urcorner \vee\ulcorner t>s\urcorner)$ subject to $\bigwedge_{i=1}^{k} \neg \bigwedge \mathcal{R}_{i}$
and let $\mathcal{R}_{k}=\left\{s \rightarrow t \mid(s \simeq t, C) \in \mathbb{C}_{k}\right.$ and $\left.\alpha \models\ulcorner s>t\urcorner\right\}$

Rewriting Induction

Definition

$$
S_{\mathcal{R}}(\mathbb{C})=(\mathbb{C} \ominus \mathcal{R}) \cup \mathbb{C} \downarrow_{\mathcal{R}} \cup F(\mathcal{R})^{\top} \downarrow_{\mathcal{R}}
$$

Theorem

If $\mathbb{C}=S_{R /}^{n}\left(\mathcal{E}^{\top}\right)$ and $\mathbb{C} \llbracket \mathcal{R} \rrbracket=\varnothing$ for $\mathcal{R} \in \mathfrak{R}(\mathbb{C})$ then $\mathcal{R}_{0} \vdash_{i} \mathcal{E}$
Procedure

$$
\mathbb{C}_{0}=\mathcal{E}^{\top} \quad \mathbb{C}_{1}=S_{\mathcal{R}_{1}}\left(\mathbb{C}_{0}\right) \quad \mathbb{C}_{2}=S_{\mathcal{R}_{2}}\left(\mathbb{C}_{1}\right) \quad \mathbb{C}_{3}=S_{\mathcal{R}_{3}}\left(\mathbb{C}_{2}\right) \quad \ldots
$$

Maximal Completion Approach to obtain assignment α
is maximization appropriate?

$$
\text { maximize } \bigvee_{(s \approx t, C) \in \mathbb{C}_{k}}(\neg C \vee\ulcorner s>t\urcorner \vee\ulcorner t>s\urcorner) \quad \text { subject to } \bigwedge_{i=1} \neg \bigwedge \mathcal{R}_{i}
$$

$$
\text { and let } \mathcal{R}_{k}=\left\{s \rightarrow t \mid(s \simeq t, C) \in \mathbb{C}_{k} \text { and } \alpha \models\ulcorner s>t\urcorner\right\}
$$

Preliminary Results

Completion
115 systems in mkb ${ }_{\text {TT }}$ distribution

	LPO	
	Maxcomp	Constraints
completed	86	51
failure	6	0
timeout	23	64

Preliminary Results

Completion

115 systems in mkb ${ }_{\text {TT }}$ distribution

	LPO	
	Maxcomp	Constraints
completed	86	51
failure	6	0
timeout	23	64

Rewriting Induction
103 systems from Dream Corpus of Inductive Conjectures

	LPO
success	30
timeout	73

Summary

- constrained equation framework adds rewriting to maximal completion approach
- constrained equation framework allows for simple correctness proofs
- maximal completion was extended to ordered completion and inductive theorem proving

Summary

- constrained equation framework adds rewriting to maximal completion approach
- constrained equation framework allows for simple correctness proofs
- maximal completion was extended to ordered completion and inductive theorem proving

Further Work

- cover AC/normalized completion
- implement approach for ordered and AC completion
- automation of theorem proving: what to maximize?
- can completeness be expressed in framework?

[^0]: ＝

