Automatic Proofs in Equational Logic Status Report

Thomas Sternagel, BSc.

Computational Logic Institute of Computer Science

University of Innsbruck

May 9, 2012

- Objective
- Preliminaries
- Recording Completion
- Implementation
- Live-Demo
- Current State
- Résumé

Objective

Objective

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.

Objective

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
- Equational logic (find proof tree in positive case).
- Knuth-Bendix completion (yielding decision procedure).

Objective

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
- Equational logic (find proof tree in positive case).
- Knuth-Bendix completion (yielding decision procedure).
- Study the relationships between these two methods.

Objective

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
- Equational logic (find proof tree in positive case).
- Knuth-Bendix completion (yielding decision procedure).
- Study the relationships between these two methods.
- Implement the results into an existing tool.

Objective

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
- Equational logic (find proof tree in positive case).
- Knuth-Bendix completion (yielding decision procedure).
- Study the relationships between these two methods.
- Implement the results into an existing tool.
- Possible extensions:
- Short proof trees.
- Proof trees for E where completion fails.
- Disproofs.

Preliminaries: Completion

deduce	$\frac{(E, R)}{(E \cup\{s \approx t\}, R)}$	if $s \leftarrow u \rightarrow t$	delete	$\frac{(E \cup\{s \approx s\}, R)}{(E, R)}$
orient	$\frac{(E \cup\{s \dot{\approx} t\}, R)}{(E, R \cup\{s \rightarrow t\})}$	if $s>t$	compose	$\frac{(E, R \cup\{s \rightarrow t\})}{(E, R \cup\{s \rightarrow u\})}$

Preliminaries: Completion

deduce	$\frac{(E, R)}{(E \cup\{s \approx t\}, R)}$	if $s \leftarrow u \rightarrow t$	delete	$\frac{(E \cup\{s \approx s\}, R)}{(E, R)}$
orient	$\frac{(E \cup\{s \dot{\approx} t\}, R)}{(E, R \cup\{s \rightarrow t)}$	if $s>t$	compose	$\frac{(E, R \cup\{s \rightarrow t\})}{(E, R \cup\{s \rightarrow u\})} \quad$ if $t \rightarrow u$
simplify	$\frac{(E \cup\{s \dot{\approx} t\}, R)}{(E \cup\{u \dot{\approx} t\}, R)}$	if $s \rightarrow u$	collapse	$\frac{(E, R \cup\{s \rightarrow t\})}{(E \cup\{u \approx t\}, R)} \quad$ if $s \rightrightarrows u$

Preliminaries: Equational Logic

[r] reflexivity

$$
\text { [s] symmetry } \quad \frac{s \approx t}{t \approx s}
$$

[t] transitivity $\frac{s \approx t, t \approx u}{s \approx u}$

$$
\frac{s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n}}{f\left(s_{1}, \ldots, s_{n}\right) \approx f\left(t_{1}, \ldots, t_{n}\right)}
$$

Preliminaries: Equational Logic

[r] reflexivity

$$
\overline{t \approx t}
$$

[a] application

[s] symmetry $\quad \frac{s \approx t}{t \approx s}$
[t] transitivity $\frac{s \approx t, t \approx u}{s \approx u}$
[c] congruence

$$
\frac{s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n}}{f\left(s_{1}, \ldots, s_{n}\right) \approx f\left(t_{1}, \ldots, t_{n}\right)}
$$

Example

$$
\begin{aligned}
& \mathrm{ff} \approx \mathrm{f} \text { [c] } \\
& E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \\
& E \vdash \mathrm{fg} f \approx \mathrm{fgg}
\end{aligned}
$$

Recording Completion

deduce	(E, R, H)	
	$\overline{(E \cup\{m: s \approx t\}, R, H \cup\{m: s \stackrel{j}{\leftarrow} u \xrightarrow{k} t\})}$	
orient/	$\frac{(E \cup\{i: s \dot{\approx} t\}, R, H)}{(E, R \cup\{i: s \rightarrow t\}, H)}$	if $s>t$
orient $_{r}$		if $t>s$
simplify	$\frac{(E \cup\{i: s \dot{\sim} t\}, R, H)}{(E \cup\{m: u \dot{\approx} t\}, R, H \cup\{m: u \leftarrow s \stackrel{i}{\rightarrow} t\})}$	if $s \xrightarrow{l} u$
delete	$\frac{\left(E \cup\{i: s \approx s\}, R, H \cup\left\{i: s \circ_{1} \vee \circ_{2} s\right\}\right)}{(E, R, H)}$	
compose	$\frac{(E, R \cup\{i: s \rightarrow t\}, H)}{(E, R \cup\{m: s \rightarrow u\}, H \cup\{m: s \xrightarrow{i} t \xrightarrow{\text { j }} u\})}$	if $t \xrightarrow{\text { j }} u$
collapse	$\frac{(E, R \cup\{i: s \rightarrow t\}, H)}{(E \cup\{m: u \approx t\}, R, H \cup\{m: u \stackrel{j}{\leftarrow} s \xrightarrow{i} t\})}$	if $s \xrightarrow{\rightrightarrows} \mathrm{j} u$

Recording Completion

deduce	(E, R, H)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\longrightarrow} t$
	$\overline{(E \cup\{m: s \approx t\}, R, H \cup\{m: s \stackrel{j}{\leftarrow} u \xrightarrow{k} t\})}$	
orient/	$\frac{(E \cup\{i: s \dot{\sim} t\}, R, H)}{(E, R \cup\{i: s \rightarrow t\}, H)}$	if $s>t$
orient $_{r}$	$\frac{\left(E \cup\{i: s \approx t\}, R, H \cup\left\{i: s \stackrel{j}{o}_{1} u o_{o}^{k} t\right\}\right)}{\left(E, R \cup\{i: t \rightarrow s\}, H \cup\left\{i: t\left(o_{2}^{k}\right)^{-1} u\left(o_{1}^{j}\right)^{-1} s\right\}\right)}$	if $t>s$
simplify	$\frac{(E \cup\{i: s \dot{\sim} t\}, R, H)}{(E \cup\{m: u \dot{\sim} t\}, R, H \cup\{m: u \leftarrow s \stackrel{i}{\rightarrow} t\})}$	if $s \xrightarrow{l} u$
delete	$\frac{\left(E \cup\{i: s \approx s\}, R, H \cup\left\{i: s \circ_{1} \vee \circ_{2} s\right\}\right)}{(E, R, H)}$	
compose	$\frac{(E, R \cup\{i: s \rightarrow t\}, H)}{(E, R \cup\{m: s \rightarrow u\}, H \cup\{m: s \xrightarrow{i} t \xrightarrow{j} u\})}$	if $t \xrightarrow{j} u$
collapse	$\frac{(E, R \cup\{i: s \rightarrow t\}, H)}{(E \cup\{m: u \approx t\}, R, H \cup\{m: u \stackrel{j}{\leftarrow} s \xrightarrow{i} t\})}$	if $s \xrightarrow{\exists j} u$
\rightarrow Rec	\rightarrow Compare \qquad Recall	ant \& Grow

Implementation

Implementation

Implementation

KBCV 1.0
 ~4100 LOC

termlib 1.2
 ~1700 LOC

- Indices
- Recording completion
- Performance optimization

Implementation

termlib 1.2
 ~1700 LOC

- Indices
- Recording completion
- Performance optimization

KBCV 1.7
 ~4600 LOC

- Enhanced automatic completion
- Equational logic proofs
- Certifiable output

Implementation

KBCV 1.0
 ~4100 LOC

$$
\begin{aligned}
& \text { termlib } 1.2 \\
& \sim 1700 \text { LOC }
\end{aligned}
$$

- Indices
- Recording completion
- Performance optimization

KBCV 1.7

~4600 LOC

- Enhanced automatic completion
- Equational logic proofs
- Certifiable output

	KBCV	MAXCOMP	MKBTT	Slothrop
completed	86	86	81	71
LS94_P1	\checkmark			
SK90_3.26	\checkmark			

Table: Experimental results on 115 systems.

Live-Demo

Current State

- Study the relationships between the two methods.

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool.

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark

Current State

- Study the relationships between the two methods.
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees.
- Proof trees for E where completion fails.
- Disproofs.

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees. ~
- Proof trees for E where completion fails.
- Disproofs.

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees. ~
- Proof trees for E where completion fails. ~
- Disproofs.

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees. ~
- Proof trees for E where completion fails. ~
- Disproofs. ~

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees. ~
- Proof trees for E where completion fails. ~
- Disproofs. ~

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees. ~
- Proof trees for E where completion fails. \sim
- Disproofs. ~

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark
successful	no	\checkmark

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees. ~
- Proof trees for E where completion fails. ~
- Disproofs. ~

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark
successful	no	\checkmark
not successful	yes	\sim

Current State

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
- Short proof trees. ~
- Proof trees for E where completion fails. \sim
- Disproofs. ~

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark
successful	no	\checkmark
not successful	yes	\sim
not successful	no	\times

Résumé

- Assignment: Automatic proofs in equational logic.
- Basics: Completion and equational logic.
- Recording completion.
- Implementation in KBCV.
- Demo.
- Current state.

More Information

Visualizing Knuth-Bendix Completion
Thomas Sternagel
Bachelor Thesis, University of Innsbruck, 2010.
R Automatic Proofs in Equational Logic
Thomas Sternagel
Master Seminar Report, University of Innsbruck, 2010.
囯 Automatic Proofs in Equational Logic (2) - Model Finding
Thomas Sternagel
Master Seminar Report, University of Innsbruck, 2011.
KBCV- Knuth-Bendix completion visualizer
Thomas Sternagel and Harald Zankl
System Description, IJCAR 2012, LNAI, 2012. To appear.
Recording completion for finding and certifying proofs in equational logic Thomas Sternagel, René Thiemann, Harald Zankl, Christian Sternagel IWC 2012, 2012. To appear.
» This tool will be of interest to all students and users of completion. «

Reviewer X
»1 downloaded and installed KBCV and found it a pleasure to use. The nice graphical user interface is intuitive and useful for experimentation. «
» This tool will be of interest to all students and users of completion. «

Reviewer X
»I downloaded and installed KBCV and found it a pleasure to use. The nice graphical user interface is intuitive and useful for experimentation. «

Reviewer Y

The talk is complete now!!! Thank you for your attention! Any questions?

