

Automatic Proofs in Equational Logic Status Report

Thomas Sternagel, BSc.

SIG

Computational Logic Institute of Computer Science University of Innsbruck

May 9, 2012

- Objective
- Preliminaries
- Recording Completion
- Implementation
- Live-Demo
- Current State
- Résumé

Objective

• Proving $E \vdash s \approx t$ is a fundamental problem in CS.

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
 - Equational logic (find proof tree in positive case).
 - Knuth-Bendix completion (yielding decision procedure).

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
 - Equational logic (find proof tree in positive case).
 - Knuth-Bendix completion (yielding decision procedure).
- Study the relationships between these two methods.

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
 - Equational logic (find proof tree in positive case).
 - Knuth-Bendix completion (yielding decision procedure).
- Study the relationships between these two methods.
- Implement the results into an existing tool.

- Proving $E \vdash s \approx t$ is a fundamental problem in CS.
- Two possibilities:
 - Equational logic (find proof tree in positive case).
 - Knuth-Bendix completion (yielding decision procedure).
- Study the relationships between these two methods.
- Implement the results into an existing tool.
- Possible extensions:
 - Short proof trees.
 - Proof trees for *E* where completion fails.
 - Disproofs.

Preliminaries: Completion

Preliminaries: Completion

-4/	

deduce	$\frac{(E,R)}{(E\cup\{s\approx t\},R)}$	$\text{if } s \leftarrow u \rightarrow t$	delete	$\frac{(E \cup \{s \approx s\}, R)}{(E, R)}$	
orient	$\frac{(E \cup \{s \stackrel{.}{\approx} t\}, R)}{(E, R \cup \{s \rightarrow t\})}$	if $s > t$	compose	$\frac{(E, R \cup \{s \to t\})}{(E, R \cup \{s \to u\})}$	$\text{if } t \to u$
simplify	$\frac{(E \cup \{s \stackrel{\scriptscriptstyle `}{\approx} t\}, R)}{(E \cup \{u \stackrel{\scriptscriptstyle '}{\approx} t\}, R)}$	$if \; s \to u$	collapse	$\frac{(E, R \cup \{s \to t\})}{(E \cup \{u \approx t\}, R)}$	$if \ s \stackrel{\neg}{\rightarrow} u$

Preliminaries: Completion

deduce

orient

simplify

Preliminaries: Equational Logic

Preliminaries: Equational Logic

Recording Completion

Recording Completion

deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	$ \text{if } s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t $
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \leftarrow u \stackrel{\kappa}{\to} t\})$	
orient ₁	$\frac{(E \cup \{i : s \approx t\}, R, H)}{(E, R \cup \{i : s \rightarrow t\}, H)}$	if s > t
orient _r	$\frac{(E \cup \{i: s \approx t\}, R, H \cup \{i: s \circ_1^j u \circ_2^k t\})}{(E, R \cup \{i: t \to s\}, H \cup \{i: t (\circ_2^k)^{-1} u (\circ_1^j)^{-1} s\})}$	if t > s
simplify	$\frac{(E \cup \{i : s \approx t\}, R, H)}{(E \cup \{m : u \approx t\}, R, H \cup \{m : u \leftarrow s \rightarrow t\})}$	$if \ s \xrightarrow{l} u$
delete	$\frac{(E \cup \{i: s \approx s\}, R, H \cup \{i: s \circ_1 v \circ_2 s\})}{(E, R, H)}$	
compose	$\frac{(E, R \cup \{i : s \to t\}, H)}{(E, R \cup \{m : s \to u\}, H \cup \{m : s \xrightarrow{i} t \xrightarrow{j} u\})}$	$if \ t \xrightarrow{j} u$
collapse	$\frac{(E, R \cup \{i : s \to t\}, H)}{(E \cup \{m : u \approx t\}, R, H \cup \{m : u \stackrel{j}{\leftarrow} s \stackrel{i}{\to} t\})}$	$if \ s \stackrel{\neg j}{\rightarrow} u$

Recording Completion

Implementation

termlib 1.2 ~1700 LOC

- Indices
- Recording completion
- Performance optimization

termlib 1.2 ~1700 LOC

- Indices
- Recording completion
- Performance optimization

- Enhanced automatic completion
- Equational logic proofs
- Certifiable output

- Indices
- Recording completion
- Performance optimization

~4600 LOC • Enhanced automatic completion

KBCV 1.7

- Equational logic proofs
- Certifiable output

	KBCV	MAXCOMP	MKBTT	Slothrop
completed	86	86	81	71
LS94_P1	\checkmark			
SK90_3.26	\checkmark			

Table: Experimental results on 115 systems.

Live-Demo

• Study the relationships between the two methods.

- $\bullet\,$ Study the relationships between the two methods. $\checkmark\,$
- Implement the results into an existing tool.

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark

- Study the relationships between the two methods. \checkmark
- \bullet Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees.
 - Proof trees for *E* where completion fails.
 - Disproofs.

- Study the relationships between the two methods. \checkmark
- \bullet Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees. \sim
 - Proof trees for *E* where completion fails.
 - Disproofs.

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees. \sim
 - Proof trees for E where completion fails. \sim
 - Disproofs.

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees. \sim
 - Proof trees for E where completion fails. \sim
 - Disproofs. ~

- Study the relationships between the two methods. \checkmark
- \bullet Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees. \sim
 - Proof trees for E where completion fails. \sim
 - Disproofs. \sim

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark

- Study the relationships between the two methods. \checkmark
- \bullet Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees. \sim
 - Proof trees for E where completion fails. \sim
 - Disproofs. \sim

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark
successful	no	\checkmark

- Study the relationships between the two methods. \checkmark
- Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees. \sim
 - Proof trees for E where completion fails. \sim
 - Disproofs. \sim

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark
successful	no	\checkmark
not successful	yes	\sim

- Study the relationships between the two methods. \checkmark
- \bullet Implement the results into an existing tool. \checkmark
- Possible extensions:
 - Short proof trees. \sim
 - Proof trees for E where completion fails. \sim
 - Disproofs. \sim

Completion	$E \vdash s \approx t$	
successful	yes	\checkmark
successful	no	\checkmark
not successful	yes	\sim
not successful	no	×

- Assignment: Automatic proofs in equational logic.
- Basics: Completion and equational logic.
- Recording completion.
- Implementation in KBCV.
- Demo.
- Current state.

More Information

Visualizing Knuth-Bendix Completion Thomas Sternagel Bachelor Thesis, University of Innsbruck, 2010.

Automatic Proofs in Equational Logic Thomas Sternagel Master Seminar Report, University of Innsbruck, 2010.

KBCV- Knuth-Bendix completion visualizer Thomas Sternagel and Harald Zankl System Description, <u>IJCAR 2012</u>, LNAI, 2012. To appear.

Recording completion for finding and certifying proofs in equational logic Thomas Sternagel, René Thiemann, Harald Zankl, Christian Sternagel IWC 2012, 2012. To appear.

Feedback

» This tool will be of interest to all students and users of completion. «

Reviewer X

»I downloaded and installed KBCV and found it a pleasure to use. The nice graphical user interface is intuitive and useful for experimentation.« Reviewer Y

Feedback

» This tool will be of interest to all students and users of completion. «

Reviewer X

»I downloaded and installed KBCV and found it a pleasure to use. The nice graphical user interface is intuitive and useful for experimentation.« Reviewer Y

The talk is complete now!!! Thank you for your attention! Any questions?