
Automatic Proofs in Equational Logic
Status Report

Thomas Sternagel, BSc.

Computational Logic
Institute of Computer Science

University of Innsbruck

May 9, 2012

http://cl-informatik.uibk.ac.at


Outline 2/12

• Objective
• Preliminaries
• Recording Completion
• Implementation
• Live-Demo
• Current State
• Résumé



Objective 3/12

• Proving E ` s ≈ t is a fundamental problem in CS.
• Two possibilities:

• Equational logic (find proof tree in positive case).
• Knuth-Bendix completion (yielding decision procedure).

• Study the relationships between these two methods.
• Implement the results into an existing tool.
• Possible extensions:

• Short proof trees.
• Proof trees for E where completion fails.
• Disproofs.



Objective 3/12

• Proving E ` s ≈ t is a fundamental problem in CS.

• Two possibilities:
• Equational logic (find proof tree in positive case).
• Knuth-Bendix completion (yielding decision procedure).

• Study the relationships between these two methods.
• Implement the results into an existing tool.
• Possible extensions:

• Short proof trees.
• Proof trees for E where completion fails.
• Disproofs.



Objective 3/12

• Proving E ` s ≈ t is a fundamental problem in CS.
• Two possibilities:

• Equational logic (find proof tree in positive case).
• Knuth-Bendix completion (yielding decision procedure).

• Study the relationships between these two methods.
• Implement the results into an existing tool.
• Possible extensions:

• Short proof trees.
• Proof trees for E where completion fails.
• Disproofs.



Objective 3/12

• Proving E ` s ≈ t is a fundamental problem in CS.
• Two possibilities:

• Equational logic (find proof tree in positive case).
• Knuth-Bendix completion (yielding decision procedure).

• Study the relationships between these two methods.

• Implement the results into an existing tool.
• Possible extensions:

• Short proof trees.
• Proof trees for E where completion fails.
• Disproofs.



Objective 3/12

• Proving E ` s ≈ t is a fundamental problem in CS.
• Two possibilities:

• Equational logic (find proof tree in positive case).
• Knuth-Bendix completion (yielding decision procedure).

• Study the relationships between these two methods.
• Implement the results into an existing tool.

• Possible extensions:
• Short proof trees.
• Proof trees for E where completion fails.
• Disproofs.



Objective 3/12

• Proving E ` s ≈ t is a fundamental problem in CS.
• Two possibilities:

• Equational logic (find proof tree in positive case).
• Knuth-Bendix completion (yielding decision procedure).

• Study the relationships between these two methods.
• Implement the results into an existing tool.
• Possible extensions:

• Short proof trees.
• Proof trees for E where completion fails.
• Disproofs.



Preliminaries: Completion 4/12

deduce (E ,R)

(E ∪ {s ≈ t},R)
if s ← u → t

orient (E ∪ {s
.
≈ t},R)

(E ,R ∪ {s → t}) if s > t

simplify (E ∪ {s
.
≈ t},R)

(E ∪ {u
.
≈ t},R)

if s → u

delete (E ∪ {s ≈ s},R)

(E ,R)

compose (E ,R ∪ {s → t})
(E ,R ∪ {s → u}) if t → u

collapse (E ,R ∪ {s → t})
(E ∪ {u ≈ t},R)

if s A→ u

simplify

delete E = ∅

complete

orient

compose

collapsededuce

to NF

new CPs

YES

choose
s ≈ t

to NF

to NF



Preliminaries: Completion 4/12

deduce (E ,R)

(E ∪ {s ≈ t},R)
if s ← u → t

orient (E ∪ {s
.
≈ t},R)

(E ,R ∪ {s → t}) if s > t

simplify (E ∪ {s
.
≈ t},R)

(E ∪ {u
.
≈ t},R)

if s → u

delete (E ∪ {s ≈ s},R)

(E ,R)

compose (E ,R ∪ {s → t})
(E ,R ∪ {s → u}) if t → u

collapse (E ,R ∪ {s → t})
(E ∪ {u ≈ t},R)

if s A→ u

simplify

delete E = ∅

complete

orient

compose

collapsededuce

to NF

new CPs

YES

choose
s ≈ t

to NF

to NF



Preliminaries: Completion 4/12

deduce (E ,R)

(E ∪ {s ≈ t},R)
if s ← u → t

orient (E ∪ {s
.
≈ t},R)

(E ,R ∪ {s → t}) if s > t

simplify (E ∪ {s
.
≈ t},R)

(E ∪ {u
.
≈ t},R)

if s → u

delete (E ∪ {s ≈ s},R)

(E ,R)

compose (E ,R ∪ {s → t})
(E ,R ∪ {s → u}) if t → u

collapse (E ,R ∪ {s → t})
(E ∪ {u ≈ t},R)

if s A→ u

simplify

delete E = ∅

complete

orient

compose

collapsededuce

to NF

new CPs

YES

choose
s ≈ t

to NF

to NF



Preliminaries: Equational Logic 5/12

[r] reflexivity
t ≈ t

[s] symmetry s ≈ t
t ≈ s

[t] transitivity s ≈ t, t ≈ u
s ≈ u

[a] application
lσ ≈ rσ

[c] congruence s1 ≈ t1, . . . , sn ≈ tn
f (s1, . . . , sn) ≈ f (t1, . . . , tn)

Example

E = {ff ≈ f, ggf ≈ g}
E ` fgf ≈ fgg

[a] ggff ≈ gf[c] fggff ≈ fgf[s] fgf ≈ fggff

ff ≈ f [c]
... [c]fggff ≈ fggf

...
... [t]fggf ≈ fgg [t]fggff ≈ fgg [t]fgf ≈ fgg



Preliminaries: Equational Logic 5/12

[r] reflexivity
t ≈ t

[s] symmetry s ≈ t
t ≈ s

[t] transitivity s ≈ t, t ≈ u
s ≈ u

[a] application
lσ ≈ rσ

[c] congruence s1 ≈ t1, . . . , sn ≈ tn
f (s1, . . . , sn) ≈ f (t1, . . . , tn)

Example

E = {ff ≈ f, ggf ≈ g}
E ` fgf ≈ fgg

[a] ggff ≈ gf[c] fggff ≈ fgf[s] fgf ≈ fggff

ff ≈ f [c]
... [c]fggff ≈ fggf

...
... [t]fggf ≈ fgg [t]fggff ≈ fgg [t]fgf ≈ fgg



Preliminaries: Equational Logic 5/12

[r] reflexivity
t ≈ t

[s] symmetry s ≈ t
t ≈ s

[t] transitivity s ≈ t, t ≈ u
s ≈ u

[a] application
lσ ≈ rσ

[c] congruence s1 ≈ t1, . . . , sn ≈ tn
f (s1, . . . , sn) ≈ f (t1, . . . , tn)

Example

E = {ff ≈ f, ggf ≈ g}
E ` fgf ≈ fgg

[a] ggff ≈ gf[c] fggff ≈ fgf[s] fgf ≈ fggff

ff ≈ f [c]
... [c]fggff ≈ fggf

...
... [t]fggf ≈ fgg [t]fggff ≈ fgg [t]fgf ≈ fgg



Recording Completion 6/12

deduce (E ,R,H)

(E ∪ {m : s ≈ t},R,H ∪ {m : s
j← u k→ t})

if s
j← u k→ t

orientl (E ∪ {i : s
.
≈ t},R,H)

(E ,R ∪ {i : s → t},H)
if s > t

orientr (E ∪ {i : s ≈ t},R,H ∪ {i : s
j
◦1 u

k◦2 t})

(E ,R ∪ {i : t → s},H ∪ {i : t (
k◦2)−1 u (

j
◦1)−1 s})

if t > s

simplify (E ∪ {i : s
.
≈ t},R,H)

(E ∪ {m : u
.
≈ t},R,H ∪ {m : u l← s i→ t})

if s l→ u

delete (E ∪ {i : s ≈ s},R,H ∪ {i : s ◦1 v ◦2 s})
(E ,R,H)

compose (E ,R ∪ {i : s → t},H)

(E ,R ∪ {m : s → u},H ∪ {m : s i→ t
j→ u})

if t
j→ u

collapse (E ,R ∪ {i : s → t},H)

(E ∪ {m : u ≈ t},R,H ∪ {m : u
j← s i→ t})

if s
Aj→ u

Record Compare Recall Plant & Grow



Recording Completion 6/12

deduce (E ,R,H)

(E ∪ {m : s ≈ t},R,H ∪ {m : s
j← u k→ t})

if s
j← u k→ t

orientl (E ∪ {i : s
.
≈ t},R,H)

(E ,R ∪ {i : s → t},H)
if s > t

orientr (E ∪ {i : s ≈ t},R,H ∪ {i : s
j
◦1 u

k◦2 t})

(E ,R ∪ {i : t → s},H ∪ {i : t (
k◦2)−1 u (

j
◦1)−1 s})

if t > s

simplify (E ∪ {i : s
.
≈ t},R,H)

(E ∪ {m : u
.
≈ t},R,H ∪ {m : u l← s i→ t})

if s l→ u

delete (E ∪ {i : s ≈ s},R,H ∪ {i : s ◦1 v ◦2 s})
(E ,R,H)

compose (E ,R ∪ {i : s → t},H)

(E ,R ∪ {m : s → u},H ∪ {m : s i→ t
j→ u})

if t
j→ u

collapse (E ,R ∪ {i : s → t},H)

(E ∪ {m : u ≈ t},R,H ∪ {m : u
j← s i→ t})

if s
Aj→ u

Record Compare Recall Plant & Grow



Recording Completion 6/12

deduce (E ,R,H)

(E ∪ {m : s ≈ t},R,H ∪ {m : s
j← u k→ t})

if s
j← u k→ t

orientl (E ∪ {i : s
.
≈ t},R,H)

(E ,R ∪ {i : s → t},H)
if s > t

orientr (E ∪ {i : s ≈ t},R,H ∪ {i : s
j
◦1 u

k◦2 t})

(E ,R ∪ {i : t → s},H ∪ {i : t (
k◦2)−1 u (

j
◦1)−1 s})

if t > s

simplify (E ∪ {i : s
.
≈ t},R,H)

(E ∪ {m : u
.
≈ t},R,H ∪ {m : u l← s i→ t})

if s l→ u

delete (E ∪ {i : s ≈ s},R,H ∪ {i : s ◦1 v ◦2 s})
(E ,R,H)

compose (E ,R ∪ {i : s → t},H)

(E ,R ∪ {m : s → u},H ∪ {m : s i→ t
j→ u})

if t
j→ u

collapse (E ,R ∪ {i : s → t},H)

(E ∪ {m : u ≈ t},R,H ∪ {m : u
j← s i→ t})

if s
Aj→ u

Record Compare Recall Plant & Grow



Implementation 7/12

KBCV 1.0

∼4100 LOC

termlib 1.2

∼1700 LOC

• Indices

• Recording completion

• Performance optimization

KBCV 1.7

∼4600 LOC

• Enhanced automatic completion

• Equational logic proofs

• Certifiable output

KBCV MAXCOMP MKBTT Slothrop
completed 86 86 81 71
LS94_P1 X
SK90_3.26 X

Table: Experimental results on 115 systems.



Implementation 7/12

KBCV 1.0

∼4100 LOC

termlib 1.2

∼1700 LOC

• Indices

• Recording completion

• Performance optimization

KBCV 1.7

∼4600 LOC

• Enhanced automatic completion

• Equational logic proofs

• Certifiable output

KBCV MAXCOMP MKBTT Slothrop
completed 86 86 81 71
LS94_P1 X
SK90_3.26 X

Table: Experimental results on 115 systems.



Implementation 7/12

KBCV 1.0

∼4100 LOC

termlib 1.2

∼1700 LOC

• Indices

• Recording completion

• Performance optimization

KBCV 1.7

∼4600 LOC

• Enhanced automatic completion

• Equational logic proofs

• Certifiable output

KBCV MAXCOMP MKBTT Slothrop
completed 86 86 81 71
LS94_P1 X
SK90_3.26 X

Table: Experimental results on 115 systems.



Implementation 7/12

KBCV 1.0

∼4100 LOC

termlib 1.2

∼1700 LOC

• Indices

• Recording completion

• Performance optimization

KBCV 1.7

∼4600 LOC

• Enhanced automatic completion

• Equational logic proofs

• Certifiable output

KBCV MAXCOMP MKBTT Slothrop
completed 86 86 81 71
LS94_P1 X
SK90_3.26 X

Table: Experimental results on 115 systems.



Implementation 7/12

KBCV 1.0

∼4100 LOC

termlib 1.2

∼1700 LOC

• Indices

• Recording completion

• Performance optimization

KBCV 1.7

∼4600 LOC

• Enhanced automatic completion

• Equational logic proofs

• Certifiable output

KBCV MAXCOMP MKBTT Slothrop
completed 86 86 81 71
LS94_P1 X
SK90_3.26 X

Table: Experimental results on 115 systems.



Live-Demo 8/12



Current State 9/12

• Study the relationships between the two methods.

X

• Implement the results into an existing tool.

X

• Possible extensions:
• Short proof trees.

∼

• Proof trees for E where completion fails.

∼

• Disproofs.

∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool.

X
• Possible extensions:

• Short proof trees.

∼

• Proof trees for E where completion fails.

∼

• Disproofs.

∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X

• Possible extensions:
• Short proof trees.

∼

• Proof trees for E where completion fails.

∼

• Disproofs.

∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees.

∼

• Proof trees for E where completion fails.

∼

• Disproofs.

∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees. ∼
• Proof trees for E where completion fails.

∼

• Disproofs.

∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees. ∼
• Proof trees for E where completion fails. ∼
• Disproofs.

∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees. ∼
• Proof trees for E where completion fails. ∼
• Disproofs. ∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees. ∼
• Proof trees for E where completion fails. ∼
• Disproofs. ∼

Completion E ` s ≈ t
successful yes X

successful no X
not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees. ∼
• Proof trees for E where completion fails. ∼
• Disproofs. ∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees. ∼
• Proof trees for E where completion fails. ∼
• Disproofs. ∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼

not successful no ×



Current State 9/12

• Study the relationships between the two methods. X
• Implement the results into an existing tool. X
• Possible extensions:

• Short proof trees. ∼
• Proof trees for E where completion fails. ∼
• Disproofs. ∼

Completion E ` s ≈ t
successful yes X
successful no X

not successful yes ∼
not successful no ×



Résumé 10/12

• Assignment: Automatic proofs in equational logic.
• Basics: Completion and equational logic.
• Recording completion.
• Implementation in KBCV.
• Demo.
• Current state.



More Information 11/12

Visualizing Knuth-Bendix Completion
Thomas Sternagel
Bachelor Thesis, University of Innsbruck, 2010.

Automatic Proofs in Equational Logic
Thomas Sternagel
Master Seminar Report, University of Innsbruck, 2010.

Automatic Proofs in Equational Logic (2) - Model Finding
Thomas Sternagel
Master Seminar Report, University of Innsbruck, 2011.

KBCV- Knuth-Bendix completion visualizer
Thomas Sternagel and Harald Zankl
System Description, IJCAR 2012, LNAI, 2012. To appear.

Recording completion for finding and certifying proofs in equational logic
Thomas Sternagel, René Thiemann, Harald Zankl, Christian Sternagel
IWC 2012, 2012. To appear.

http://cl-informatik.uibk.ac.at/teaching/smb/theses/TS2.pdf
http://cl-informatik.uibk.ac.at/teaching/ms/ws10-TS.pdf
http://cl-informatik.uibk.ac.at/teaching/ms/ss11-TS.pdf


Feedback 12/12

»This tool will be of interest to all students and
users of completion.«

Reviewer X

»I downloaded and installed KBCV and found it a
pleasure to use. The nice graphical user interface is
intuitive and useful for experimentation.«

Reviewer Y

The talk is complete now!!!
Thank you for your attention!

Any questions?



Feedback 12/12

»This tool will be of interest to all students and
users of completion.«

Reviewer X

»I downloaded and installed KBCV and found it a
pleasure to use. The nice graphical user interface is
intuitive and useful for experimentation.«

Reviewer Y

The talk is complete now!!!
Thank you for your attention!

Any questions?


