Equational Reasoning in

Saturation-Based Theorem Proving

Leo BachmairE’;: y
Harald Ganzinger?

February 19, 1998

E]

Contents

5.1.1 " Basic Concepts in Term Rewriting
5.1.2 .'_]fll_e Completion Procedwre

5.1.3 Ordgg_ed Rewriting

Superposition for First-Order Clauses_
6.1 Candidate Models and Counterexamples

6.2 RedundancX and Saturation

et e e e e e e e e e e e e e e

6.3 Theorem Proving Processes,

64 Dy .
6.5 §i_n_11211ﬁ_c§‘51_09:_ I T T

6.6 fPtrict Superposition

Sibiciin Seléction Stiateios

7.1 Marked Claused
7.2 Basic Superpositiorf L.

* Department of Computer Science, SUNY at Stony Brook, NY 11794, U.S.A., leo@cs.sunysb.edu.
 Max-Planck-Institut fiir Informatik, D-66123 Saarbriicken, Germany, hg@mpi-sb.mpg.de.

!

Harald Ganzinger
In this PDF version all (inline) definitions of notions are prefixed with a (hopefully) invisible ``!''. Prepending ``!'' to your search string gets you to the definition of the concept (in blue color). For example typing ``!ordered factoring'' into the find window warps you to the definition of this inference rule on the page 17.

The article has been typeset with the hyper package which marks cross references and external references by dashed blue boxes.

1 Introduction

Equational reasoning is fundamental in mathematics, logics, and many applications of formal meth-
ods in computer science. In this chapter we describe the theoretical concepts and results that form
the basis of state-of-the-art automated theorem provers for first-order clause logic with equality.
We mainly concentrate on refinements of paramodulation, such as the superposition calculus, that
have yielded the most promising results to date in automated equational reasoning.

We begin with some preliminary material in section & and then explain, in section &, why
resolution with the congruence axioms is an impractical theorem proving method for equational
logic. In section & we outline the main results about paramodulation—a more direct equational
inference rule. This section also contains a description of the modification method, which can
be used to demonstrate that the functional reflexivity axioms are redundant in the context of
paramodulation. The modification method is still significant for its application in non-local theorem
proving methods based on semantic tableaux or model elimination. In the later sections, we will
concentrate on refinements of paramodulation, e.g., by rewrite techniques. In sections & and 6, we
discuss completion and superposition and explain corresponding proof techniques for establishing
refutational completeness: proof normalization and reduction of counterexamples for candidate
models. In section i we present the basic theoretical results on superposition with subterm selection
strategies (that are implicit in constrained deduction formalisms). We conclude with a summary
and an outline of methods for superposition over built-in theories.

The highly optimized equational theorem proving methods outlined in this chapter today out-
perform the more traditional resolution-based or tableau-based methods. The recent automated
proof of the Robbins conjecture by McCune (1997) provides strong experimental evidence in this
regard. This success required clever prover engineering and heuristics, but as we intend to demon-
strate below, depended to an even larger degree on the insights provided by a long line of theoretical
research on paramodulation-based calculi and related deductive methods.

2 Preliminaries

We assume the usual notions and notations about equational clause logic. Clauses are disjunctions
of literals. The symbols V and — denote disjunction and negation, respectively. The empty clause
is denoted by the symbol L. Since disjunction is associative and commutative, clauses may be
viewed as multisets of literals. Clauses with at most one positive literal are called Horn clauses.
Horn clauses of the form —A; V...V —Ag V B will also be written as sequents Aq,..., Ay — B.
Satisfiability and logical consequence (denoted by the symbol |=) are defined in the usual way. For
simplicity, we assume that equality (denoted by the symbol &) is the only predicate. We speak of
an equality interpretation if & is interpreted as a congruence relation. We say that a set of clauses
N is (generally) satisfiable if it has a model; and equationally satisfiable if it has a model that is an
equality interpretation. (The distinction will only matter when we discuss the relation between non-
equational calculi, such as resolution, and equational calculi, such as paramodulation.) Equality
Herbrand interpretations are essentially congruences on ground terms over the given signature.

Substitutions will be denoted by the letters o and 7. The result of applying a substitution o
to an expression (e.g., a clause or term) F is denoted Eo. We write E[s]| to indicate that s is a
subterm of E at some position and (ambiguously) write E[t] for the result of replacing s by ¢ at
the indicated occurrence.

3 Resolution with Congruence Axioms

Saturation-based theorem proving in its modern form was invented by Robinson (1965h) when he
introduced the resolution calculus:

(Binary) Resolution
CVvVA DvV-B

(CV D)o

where o is the most general unifier of the atoms A and B.

(Positive) Factoring
CVAVB

(CV Ao

where o is the most general unifier of the atoms A and B.

Resolution is a refutationally complete theorem proving method: a contradiction (i.e., the empty
clause) can be deduced from any unsatisfiable set of clauses. The search for a contradiction proceeds
by saturating the given clause set, that is, systematically (and exhaustively) applying all inference
rules.

Resolution on ground clauses is a veysion of the cut rule restricted to atomic formulas, whereas
factoring is an instance of Weakening.h In fact, the refutational completeness of resolution for
propositional logic can be derived from the completeness of the sequent calculus; and Herbrand’s
theorem, which states that for any unsatisfiable set of non-ground clauses there is a finite set
of ground instances that is propositionally unsatisfiable, establishes a link between propositional
clauses and general clauses with variables. A key in the “lifting” argument is the existence (and
uniqueness) of a most general unifier for any two unifiable atoms or terms.

But resolution is not primarily a method for deciding the unsatisfiability of propositional for-

______ ! 1960), is that
unification, as a selection mechanism for inferences, provides an effective way of interleaving the two
processes: (i) the identification of suitable (ground) instances of clauses and (ii) a demonstration
of their unsatisfiability.

The obvious extension of resolution to first-order logic with equality consists of explicitly adding

congruence axioms that express the properties of equality. For instance, the set E of axioms

=T
TRY — YRT
TRY, Yz — IRz

expresses that equality is reflexive, symmetric, and transitive, i.e., an equivalence relation. In
addition, one needs functional substitutivity (or monotonicity) axioms of the form

zxy — flooz)=f(0y,.)

the cut-free sequent calculus. However, when the clauses to be refuted are viewed as additional non-logical axioms,
cuts can not be eliminated, but may be restricted to analytic cuts—the resolution inferences.

for all function symbols f in the given signature. A set of clauses N is equationally satisfiable if
and only if the set consisting of IV plus all the above axioms is satisfiable. Resolution can thus be
used to determine whether a clause set is equationally unsatisfiable, but is extremely prolific when
applied to the congruence axioms. For instance, there are infinitely many resolution inferences from
just the transitivity and monotonicity axioms.

Various improvements have been proposed. The monotonicity axioms are not needed for Skolem
functions, as they may be added to the original formulas, before any clause transformations (in-
cluding skolemization) are applied. The symmetry and transitivity axioms may be replaced by a
single commutation axiom

TRY ,TRZ—= Y2

as proposed by Brand; (1975). We denote by C the set of the reflexivity, commutation, and all
monotonicity axioms.

Other refinements involve selection functions that mark in every clause a possibly empty subset
of (occurrences of) negative literals (the selected literals). The following multi-premise variant of

resolution focusses on selected literals:

Resolution with selection

CivA, ... C,VA, DV-ByVv...V-B,
(Cl\/...\/Cn\/D)U

where n > 1 and o is the most general substitution for which A;c = B;o, for all i, such
that (i) none of the positive premises C; V A; contains a selected literal, and (ii) either the
indicated literals —B; are exactly the selected literals in the last (or negative) premise, or else
n = 1 and the negative premise contains no selected literal at all.

negative literals in a clause are selected and, hence, all positive premises (called “electrons”) and also
the conclusion must be positive clauses (without negative literals). The refutational completeness

The reflexivity axiom is the only congruence axiom that can be used as an electron in a hyper-
resolution inference. But if it is the only electron we obtain only instances of reflexivity that can
be ignored, such as

rr ury— f(ou)= f(o, 2,00
fG.oz o)=f(..,x,...)
In other words, a hyper-resolution inference is redundant if all its premises are congruence axioms.
But hyper-resolution still provides only a very weak control on the proof search for equational
problems. For example, even if all the input clauses (other than congruence axioms) are ground
unit equations, one can usually not only derive an unbounded number of equational consequences
by hyper-resolution, but derive the same equation in many different ways.

4 Paramodulation

lems with resolution-based approaches to equality. The paramodulation inference is a clausal form
of the Leibniz law for the replacement of equals by equals, combined with unification:

Paramodulation
CVs~t Dlul

(C Vv D[t])o

where ¢ is the most general unifier of s and wu.

The conclusion results from replacing an indicated occurrence of uo = so in the second premise
by the term to and adding “side conditions” Co. In descriptions of paramodulation calculi one
usually identifies the symmetric equations st and t~ s, so that one may also replace to by so.
The paramodulation calculus P also includes the (positive) factoring rule, plus another inference
rule that encodes resolution with the reflexivity axiom:

Reflexivity resolution
CVs#t

Co

where o is the most general unifier of s and ¢.

One of the aims of Robinson and Wog (1969) was to design a more “immediate” inference
system that combined several resolution steps involving congruence axioms, but ignored the in-
termediate results, so as to achieve better “convergence” of the saturation process (meaning fewer
derived clauses). Unfortunately, the claims for improved convergence are unfounded for unrestricted

is more effective, but incomplete. It is applied when the context C' in the first premise is empty,
u = so, and the subterm to is in some sense simpler (e.g., shorter) than so, and has the side-effect
that the second premise is deleted. Demodulation is an example of simplification, a concept that
is of fundamental importance in automated theorem proving, but difficult to formalize.

4.1 The Functional Reflexivity Equations

The refutational completeness of paramodulation was initially only known for functionally reflexive
clauses sets. A set of clauses N is called functionally reflexive if it contains, for each n-ary function
symbol f, a corresponding instance f(z1,...,2,)= f(x1,...,2,) of the reflexivity axiom, with
pairwise different variables x;. Let us denote this set of functional reflexivity equations by F.

THEOREM 1 (ROBINSON AND Wos, 1969) If N is a functionally reflevive set of clauses that is

----------------- =

closed under P, then N is equationally satisfiable if and only if it does not contain the empty
clause.

Proof. Let M be N \ F, the set N without the functional reflexivity equations. Observe that any
clause that can be derived by hyper-resolution (with factoring) from M U C can also be derived by
inferences in P from N. For instance, any resolution inference with a monotonicity axiom

CVsxt zry— f(...,z,..)= f(...,y,...)
CV f(o..ysy.)=f(..t...)

can be simulated by paramodulation into a functional reflexivity equation

CVs~t f(...,x,..)=f(...,z,...)
CVf(..ps,..)=f(...t,...) '

whereas a hyper-resolution

CVsxct DVurv Ry, rRz2—>YRZ
(CVDVtrv)o

with the commutation axiom (and most general unifier o of s and) is matched by a paramodulation

inference
CVs~t DVu=v

(CVDVtru)o

Hyper-resolution inferences in which all the premises are clauses in M correspond to sequences of
paramodulations inferences followed by reflexivity resolution steps. O

The significance of the theorem, at first sight, seems to lie in the fact that no explicit inferences
with the commutation and monotonicity axioms are required. But if we inspect the proof, we re-
alize that paramodulation in the presence of the functional reflexivity equations is actually a much
more prolific inference mechanism than hyper-resolution in the presence of the congruence axioms.
Observe that hyper-resolution with the monotonicity axioms requires only paramodulations into
subterms (variables) of functional reflexivity equations, whereas other hyper-resolutions need only
paramodulations at the top-most position of terms. Thus, paramodulation inferences into subterms
of input clauses actually represent additional inferences with no analogous hyper-resolution infer-
ences! Moreover, the functional reflexivity equations are instances of, and hence subsumed by, the
reflexivity axiom. If they were really needed, the paramodulation calculus would not be compatible
with the eager elimination of subsumed clauses—another disadvantage compared to resolution.

The technical reason for introducing the functional reflexivity equations is that they enable
lifting. For resolution lifting is straightforward: if C’ and D’ are ground instances of C' and
D, respectively, then any resolvent G’ that can be obtained from C’ and D’ is an instance of a
corresponding resolvent G from C' and D. That is, we may either first instantiate C' and D and
then resolve; or else first resolve C' and D, and then instantiate the conclusion of the inference.
This commutation property does not hold for paramodulation. Consider the inference

arb f(f(a))=c
f(f(b))=c

where the second premise is an instance of f(x)~c via the substitution [f(a)/z]. There is no
paramodulation inference from a~b and f(z)=~c with a conclusion from which f(f(b))= ¢ can
be obtained by instantiation. The problem is that the ground inference replaces a subterm in the
“substitution part” of the instantiated clause, (f(z)=c)[f(a)/z]. The functional reflexivity equa-
tions allow further instantiation of clauses. For example, we can get f(a)= f(b) by paramodulation
into the variable x of f(x)= f(z). The additional inference, again into a variable,

fla)=f(b) flz)~c

~—~

shows that lifting is then possible.

The functional reflexivity equations are only useful for paramodulation into variables. Such
inferences are not constrained by unification and are difficult to control. In most automated theorem
provers they are simply ignored, though it was not clear whether this compromised the completeness
of the paramodulation calculus.

In spite (or, perhaps, because) of the serious drawbacks of paramodulation, the paper by Robin?

similar to paramodulation, but more practical.

The first key results were the proofs that (i) the functional reflexivity equations are not needed
and that, more generally, (ii) paramodulation into variables is unnecessary. Further improvements
were obtained in the following areas:

Increasing the filtering effect of unification.

Constraining symmetry. In paramodulation the equality predicate is treated symmetrically,
so that either side of an (instantiated) equations can be replaced by the other side. Term rewriting
restricts replacements to one direction, when possible.

Literal selection. Selection functions provide better search control for resolution, but are even
more desirable for paramodulation, as any positive equation of a clause may have to be paramod-
ulated into any (positive or negative) equation of any other clause.

Term selection. Since all subterms in a clause are possible candidates for replacement via
paramodulation, the inherent branching factor in the proof search may be huge. The problem
is exacerbated by the instantiation of subterms that tends to produce larger and larger terms.
Term selection strategies are an attempt to alleviate these problems.

Simplification. Simplification of formulas and elimination of redundant formulas are essential
components of automated theorem provers, designed to constrain the proof search. In fact, in
most successful automated provers simplification is the primary mode of computation, whereas
expansive deduction rules are used only sparingly. Finding the right combination of deduction and
simplification is a fundamental issue in automated deduction.

4.2 Brand’s Modification Method

reflexivity axioms. His modification method transforms a given set of clauses N to a set N’, such
that N U C is satisfiable if and only if N’ U{z~x} is satisfiable; and, hence, eliminates all equality
axioms except reflexivity. The redundancy of the functional reflexivity equations is obtained as a
side effect.

The transformation proceeds in two steps. First, nested non-variable subterms are eliminated
by introducing new auxiliary variables and corresponding defining equations. (The new variables
may be viewed as names of subterms.) For example, the clause z * i(z)~1 V a0 contains a
nested subterm i(x), that is eliminated by introducing a new variable y and replacing the clause by
i(z)%¢y Vax*xy~1V xx~0. This subterm abstraction step is repeated for other nested subterms.
The result of the transformation is a flat clause in which only variables occur as arguments of
function symbols. It can be shown, by a rather elementary argument about canonical representa-
tions of substitutions (that will reappear in a refined form below), that one can dispense with the
monotonicity axioms in testing satisfiability of flat clauses.

LEMMA 1 (BRAND, 1978) If N is a set of flat clauses, then N U C is satisfiable if and only if NUE

is satisfiable.

Proof. Let I be a Herbrand model for N U E. Then =25 is an equivalence relation on ground terms.
Moreover, for any ground term t, let ¢ be some arbitrary, but fixed, representative in the equivalence
class of t modulo ~;. We construct a new Herbrand interpretation I (with the same domain as I') by
taking ~; to be ~; and defining a function f; on ground terms by f;(t1,...,tm) = flt1, . tm),
for every function symbol f. It can easily be proved that the new interpretation I satisfies the
congruence axioms C.

Let now o be any ground substitution and define the substitution 6 by & = xo. Then

f[($157"'7xk5) :f($10-7"'7xk35-) :ff($10-7"°7x]€0-)

and xzo~yxG. Therefore, the values of a flat term u in the interpretations I and I and under
assignments ¢ and o, respectively, are equivalent. Thus, if A is a flat equation then I, = A iff
I,o = A. Since I is a model of N, we have I,6 |= C for all clauses C' in N. Consequently, we also
have I, o = C. In short, I is a model of N, which completes the proof. O

The key idea of the proof is to represent a substitution o by a distinguished representative ¢ from
which the truth value of the o-instance of a clause can be inferred. If no nested function symbols

occur, the terms f(¢) and f(t) need not be equivalent.

The second transformation step eliminates the commutation axiom by splitting all positive
equations via the introduction of so-called link variables. More specifically, a clause C' V s=t is
replaced by two clauses C' V s#x Vi~z and C'V s~z V t%z, where x is a new variable. Any
remaining positive equations in the new clauses are split in a similar way. The final clauses are
called ST-forms.

For example, the above clause yields four transformed clauses (i(x) %y V zxy#%z V xu V

~zVO0ru), (i(z)fyVexygzVaexuVilxzV0%u), (i(z)dyVexyxzVaeiuV1lgzV
O~u), and (i(z)s¢yVaerxy~zVaeruV1gzV0zku).

The ST-forms of a clause are essentially obtained by resolution (modulo the symmetry of =)

with the commutation law.

satisfiable if, and only if, it does not contain the empty clause.

Proof. By the preceding lemma, the set NV U C is satisfiable if, and only if, the transformed set
N’ U {z=~x} is satisfiable. It can be shown that resolution inferences with clauses in N'—for a
specific selection strategy—can be simulated by paramodulation with clauses in N. (On the ground
level, the selection strategy simulates innermost rewriting.) O

Brand’s results also point out other redundancies in unrestricted paramodulation. Most of
the paramodulation inferences needed to simulate resolution (with the specific selection strategy)
take place at non-variable positions that were present in the initial set of clauses. Almost (but
not quite) all paramodulations into variables or into terms introduced by unification in previous
inference steps are unnecessary. For instance, the clauses f(z)~z — z~z and y~z — g(y)~ =z
are ST-forms of f(z)~x and g(y)~y, respectively. Resolution on the transformed clauses corre-
sponds to paramodulation into the variable side of one of the equations. A variation of the modifi-

presence of ordering constraints for the auxiliary variables introduced by flattening and splitting.
Brand’s modification method has been one of the more successful approaches to equal-
ity handling in non-local theorem proving methods, such as model elimination and semantic

based subcomponents and therefore are difficult to integrate into existing provers. Transformation
methods typically flatten terms, so that the filtering effect of unification is much weaker on trans-
formed clauses. These clauses also may become very long, so that many other heuristics for inference
selection do not work well any more. Model elimination and semantic tableaux, in general, appear
to be inherently limited in their capability for solving difficult equational problems.

5 Rewriting Techniques for Equational Reasoning

Brand’s results demonstrated that the functional reflexivity equations are not needed, but left open
whether paramodulation into variables is necessary. The difficulty is that paramodulation from
variables and paramodulation into variables can not be clearly distinguished as separate resolution
inferences on transformed clauses; and the former inferences are in general not redundant. We now

procedure. Term rewriting provided important clues about the question of avoiding paramodulation
into variables, and also contributed essential techniques for refining paramodulation into a practical
inference system. ,

For instance, the problem of determining whether a ground equation s =t logically follows? from
a given set of ground equations F, can be decided by congruence closure techniques. But paramod-
ulation from E and the negated goal s%t may produce infinitely many new ground equations.
For example, if F contains the equation f(a)~ a, we obtain infinitely many equations of the form
f™(a) ~a by paramodulation. Term rewriting techniques prevent such unnecessary deductions.

5.1 Knuth-Bendix Completion

Paramodulation uses either side of an equation to replace a subterm in a clause by the other side.

To Knuth and Bendix this was reminiscent of an ad-hoc “trial-and-error manner” in which certain
algebraic problems had been traditionally treated. They were interested in the word problem for
algebraic theories; deciding, for a given set of equations E and an equation s~ t (possibly containing
variables), whether or not E = sat.2 Their intention was to solve word problems by using the
equations in F as rewrite rules, and proving s ~t by rewriting both s and ¢ to a common term wu.

We shall explain the basic ideas of their approach. In the reformulation of the word problem as
a refutation theorem proving problem, one deals with unit clauses only, positive (non-ground) unit
equations in F and a ground disequation obtained by negating (and skolemizing) s~ ¢ Semantically,
this simplicity is mirrored by the existence of a unique minimal model for E—the quotient algebra
Tx,(x)/E obtained by dividing the free ¥-algebra over (Skolem constants) X by the least congruence
containing F.

2From now one we restrict ourselves to equality interpretations, and will simply speak of “satisfiability,” “logical
consequence,” etc. when in fact we refer to the corresponding notions in equational logic.

3The definition of “word problems” unfortunately differs among authors.

5.1.1 Basic Concepts in Term Rewriting

A rewrite rule is an ordered pair of terms, written [= r. A rewrite relation is a binary relation
that is closed under substitution and context application, i.e., if s = ¢, then u[so| = ulto], for
all substitutions ¢ and terms u. The rewrite relation =g induced by a set of rewrite rules R is
the smallest rewrite relation containing R. We also say that a term u rewrites to another term v
(by R), if u = u[so] and v = ulto], for some rewrite rule s = ¢ (in R) and some substitution o.
(The indicated position of so in w is called a redex.) A term that can not be rewritten is said to
be irreducible. A term t’ is called a normal form of t (by R) if t =g ¢’ and ¢’ is irreducible by
R. (We denote by < the inverse, by < the symmetric closure, and by & the equivalence closure,
respectively, of =. It is not hard to show that &g is the least congruence containing R.)

If a rewrite relation is well-founded, that is, admits no infinite sequences of rewrite steps, then
every term has a normal form, and we may speak of a reduction relation. A reduction ordering
is a well-founded strict partial ordering that is also a rewrite relation. A rewrite system is said
to be terminating if it induces a well-founded rewrite relation, which is the case if and only if it
is contained (as a subset) in some reduction ordering. For a detailed exposition of termination of

lexicographic path orderings, in examples.

Termination guarantees the existence of normal forms, but not their uniqueness. Normal forms
are unique if a rewrite system is confluent, that is, whenever a term s can be rewritten to terms ¢
and u (s =g t and s =g u), then ¢t and u are “joinable” for some term v (t =g v and u =g v).
We also say that the equation ¢~ u converges, or has a rewrite proof in R, and write t || g u.

A terminating, confluent rewrite system is called convergent. If R is a convergent rewrite system,
then rewriting provides a decision procedure for the underlying equational theory: s &g t if and
only if sat converges; that is, two terms are equivalent if, and only, if they reduce to the same
normal form. Normalization (computation of normal forms by repeated reduction) is a don’t care
non-deterministic process for convergent rewrite systems.

5.1.2 The Completion Procedure

Knuth_and Bendix (1970) proved that testing whether a terminating finite rewrite system is con-

fluent can be done by applying normalization to certain (finitely many) equations. Consider the
following restricted version of paramodulation for rewrite rules:

Superposition of rewrite rules
s=t wul="v

(w[t]=v)o

where ¢ is the most general unifier of s and u such that u is not a variable.

The equation (w[t] ~v)o is called a a critical pair between the two premises; and the term wu|o,
the overlapped term. (Note the restriction that u be a non-variable subterm: paramodulations
into variables are not superpositions.)

R is confluent if and only if all critical pairs between rules in R converge.

The lemma shows that confluence is decidable for finite, terminating rewrite systems, as only
finitely many critical pairs need to be examined in that case. It also indicates that the reason for

10

non-convergence can be found in a critical pair; an observation that provides a starting point for a
completion procedure. Typically, completion processes critical pairs by first normalizing their terms
and, in case of non-convergence, orienting the normalized equation into a rule so as to preserve the
termination of the overall rewrite system. This process need not terminate, though, and may fail
when equations such as x + y =~ y 4+ x are produced that can not be oriented.

The Knuth-Bendix completion procedure is bound to fail for equational theories with an unde-
cidable word problem, of course, but the method can be refined so that it can always be used at
least as a semi-decision procedure. Completion works reasonably well if the given equations contain
no variables. In that case the procedure will always terminate and thus provide a decision proce-
dure for the given equational theory. The efficiency of ground completion can often be improved
by a technique, similar to variable abstraction, of introducing new constants to rename subterms.
This provides for a more compact representation of terms (as multiple occurrences of the same
subterm will be represented by the same constant), and can be used to simulate congruence closure

5.1.3 Ordered Rewriting

Reduction orderings are closed under application of substitutions and therefore can not be total
on terms with variables. (Two terms, each of which contains a variable not occurring in the other
term, are not comparable in any reduction ordering.) But many reduction orderings are total on
ground term. Such reduction orderings are called complete. They include any lexicographic path
ordering based on a total (well-founded) precedence. Fortunately, in theorem proving applications
one can often reason about non-ground formulas by considering the corresponding ground instances.
Ordered rewriting techniques can be applied in such situations.

Let > be a reduction ordering and E be a set of equations. The rewrite system E~ is defined
as the set of all instances so = to of equations st or t ~ s in E, for which so > to. Rules in E~
are also called reductive instances of equations in E. The rewrite relation = g~ represents ordered
rewriting with respect to F and >.

For example, let > be a lexicographic path ordering with precedence + = a > b > c¢. Then
b+c > c+b > c, and we may use the commutativity equation x + y ~ y + x for ordered rewriting,
(b+c)+c=(c+b)+c=c+ (c+D).

If > is a complete reduction ordering, then E”~ contains all (non-trivial) ground instances of an
equation s~t in E, either as a rule so = to or a rule to = so. (An instance is trivial if so and
to are identical.) A rewrite system R is called ground convergent if the induced ground rewrite
relation (that is, the rewrite relation = g restricted to pairs of ground terms) is terminating and
confluent. A set of equations E is called ground convergent with respect to = if E~ is ground
convergent.

Ordered rewriting leads to the following inference rule:

Superposition
s~t wlul=v
(w[t]=v)o
where ¢ is the most general unifier of s and u such that to % so, vo ¥ wo, and u is not a
variable.

The equation (w[t]~v)o is called an ordered critical pair (with overlapped term wlu]o) between
the premises of the inference.

11

ground convergent with respect to = if, and only if, for all ordered critical pairs (w[t]=v)o (with
overlapped term wlulo) between equations in E and for all ground substitutions T, if wluloT >
wltlor and wluloT = voT, then witloT | g vor.

Note that the condition to % so imposed on superposition inferences represents an approximation
to the condition (w[u])or = (w[t])or and needed in the critical pair lemma (and similarly for the
other condition). If the first condition is violated, the second condition can not be satisfied for
any ground substitution 7. The difficulty in using the ordered critical pair lemma as the basis
for a decision procedure for ground convergence lies in the fact that convergence has to be tested
for a possibly infinite number of ground substitutions. In fact, in its general form the problem
is undecidable. However, Comon, Narendran, Nieuwenhuis and_Rusinowitclf (1998) have recently

proved the decidability of ground convergence with respect to lexicographic path orderings. They
use ordering constraints (see section y.3 below) to obtain a finite representation of infinitely many

5.1.4 Ordered Completion and Proof Orderings

The critical pair lemma indicates which equations need to be deduced by a completion procedure.
For efficiency reasons simplification mechanisms have to be used extensively during the completion
process, which complicates the task of proving the correctness of these procedures. Huet (1981)

by inference rules. The completion process then corresponds to a derivation, a sequence of inference
steps on sets of equations and rewrite rules. The presentation of the given equational theory, but
not the theory itself, changes with each step.

In figure i we display the inference rules of (a version of) ordered completion. They specify
a family of inference systems, parameterized by a reduction ordering =. We write E; R - E’; R’
if E’; R’ can be obtained from E;R by applying a completion inference. A (finite or countably
infinite) sequence (Eo; Ro) - (E1; R1) F --- is called a derivation. Usually, Ejy is the set of initial
equations and Rg = (). The limit of a derivation is the pair Fu; Roo, where Ey, = U; Nj>; & and
Ry = U; Nj>; R;. The goal is to obtain a limit system that is ground convergent. To characterize
successful derivations in this sense we first have to look at equational proofs.

An (equational) proof of s ~t with respect to E; R is a sequence of proof steps

§=80p0S1P1L52Sn—1Pn-18n =1t n >0,

where each step s; p; si+1 is either (i) an equality step w[uo] < wvo], with ucv in E, or (ii) a
rewrite step wluo] = wlvo], with v = v in RU E™, or (iii) a reverse rewrite step wuo] < wlvo],
with v = u in RU E™. An equation is in the equational theory generated by F U R if and only if
it has a proof in E; R. A proof of the form

S=8=> ... Sp &= ...<= 85, =1.

12

Deduction E;R - EU{s=thR

if sepurw Spurt, s w, andt ¥ w

Orientation Eu{s~t};R - E;RU{s=1t} ifs>t
Deletion FEu{s~s};R F E;R

Simplification Eu{s~t};R - EU{uxth R ifs=pru
Composition E;RU{s=1t} - E;RU{s=u} ifr=gru
Collapse E;RU{s[w] =t} F EU{sjul=t}h R

if w=p u, and either ¢ > u or w # s

Figure 1: Ordered Completion Derivations

is called a rewrite proof. A rewrite proof exists if and only if the equation converges with respect
to RUE™. In a ground convergent system all variable-free equational consequences have a rewrite
proof.

It can easily be checked that the completion inference rules do not change the given equational
theory itself, but only its presentation. That is, whenever F; R - (E’, R') then the same equations
are provable in E; R as in E'; R". However, some of the proofs in E’'; R" will be simpler than the
corresponding proofs in E; R with respect to an appropriately defined well-founded ordering on
proofs (a proof ordering). The following ordering will do the job. We associate with each proof
step a measure of its cost. More specifically, the cost of s[u] p s[v] is

({s[ul},u, p, s[v]), if s[u] > s|v]
({s[v]}, v, p, s[ul), if sfv] > su]
({s[u], s[v]}, L, L, 1), otherwise

The complexity of a proof is defined as the multiset of the costs of its proof steps. Cost compar-
isons are done lexicographically by (i) the multiset extension of the reduction ordering >, (ii) the
encompassment ordering t>,# (iii) an ordering with < > = and < > <, and (iv) the reduction
ordering >, with | minimal in any of these orderings. Let >, denote the corresponding multiset
extension, which is a well-founded partial ordering on proofs.

Each completion step decreases the complexity of certain proofs. For example, orienting an
equation st into a rule s = t is reflected by a proof transformation

(u[so] & uto]) = (u[so] = ulto])

that is simplifying: ({u[sol}, so, <, s[to]) = ({u[so]}, so,= s[to]). The reader may check that
the other inference rules are also reflected by simplifying proof transformations.

45>t if, and only if, some subterm of s is an instance of ¢, and > denotes the strict part of this quasi-ordering.

13

We now know that each derivation step simplifies some proofs. But what is required is that
eventually all undesirable proofs (i.e., non-rewrite proofs) are simplified. Derivations that achieve
this stronger proof normalization requirement can be characterized by a suitable notion of fairness.
We call a derivation fair if each ordered critical pair u~v in Fy, U Ry is an element of some set F;.
In short, a derivation is fair if all ordered critical pairs between persistent equations and rules are
eventually computed. Fair derivations can be effectively enumerated by straightforward inference
recording mechanisms, provided Fy and > are effectively given. Note that fairness depends only
on deduction of critical pairs. Simplification steps are optional, though indispensable in practice.

THEOREM 3 (BACHMAIR ET AL, 1989) Let (Ey; Ro), (E1; R1),... be a fair ordered completion
derivation. Then these three properties are equivalent for all ground terms s and t: (i) s=~t is
a consequence of Ey; (ii) s~t has a rewrite proof in EZ U Rs; (iii) s=t has a rewrite proof in

E7 UR;, for some i.

Since fair derivations can be effectively constructed, the theorem in particular asserts the refuta-
tional completeness of ordered completion, and of superposition with simplification for equations.

We have now shown that for unit equations paramodulation into variables is not required.
Moreover, paramodulation inferences can be constrained by ordering restrictions so that one only
replaces subterms of the maximal term of an equation by some other term that is not larger in the
reduction ordering. The reduction ordering is a parameter that can be freely chosen, provided it is
completable. We have also seen that superposition is compatible with the powerful simplification
inferences of ordered completion that can be eagerly applied in any order without impairing refu-
tational completeness. A rather liberal notion of fairness allows one to cover a large spectrum of
concrete completion procedures. The concept of proof transformations admits, in particular, sim-
ple proofs of admissibility of most, if not all, criteria for identifying redundant critical pairs that
have been proposed in the literature. A detailed treatment of ordered completion can be found

5.2 Superposition for Horn Clauses

The results about ordered completion and superposition for unit clauses were obtained by proof-
theoretic arguments that rely on the simple structure of equational proofs and are directly related
to the canonical models (initial algebra semantics) of equational theories. Theories presented by
equational Horn clauses have similar semantic properties and the corresponding proof theory is
only modestly more complex.

The canonical model of a set P of non-equational Horn clauses can be obtained by a construction,
familiar from logic programming, based on computing the least fixed point |J,, T5(0) of the Tp-
operator

Tp:I— {A|(Bi,...,B, — A) € g(P), and B; € I},

where g(P) denotes the set of ground instances of P. An instance By,..., B, — A of a clause in
P produces the atom A for the canonical model, if, for some n > 0, all the B; are in T3(0), but A
is not. The Tp-operator also induces a well-founded partial ordering on ground atoms:

A= A" if min{n|AeTp(0)} >min{n | A" € TE(0)}.

Productive instances By, ..., B, — A of clauses in P may be viewed as reductive conditional rewrite
rules, as A > B;, for all 1.

In the equational case, one needs to take into account the congruence properties of equality. An
equational Horn clause uj ~vy,...,up ~vp — st is called reductive for s = ¢ (with respect to a

14

reduction ordering), if s is the strictly maximal term in the clause; that is, s > t and s = u; and
s = v;. We also write u; =v1,...,ur X v — s = t to indicate that a clause is reductive for s = t.
If R is a set of reductive clauses we recursively define a rewrite relation =g as follows: uw =g v
if there exist a reductive clause C — s = t in R and a substitution o, such that v = u[so] and
v = ufto], and v'o | g v'o for all equations ' ~v" in C. (The recursion is well-founded as the rules
in R are reductive and the union of any reduction ordering with the strict subterm ordering is a
well-founded ordering.) The relation =g is terminating and, for finite R, decidable.

Superposition of reductive rewrite rules

C—s=t D—-wul=v
(C,D — wlt|=v)o

where o is the most general unifier of s and u, and w is not a variable.

The clause (C,D — w[t]=v)o is called a conditional critical pair between the premises of the
inference. The critical pair is said to converge in R if for all substitutions 7 for which all equations
in Cot and Dot converge in R, the equation (w[t] ~v)oT converges, too, that is, w[tloT g voT.

finite set of reductive equational Horn clauses. If all critical pairs from N converge, then the word
problem for N is decidable.

Additional inferences may be necessary to eliminate non-reductive clauses with the maximal
term in a condition. Let us illustrate the situation with an example. Let > be a lexicographic path
ordering with precedence f > g = a > b > ¢ and consider the clauses

f(f@)=z — flz)~g(z)
arc — f(o)=c
— a=b
— b=c

The last three clauses are reductive and produce no critical pairs. Thus, the associated rewrite
relation is convergent. The first clause is non-reductive, as the maximal term f(f(z)) occurs in the
condition. This clause is not satisfied in the equational theory generated by the other, reductive
clauses. If we substitute c for x we obtain an instance where the condition, but not the consequent,
has a rewrite proof. The existence of a rewrite proof for a condition indicates that there is a
“negative superposition” inference,

axe— flO)me f(f@)~a

arc, fle)me— f(c

l

f(z)~g(x)
g(c) '

Q

15

The conclusion of this inference is not reductive, but can be reduced by a similar inference,

avc— flo)me are, f(Q)re— f()~glc)

arc, arc, crc— f(e)=g(c)

that produces a reductive clause. The expanded set of reductive clauses is no longer convergent,
though. There is a conditional critical pair,

arcc— f(o)~c amc,axc, crce— f(c)=g(c)

arc, arc, arc, cre— g(o)xc ’

that produces another reductive clause. At this point, the subset of reductive clauses is convergent,
and the two non-reductive clauses (the first clause and the conclusion of the first inference) are true
in the theory generated by the reductive clauses.

Note that negative superposition inferences are characterized by conditions similar to superpo-
sition of reductive rewrite rules: (i) the first premise is a reductive clause, (ii) replacement takes
place in the maximal literal of the second premise, and (iii) the term to be replaced is not a variable
and is replaced by a smaller term. One may weaken these conditions and repeatedly superpose on
all conditions (including non-maximal ones) and remove any trivial conditions of the form s=~s,
until an unconditional equation is obtained. Such unit strategies for equational Horn clauses have
been considered by Paul (1986). In the limit one obtains a clause set, the equational theory of
which is represented by the subset of unit equations. But this strategy will only terminate in trivial
cases, whereas strategies designed to produce reductive clauses will terminate more often.

Superposition calculi and completion procedures for Horn clauses based on these ideas have

the method of proof orderings to Horn clauses. We do not go into details since these results are
largely subsumed by the results about superposition for full clauses discussed next.

6 Superposition for First-Order Clauses

For general clauses the semantic situation is more complex than for Horn clauses, as minimal models
need not be unique in the presence of disjunctions of positive literals. But proof-theoretic methods
are difficult to apply to paramodulation-like calculi, as the corresponding derivations reveal some
culi have been obtained by semantic methods that systematically explore Herbrand interpretations
of given clauses. We will describe one such method that is based on the idea of reducing coun-
terexamples for “candidate models.” This approach also induces a powerful, yet natural, concept of
redundancy for clauses and inferences that covers virtually all known simplification and redundancy
elimination techniques.

The inference rules of the superposition calculus S (with selection) for general clauses are shown
in figure 3. These rules are formulated in terms of two parameters: a completable reduction ordering
and a selection function, see also section :'Za,"b We speak of superposition without selection if no literals
are selected in any clause. Note that only clauses without selected literals may occur as positive
premises in superposition inferences. We again identify any equation or disequation, respectively,
with its symmetric variant.

SFor simplicity we do not consider multi-premise inferences, such as hyper-paramodulation, and assume that at
most one negative literal is selected in any clause.

16

Positive superposition
CVs~t DVuls|~v

(CV DVutj=v)o

where o is the mgu of s and s’ such that (i)—(vi).

Negative superposition
CVs~t DVuls]sv

(CV DV ultj#v)o

where o is the mgu of s and s’ such that (i)—(iii),(iv’),(v).

Reflexivity resolution
DV uzv

Do

where o is the mgu of u and v such that (iv’).

Ordered factoring
CVumvVs=t

(CVs~t)o

where o is the mgu of s~t and u~ v such that (iii’).

Equality factoring
CVu~vVsat

(CVo#gtVuxt)o

where o is the mgu of s and u such that (iii’) and (vi).

The restrictions are defined as follows:

(i) to # so — (ii) vo # uo — (iil) (s~t)o is strictly maximal with respect to C'o, and C
contains no selected literal — (iv) (umwv)o is strictly maximal with respect to Do, and D
contains no selected literal — (v) s’ is not a variable — (vi) (s~t)o # (uxv)o

(iii’) (s~t)o is maximal with respect to C'o, and C contains no selected literal — (iv’) u#wv
is selected, or else nothing is selected in this premise and (u # v)o is maximal with respect to
Do

Figure 2: Superposition with Selection for General Clauses S

17

The well-founded ordering > on literals and terms has to be admissible in the sense that (i)
the restriction of > to ground literals is a total ordering, (ii) the restriction of > to terms is a
complete reduction ordering, and (iii) if L and L’ are ground literals, then L > L', whenever
(iii.1) max(L) = max(L), or (iii.2) max(L) = max(L’) and the literal L is negative, whereas L’
is positive. Here max(L) denotes the maximal term (according to >) of the literal L. Condition
(iii) in essence states that replacing the maximal term in a literal by a smaller term yields a
smaller literal, while sub-condition (iii.2) indicates that clauses in which the maximal term occurs
negatively are larger than clauses with the same maximal term, but occurring only in positive
literals. Thus, the comparison of two literals in an admissible ordering depends primarily on the
respective maximal terms, and hence on the underlying term ordering. Additional information
(e.g., about the respective minimal terms) is needed when two literals are of the same polarity with
identical maximal terms.

The multiset extension of an ordering on literals yields an ordering on clauses. We speak of
an admissible clause ordering if the underlying ordering on literals is admissible (and usually use
the same symbol > for both orderings). Admissible clause orderings are well-founded and total on
ground clauses. We shall consider only admissible orderings from now on.?

Several variations of superposition have been proposed in the literature. For instance, one may
replace equality factoring by an inference rule called merging paramodulation, that allows one to
replace subterms in the smaller term ¢ of a maximal equations s /¢, but only under similar restric-
tions as for equality factoring. Ordered paramodulation does not impose the ordering constraints
(ii) and (vi), and hence permits replacement of subterms in the smaller side of equations. (Equality
factoring is not needed for this variant.)

THEOREM 5 (HSIANG AND RUSINOWITCH, 1991) Ordered paramodulation is refutationally com-
plete.

based on transfinite semantic trees, and covers only specific selection strategies such as the positive
strategy or the positive unit strategy in the case of Horn clauses.

6.1 Candidate Models and Counterexamples

Candidate models and reduction of counterexamples are the key concepts in establishing the refuta-
tional completeness of saturation-based refutation theorem proving methods. We explain the basic
ideas for the case of ground clauses and discuss issues related to lifting later.

Let II be a clausal inference system and II(N) be the subset of inferences in II with premises
in N. If 7 is an inference of the form

¢ ... ¢, C
D

with n > 0, we call the (rightmost) premise C' the main premise, and the remaining premises C;
the side premises, of the inference. The conclusion D of the inference will also be denoted by I'(7).

Let now I be a mapping, called a model functor, that assigns to each set N of ground clauses
that does not contain the empty clause, an equality Herbrand interpretation I, called a candidate

In the theorem proving literature one can also find slightly different (often implicit) definitions of admissibility
of clause orderings (or quasi-orderings). In particular, the sub-condition (iii.2) is sometimes not required. The
differences are not of importance conceptually, but are critical in justifying certain technical optimizations.

18

model. If Iy is a model of N, then N is evidently satisfiable. If, on the other hand, some
clause C in N is false in Iy (a counterexample for Iy), then N must contain a minimal such
counterexample with respect to >=. We say that I has the reduction property for counterexamples
(with respect to I) if, for all clause sets N and all minimal counterexamples C' for Iy, there exists
an inference in Il with main premise C, side premises that are true in N, and a conclusion D that
is a smaller counterexample for I than C, that is, C' = D. Inference systems with this property
are refutationally complete:

ProrosiTION 1 IfII has the reduction property for counterexamples and N is closed under 11, that
is, T(II(N)) C N, then N is either satisfiable, or else contains the empty clause.

Let us next consider the problem of constructing, for a given inference system II, a model functor
I such that II has the reduction property for counterexamples with respect to I. In particular, we
shall examine the superposition calculus from this perspective (but for simplicity discuss only the
calculus without selection). For that purpose we only need to consider inferences on ground clauses
that are monotone in the sense that the conclusion is smaller than the main premise.

We describe equality Herbrand interpretations by convergent (with respect to >) ground rewrite
systems. This allows us to characterize provability, and truth, via rewriting: a (ground) clause is
true in such an interpretation if and only if, whenever all negative equations have rewrite proofs,
then some positive equation has a rewrite proof. The concept of reductivity of clauses will provide
us with a way of extracting suitable rewrite rules from clauses. The idea is to define the candidate
model Iy for N as the least model generated by “some maximal” convergent subset of reductive
clauses in N which will be called productive.

A clause C' V s~t is called reductive (for s = t) if s > ¢t and s~ is strictly maximal with
respect to C. For example, any ground instance of the clause = * i(z)~1 V x~0 is reductive for
x % i(x) = 1 in most reduction orderings >. A reductive clause may be viewed as a reductive
conditional rewrite rule with both positive and negative conditions, such as z#0 — z *xi(x) = 1.

We extend conditional rewriting to reductive rules with negative conditions by considering
u%v to be true if u~v does not have a rewrite proof. Unfortunately, if the maximal term in
a reductive clause occurs in more than one literal (which all have to be positive), it is not clear
how to (recursively) evaluate these (negative) conditions. For example, suppose the two clauses
C = f(a)=a V f(a)=band D = axb with a # b are reductive for f(a) = a and a = b,
respectively. Then the rule f(a) = a is applicable provided the negative condition f(a)#b is true,
that is, f(a)~ b has no rewrite proof. But since we have another (unconditional) rule a = b, there
is a rewrite proof of f(a)=b, whenever the rule f(a) = a is applicable! To avoid such paradoxical
situations we derive alternative clauses to potentially problematic reductive clauses. For instance,
if we apply equality factoring to C' we obtain another clause C' = a%b V f(a)~b that can be used
to rewrite f(a) to b. In the presence of D, the clause C' is equivalent to C, and the latter clause
can be discarded.

If N is a set of ground clauses and C' a ground clause, we denote by N¢ the subset of all clauses
D in N with C' > D. If C is greater than all clauses in N, then evidently N = N¢. Let us denote
by T a special clause that is assumed to be greater in > than any regular clause. Then every set N
of regular clauses can be written as a set N¢; for instance, N = N+. We define a mapping I that
assigns to each clause set N a (convergent) rewrite system I, . The definition is by induction over

“If R is a convergent ground rewrite system, the equality Herbrand interpretation (induced by) R is the set of
ground equations which converge in R. From now on we shall usually identify any ground rewrite system with
the interpretation it induces. Moreover, given an admissible ordering > we need not distinguish between a ground
equation and the rewrite rule it represents when oriented according to >.

19

the clause ordering > in that Iy, is defined in terms of sets In,,, where C' >~ D. More specifically,
the set Iy, is defined as the set of all ground rewrite rules s~t for which there exists a clause
D =D'Vs~tin N with C' > D such that (i) D is reductive for s = ¢, (ii) D is a counterexample
for In,, (iii) s is irreducible by Iy, and (iv) D’ is a counterexample in Iy, U {s~t}. If such g
clause D exists, we also say that it is productive, and produces the equation (or rule) s~t for Iy, £

A productive clause D is false in Ip, but true in Ip U {s~t} and in I¢, for any C' = D.
Condition (iii) ensures that the sets I are left-reduced rewrite systems and, therefore, convergent.
A productive clause D may be thought of as a reductive conditional rewrite rule with positive and
negative conditions from =D’ (all of which are true in Ip). The maximal term s may occur in
another (necessarily positive) equation s~w in D’, but by condition (iv) the truth value of any
such equation must not depend on the truth value of sat¢. (In other words, there are no side
effects from designating s~t to be true.) If C' and D are two clauses with C' < D, then I C Ip.
The definition of the mapping I, and the properties of the clause ordering, ensure that if D is a
productive clause in N, and C, D’, and D" are other clauses with D" = D' = D = C, then C is a
counterexample for Ip: if and only if it is a counterexample for Ip.

Let us illustrate the above definition with an example. Suppose we have constants a = b > ¢ > d.
The following table lists clauses in descending order, along with any rewrite rules that are produced.

C produces | remarks
1la%bVarxd true in I¢
2|latdVb=c false in I and 1
3lckdVarmcVbrc a=c¢ | reductive and false in I
4| c=d c~d

All but the second clause are true in the candidate model I = {c¢~d, a~ c}. There is a superposition
inference between the third (productive) clause and this counterexample, which yields a smaller
counterexample cd V c#dV bxcV b=xc.

When a counterexample C|s] is reduced via some smaller clause D V s~t, then both C[t] and
D v C[t] are smaller counterexamples than C. If the maximal terms s in a counterexample C' is
not reducible in this way, then it must occur more than once and a smaller counterexample can be
obtained by (equality) factoring. In sum, we get:

THEOREM 6 Let N be a set of ground clauses not containing the empty clause and C' be the minimal
counterexample in N for In. Then there exists an inference in' S from C such that

(i) the conclusion is a smaller counterexample for I than C; and

(ii) in case of a superposition inference, C is the main premise and the side premise is a
productive clause.

The theorem indicates that the superposition calculus has the reduction property for counterexam-
ples, and hence is refutationally complete for ground clauses. It can also be seen that all essential
inferences have the minimal counterexample as their main premise, with side premises that are true
in the candidate model. We next present a general notion of redundancy by specifying sufficient
criteria characterizing inessential inferences and clauses that can not be part of essential inferences.

8Since D < C, the sets In, are well-defined by the induction hypothesis. The definition of I is also independent
of the choice of N and C: if No = N{./, then In, = Iy, . We sometimes omit the index N and write I¢ instead of
CI

Ing, if N is clear from the context.

20

6.2 Redundancy and Saturation

A ground clause C' is called redundant with respect to a set N of ground clauses if there exist
clauses C1,...,Ck in N such that Cy,...,Cy = C and C > C;. (Note that C' need not be an
element of N.) Let R(N) denote the set of redundant clauses with respect to N. A clause C' that
is redundant in N is entailed by N¢ \ R(IV), the set of all non-redundant clauses in N smaller than
C'; and any model of N\ R(N) is also a model of N. A redundant clause obviously can not be the
minimal counterexample in N for any interpretation.

Observe that the side premises of an inference that reduces a counterexample must not be
counterexamples themselves, whereas the conclusion should be a counterexample smaller than the
main premise. This suggests the following definition. An inference with main premise C, side
premises C1, ..., Cy, and conclusion D is called redundant (with respect to V), either if D > C, or
else if there exist clauses Dq,..., Dy in N¢ such that Dy,..., Dy, Cy,...,C, = D. By Rp(N) we
denote the set of redundant inferences in IT with respect to IN. Note that an inference is redundant
with respect to any set N for which the conclusion is in N U R(N).

Finally, we call N saturated up to redundancy with respect to II whenever II(N \ R(N)) C
Ru(N), that is, if all inferences from non-redundant premises are redundant with respect to N.

THEOREM 7 Let Il be sound and have the reduction property and let N be saturated up to redun-
dancy with respect to II. Then N is unsatisfiable if and only if it contains the empty clause.

Proof. Suppose N does not contain the empty clause and let M be the set N\ R(N). Consider the
interpretation Ips. If Ip; is not a model of M, then M contains a minimal counterexample C' for
Ips. Since II has the reduction property there is an inference from M with main premise C, side
premises Cj, and a conclusion D, such that D is a smaller counterexample for Ij; than C' and the
clauses C; are true in Ips. By saturation, this inference is redundant. Thus, there are clauses D;
in N¢, such that D is entailed by all clauses C; and D;. We may also assume that the clauses D;
are non-redundant and true in Ij; (for C is the minimal counterexample for Ij,). But this implies
that D is true in Ip;s, which is a contradiction. In sum, s is a model of M, and also of N. O

Let us also point out that redundancy is preserved if one either adds clauses or deletes redundant
clauses: (i) if N € N’ then R(N) C R(N’) and Rp(N) C Rup(N') and (ii) if N C R(N) then
R(N) CR(N\ N')and Ri(N) € Ru(N \ N').

6.3 Theorem Proving Processes

We next formalize the process of saturating a clause set up to redundancy. First, we define a
one-step derivation relation I~ on clause sets as shown in figure 8. We have N = N’ if N’ is obtained
from N either by adding logical consequences of the current clauses or by deleting (any number
of) redundant clauses. In an actual theorem prover, some sound deduction system will be used to
implement steps of the first kind, whereas steps of the second kind capture redundancy elimination
techniques.

A (finite or countably infinite) sequence Ny = Ny F No F -+ is called a (theorem proving)
derivation. The set Noo = UJ; N;>; N; of all persisting clauses is called the limit of the derivation.
The sets of clauses N; represent the successive states in the theorem proving process; the set Ny
its result (which, in the case of an infinite derivation, is only obtained in the limit).

LEMMA 6 If Ng - N1+ No b --- is a derivation, then
(i) R(Ni) € R(U; Nj) € R(Neo) and Rur(N;) € Ru(U; Nj) € Ru(Neo), for all i >0, and

21

Deduction N+ NUM it NE=M

Deletion NUM F N if M CR(N)

Figure 3: Theorem Proving Derivations

(ii) the set No is satisfiable if and only if Ny is satisfiable.

The lemma states that redundancy and (un)satisfiability are preserved throughout the theorem
proving process, and carry over to the limit set No.. Thus, if a clause or inference is redundant at
some point in a derivation, it will be redundant at any later point. This implies that redundancy
elimination criteria can be implemented in a don’t-care nondeterministic fashion.

A derivation Ny = N3 F N b --- is called fair (with respect to II) if every inference in II
with non-redundant premises in Ny is redundant in U; Ny, i.e., II(Noo \ R(Noo)) € Ru(U; Ny).
Fairness essentially requires that no inference in Il from non-redundant persisting formulas be
delayed indefinitely.

LEMMA 7 A derivation is fair with respect to Il if the conclusion of every non-redundant inference
in 11 from non-redundant formulas in Neo is an element of, or is redundant in, U; Nj, i.e.,

P(II(Noo \ R(Noo) \ Rit(Noo \ R(Neo))) € (U N; U R(U Nj))-
J J

In other words, a fair derivation can be constructed by exhaustively applying inferences to persisting
clauses.

LEMMA 8 If a derivation is fair with respect to I1 then its limit N, is saturated up to redundancy
with respect to II.

THEOREM 8 If I has the reduction property for countereramples and No F N1y = No F -+ is a
fair theorem proving derivation with respect to 11, then Ny is unsatisfiable if and only if Noy (and,
hence, U; Nj) contains the empty clause.

6.4 Lifting

The notions of redundancy, derivation and saturation need to be generalized for general clauses
with variables. If M is a set of clauses, we denote by g(M) the set of all its ground instances.
Furthermore, we say that a clause C' is redundant with respect to M if g(C') C R(g(M)); that is,
all ground instances of C are redundant with respect to g(M). Similarly, an inference 7 in II is
called redundant with respect to M if g(7) C Ru(g(M)), where g(m) consists of all ground instances
of m, that is, all ground inferences in II obtained from 7 by uniformly instantiating all premises and
the conclusion with the same substitution. Note that instantiating the premises and the conclusion
of an inference in II need not necessarily yield a ground inference in II, as the side conditions, (in
particular, the ordering constraints) need not be satisfied for all instantiated formulas.

Theorem proving derivations can now be defined for general clauses, based on this generalized
notion of redundancy. For any such derivation My - My F My |- - - - the corresponding sequence of
sets of ground clauses g(My),g(My),... is also a theorem proving derivation No - Ny + Ny F ---

22

where N; denotes the set g(M;). We also need to show that the ground derivation is fair, provided
the general derivation is fair. Two conditions are required. First, any persistent ground clause in
N should be an instance of a persistent clause in M. This is indeed the case, as the elimination
of clauses is based on the presence of smaller clauses in a well-founded ordering.2 Secondly, non-
redundant ground inferences in II must be liftable in the sense that they can be obtained as ground
instances of general inferences in II.

LEMMA 9 Non-redundant superposition inferences are liftable.

Proof. Let M be a set of clauses. The problematic ground inferences are superpositions from g(M)
with a main premise C[s] and side premise D V st such that C[s] is an instance of some non-
ground clause C’[z] in M by a substitution o, where zo = u[s]. That is, the subterm replacement
occurs at or below the position of a variable x in C’. Let 7 = olu[t]/z] be a “more reduced”
substitution than g. Then C’r is also a clause in g(M), but smaller than C, and {C'r, D V

s~t} = DV C[t].1 That is, the ground inference is redundant in g(M). O

Summarizing the above results we obtain:

saturated up to redundancy with respect to S™. Then N is unsatisfiable if and only if N contains
the empty clause. (ii) If M is the limit of a fair theorem proving derivation with respect to S™ then
g(M) is saturated up to redundancy with respect to S~ .

Note that redundancy can only be an approximation of the concept of non-essential clauses and
inferences, so that some inferences are neither redundant nor essential. The reason is that essential
inferences need not stay essential, and non-essential inferences may become essential, during a
theorem proving derivation. Redundancy, on the other hand, is a property that it is preserved by
each derivation step.

orem il and in the work of Zhang ({988). The definitions presented here are almost identical

without any mention of redundancy.

6.5 Simplification

An important application of redundancy is the use of logical equivalences for simplification of
clauses. For instance, if N,C’ = C and N,C = C'" and C = C’, then there is a derivation

NU{C}FNU{C,C'} F NU{Ch

9There is a subtle issue related to the fact that a ground clause may be an instance of several non-ground clauses.
One might want to admit a more liberal notion of redundancy on the non-ground level and allow clause deletion
based on non-strict subsumption. But then a ground instance C = Do = D’o’ may persist, even though neither D
nor D’ persists. This might happen, for instance, if D is an element of all sets My; and D’ and element of all sets
Mau;12 (but not vice versa). This problem can be solved by using additional syntax such as clause numberings (then
non-strict “forward subsumption” can also be covered by redundancy), or by more restrictive definitions of fairness
on the non-ground level.

0Observe that this reasoning makes essential use of the symmetry of equality (when C’ has more than one occur-
rence of z) and, therefore, cannot be applied to chaining calculi for non-symmetric transitive relations.

23

consisting of a deduction step (C’ is a logical consequence of N U {C}) followed by a deletion
step (C' is rendered redundant by C”). This suggest a derived inference rule for theorem proving
derivations:

Simplification
NU{C}+NU{C"} if N,C'E=C and N,C = C" and C - C".

For example, reduction by oriented instances of equations
NU{s=t,Clso|} F NU{s~t,C[to]}

is a simplification step provided so > to and C' >~ (s~ t)o. More sophisticated reduction techniques
employ general reductive clauses as conditional rewrite rules.
Subsumption and tautology deletion are standard redundancy elimination techniques:

Tautology elimination
NU{C}FN if C

Subsumption
NuU{C,D}-NU{C} ifCocCD

Both represent deletion steps.

6.6 Strict Superposition

If we delete equality factoring from the superposition calculus, we obtain the strict superposition

T990) and hence can not have the reduction property for counterexamples. But if we relax the
notion of counterexamples, and slightly modify the proof techniques by using a suitable notion of
“direct provability” rather than (semantic) validity, we may establish the completeness of strict
superposition in a similar way as for superposition.

A direct rewrite proof of an equation s~t (with respect to a rewrite system R) is a rewrite
proof that uses only equations u = v that are smaller than or equal to s=t.

Equality factoring has been designed to reduce counterexamples in which the maximal term is
positive and occurs more than once. We dispense with equality factoring, but allow weak coun-
terexamples (for a rewrite system R), that is, clauses for which all negative equations have a rewrite
proof, but no positive equation has a direct rewrite proof. If we replace “counterexample” by “weak
counterexample” in the definition of I, condition (iv) can be removed.

taining the empty clause and C be the minimal weak counterexample in N for In. Then there
exists an inference in SS from C' such that

(i) the conclusion is a smaller weak counterezample for Iy than C; and

(ii) in case of a superposition inference, C is the main premise and the side premise is a
productive clause.

The theorem indicates that the superposition calculus has the reduction property for weak coun-
terexamples, and hence is refutationally complete for ground clauses. The notion of redundancy
based on weak counterexamples is also weaker than the standard notion and does not cover all

24

cases of tautology deletion. For instance, the tautology a~b — a~b with a > b is a weak coun-
terexample for the rewrite system {a~ ¢, c~ b} if ¢ = b. Most other simplification techniques are,

all superposition inferences at or below variables are redundant when redundancy is based on weak
counterexamples. Therefore, lifting requires the techniques of basic superposition to be discussed
in the next section.

completeness of that proof calculus had been an open problem that is settled by the above result.

7 Subterm Selection Strategies
Consider a superposition inference between two Robbins equations:
n(n(n(z’) +y') +n(@' +y)) =y n(nln(z) +y) +nlz+y) =y
n(y +n(n(@) +y |+|n@ +v)]) ~|n(z +y)

are introduced by instantiation of variables in the second premise. The first premise can again be
superposed on (either of) the boxed subterms, producing yet larger subterms that allow yet more
similar superpositions, and so on. When the “substitution parts” of a clause grow very quickly, the
proof search may easily get out of hand. Subterm selection strategies are designed to better control
such explosive growth. The basic restriction selects positions in a clause in order to block further
superpositions on the corresponding subterms. This restriction complements, on the term level,
the effect of literal selection functions and represents a robust answer to a related research problem

Brand’s modification method provides some insight for subterm selection: when paramodulation
is used to simulate resolution on transformed clauses, it very rarely replaces subterms introduced
by unification in previous inference steps. Also, there are rewriting strategies, such as innermost
rewriting, that considerably restrict the number of subterm position eligible for replacements. Some

of these techniques have been applied to deduction in the context of narrowing, see Hullot; (1980).

[

7.1 Marked Clauses

The basic restriction can be formalized by explicitly marking subterm positions in literals and
clauses. Any position at or below a marked position is called a substitution position. The subterms
at substitution positions form the substitution part of a clause (or literal). We shall prohibit
superposition inferences with subterms at substitution positions. Since superposition into variables
is known to be redundant, we generally require that all variables belong to the substitution part of a
clause. In examples we represent the substitution part by enclosing its maximal subterms in boxes
(though for convenience we usually omit boxes around variables as these are in the substitution
part by default), such as in f() ~h(xz) V g(f(x))~[a] A position p in a literal L of a clause
C is called an induced substitution position if the subterm of L at p also occurs at a substitution
position in a literal L' in C, with L’ = L. For example, if the first literal in the above clause is
greater than the second (in the given ordering), then the second (un-boxed) occurrence of f(x) is at
an induced substitution position. We shall see that basic restrictions can be propagated to induced
substitution positions. (Note that substitution positions, by definition, are also induced substitution
positions.) Marking schemes have no semantic significance; they are a syntactic mechanism for
refining inference rules.

25

A central notion in reasoning about basic inference systems is that of a reduced clause. We say
that a literal L[s], is order-reducible (at position p) by an equation s~t, if s = ¢t and L > s~t.
Thus, a negative literal is order-reducible by s =t if it contains s as a subterm. A positive equation
ur v is always order-reducible if s is a subterm of (the smaller term) v or a proper subterm of
(the larger term) w. If s is identical to u, the two equations need to be compared to determine
order-reducibility. A literal is order-reducible by R if it is order-reducible by some equation in R.
A clause is order-reducible if one of its literals is order-reducible. Finally, a (marked) clause C' is
said to be reduced with respect to R if it is not order-reducible at any substitution position.

For example, if we use an admissible extensiond® of a lexicographic path ordering with precedence
f=a>=0b>c, then (f(a])=b VvV f(f(a)| ~a)is reduced with respect to the system {fa~a},

but aéc is not.

7.2 Basic Superposition

The inference rules of the basic superposition calculus B are the same as for superposition S (cf.
figure), but applied to marked clauses and with the variable restriction (v) sharpened to

(v’) s' occurs not at an induced substitution position.

It is to be understood that in forming the disjunction C' V D of two marked clauses C' and
D, all markings are inherited. Similarly, we assume that in any instance C'c the same positions
are marked as in C'. New subterm positions created by the application of the substitution o are
below a variable position in C, and hence automatically belong to the substitution part of C'o (as
expected). Finally, if ¢ is a marked term and L a marked literal, the literal L[t] is assumed to
be marked like ¢ for positions within the indicated occurrence of ¢ in L[t], and like L for other
positions.

The negative basic superposition inference

Q(ga) v f(hz,)% j(=[a) ~P(f(a.99) V k(z,gy) = | hy
=P gy} [a)) v @(ga) v k(hoy] gy) ~ | hy

illustrates the inheritance of markings from premises to the conclusion. New subterms introduced
by instantiation also belong to the substitution part. The underlined occurrence of g(y) is at
an induced substitution position, under certain assumptions about the ordering. All boxed (and
possibly all underlined) subterms are blocked from subsequent inferences.

In investigating the reduction property for B we consider candidate models for sets of ground
clauses as defined before, though clauses and (produced) equations will be marked.

A set of ground clauses N is said to be reduced if any clause C' in N is reduced by Io. Observe
that if C' is reduced by I¢ it is also reduced by Iy. A reduced subset M of N is said to be maximal
if it contains all clauses in NV that are reduced with respect to I;.

PROPOSITION 2 Any set of ground clauses contains a maximal reduced subset.

Proof. Define M = M(N) as the set of all clauses C'in N that are reduced with respect to Ip(n,),
where M (N¢) denotes, by induction hypothesis, the maximal reduced subset of N¢. |

"1et us mention that in defining (admissible) orderings, we may take advantage of the information provided by
marking when comparing terms or literals.

26

The following theorem applies to both the strict and non-strict version of basic superposition.
As for non-basic superposition, in the strict calculus equality factoring is not needed, at the cost
of having to reduce weak counterexamples.

THEOREM 11 Let N be a reduced set of ground clauses not containing the empty clause and C be
the minimal [weak] counterexample in N for In. Then there exists an inference in B from C such
that

(i) the conclusion is a smaller [weak] counterezample for In than C, and is also reduced with
respect to In; and

(ii) if the inference is a superposition inference then C' is its negative premise, and the positive
premise is a productive clause.

The theorem states that for reduced sets of clauses B has the reduction property for [weak| coun-
terexamples. The smaller counterexample is again a reduced clause, which is important for effective
saturation.

A set of ground clauses N is called schematic if it consists of all ground instances C'o of clauses C'

in some set K (of non-ground clauses) in which only variable positions are marked.!3 Schematic sets
N of clauses allow one to reduce the substitution part of any clause in N to obtain an equivalent
(with respect to In) reduced clause in N. The reduction property of B implies its refutational
completeness for schematic sets of clauses.
THEOREM 12 (BACHMAIR, GANZINGER, TYNCH AND SNYDER, 1992:NIEUWENHUIS AND RUBIC,
Let N be a set of ground clauses that is closed with respect to B. Moreover, assume that N contains
a schematic subset N’ such that every clause in N \ N’ is a logical consequence of N'. Then N
either contains the empty clause, or else is satisfiable.

This theorem can be applied whenever NNV is obtained as the closure of some initial schematic
clause set (as represented by an arbitrary set of non-ground clauses) under B. The lifting of this
completeness result to the non-ground case is not difficult. Positions in the substitution part of a
non-ground clause become substitution positions in ground instances and hence are blocked from
further ground inferences.

7.3 Basic Superposition for Clauses with Constraints

A generalization of the clause marking schema leads us to clauses with constraints. In logic pro-

gramming, constraints have been proposed by Jaffar and Lassez (1987) as a logical means for

handling primitive theories, though in theorem proving one encounters both object- and meta-level

Marked ground clauses can be represented by constrained (non-ground) clauses with simple
equational constraints. For example, the constrained clause (z#c) - (x = f(a)) represents the
ground clause f(a)#c (with the constraint defining a ground substitution). In general, a con-
strained clause represents all ground clauses obtained from its clause part by instantiation with a
substitution solving its constraints.

Constraints serve two different purposes in theorem proving. Equality constraints abstractly
define ground substitutions for a clause, and thus also determine the substitution part of a clause
that may be blocked from inferences. Ordering constraints, on the other hand, allow for a better
approximation of the side conditions of inferences. In essence, we may move ordering constraints

12There may be multiple occurrences of the same clause in N, but with different markings.

27

from the meta- to the object level and carry them along throughout the derivation process. For
example, in the inference
r+ymyt+r u+ f(z)= f(z)+=2

(f(2) +ur f(z)+2) - (ur f(2))

the combined equality and ordering constraint

r=u AN y=f(z) Nut+fz)=fz)+u AN utfz)=fz)+=z

when projected to the variables u and z appearing in the conclusion, is equivalent to u > f(z).
The unit clause

(f(2) +ur f(z)+2) (ur f(2))

represents all ground clauses of the form f () +[s]l~ f () + , where s and ¢ are ground terms
with s > f(t), and the root positions of substituted terms are marked as indicated. In standard
superposition, the satisfiability of the constraint is verified once, and the unconstrained equation
f(z) +u = f(2) + z is generated. There are additional superpositions of the latter unconstrained
equation with commutativity, whereas all inferences of the constrained equation with commuta-
tivity result in unsatisfiable ordering constraints (because the left-hand side of the equation is
already constrained to be maximal, with the larger term s as the second argument) and hence are
redundant.

Formally, a constrained clause is a pair C'- v of a clause C' and a constraint y. Constraints are
built from boolean connectives and atomic constraints of the form £ = E', E = E', or E = FE/,
where E and E’ are expressions (terms, literals, or clauses). A ground substitution o is a solution
of an atomic constraint if the indicated relation holds between Fo and E’c, where = is interpreted
as syntactic equality and > refers to the given ordering. Non-atomic constraints are evaluated on
the basis of the truth values of their atomic constraints. A clause C'o is said to be a (ground)
instance of a constrained clause C' - v if ¢ is a solution of the constraint v and all positions that
correspond to variable positions in C' are marked.

If a constraint v is equivalent to T, then C' -~ can be identified with C and represents the
set of all ground instances C'o. We also speak of an unconstrained clause in this case. A clause
with an unsatisfiable constraint represents a tautology. A constrained clause C -~ is called a
contradiction if C' is the empty clause, but v is satisfiable. For theorem proving applications
it is usually not necessary, though, to test the satisfiability of arbitrary constraints in order to
determine whether a constrained clause is a contradiction. Ordering constraints are kept strictly
separate from the equality constraints, and may always be removed without affecting the soundness
of the process. Thus, to detect contradictions, we only need to be able to decide the satisfiability
of equality constraints, which is straightforward for the syntactic identity relation. (For many
orderings, such as lexicographic path orderings, the satisfiability of arbitrary constraints is also

Figure 4 shows a version of positive basic superposition with constraints. Other inference
rules are extended to constrained clauses in a similar way. Note that the conclusion inherits all
constraints from the premises and is further constrained by an equality constraint s = s’ (expressing
the unifiability of the two terms) and by ordering constraints. The only meta-level constraint
remaining is that s’ should not be a variable.

LeEMMA 10 (LIFTING LEMMA FOR BASIC SUPERPOSITION WITH CONSTRAINTS) Let N be a set
of constrained clauses. Any inference in B from ground instances of N is the ground instance of
some inference in B from N.

28

Positive basic superposition with constraints

(CVs=t)-y (DVwls]=v) 4§
(CVDVwt]~v) - (yAdAs=5 Aw)

where s’ is not a variable and where w is the ordering constraint

(s=t)=C AN (w=v) =D A s=t N w>=v A (wxv) = (s=t).

Figure 4: Basic superposition for constrained clauses B

constrained clauses. Then N is satisfiable if and only if it contains no contradiction.

Proof. Let N be the closure of a set M of unconstrained clauses under B. The set of ground
instances K of N satisfies the requirements of theorem [3, as the ground instances of M form a
schematic subset. The result then follows by lifting. O

theorem to sets of clauses with certain kinds of initial constraints. Basically, one can also admit
initial constraints if their solutions are closed under reduction. Earlier work on the subject includes

The issue of redundancy is more complicated in the context of basic superposition, because
the reduction property for counterexamples holds only for reduced sets of clauses. A clause set
K, by definition, is reduced with respect to (reduced) rewrite system Ix. A suitable notion of
redundancy that is compatible with deduction and deletion (of redundant clauses), essentially
singles out clauses that can not be a minimal reduced counterexample with respect to any reduced
rewrite system. As a consequence, the usual simplification methods (reduction, subsumption) need
to be somewhat restricted. On the other hand, a clause can be eliminated if its substitution part

is reducible by another equation in the system. We refer to (Bachmair, Ganzinger, [ynch and

one to expand the substitution part of clauses. Redex orderings can be used to mark positions
in the conclusion of a superposition inference that precede (in the redex ordering) the position at
which the inference takes place. If basic paramodulation into the smaller sides of positive equations
is permitted, then the replacement term in a superposition inference can be put in the substitution
part also.

We already mentioned that monotonicity axioms are not needed for Skolem functions. The com-

below a Skolem function is not required: since Skolem functions occur only with variable arguments
in initial clauses, any term below a Skolem function in a derived clause is in the substitution part.

29

8 Summary

We have described superposition and its variants, calculi that in one form or another are imple-
mented in virtually all state-of-the-art theorem provers for first-order clause logic with equality.
Superposition represents the combination of two lines of research that started about thirty years

experimental and implementation work that has produced a number of powerful equational reason-
ing systems. A notable success has been the proof of a long-standing open problem, the Robbins

The performance of superposition- and completion-based provers often depends on additional
improvements that we have not been able to include in this survey. For instance, certain standard
axioms or theories can be built directly into an inference mechanism. An example is the associative-

do exist for all signatures, even if they contain more than one AC-symbol.

Typically, it is the unification algorithm that needs to be generalized to accommodate the
additional axioms. The drawback is that most general unifiers need not be unique any more, and
that each unification problem may generate a (potentially large) number of unifiers. In the case
of associativity and commutativity, there are doubly exponentially many unifiers in the size of the

can be avoided, if constraints are used to specify the requisite unification problems for an inference.
Then it suffices to check whether the constraints are satisfiable, which in the case of associativity

implicit or explicit types of variables such that type inference is integrated into proof search, cf.
Weidenbach (this handbook, 1.2.9).

Other recent work focuses on developing specialized (basic and non-basic) completion and su-
perposition calculi for specific commutative algebraic theories, such as groups and rings. The
motivation is that the richer algebraic structure may allow for stronger simplification techniques

References

Bachmair, L. (1989). Proof normalization for resolution and paramodulation, Proc. 3rd Int
Conf. Rewriting Techniques and Applications, Vol. 355 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, pp. 15-28.

Bachmair, L. (1991). Canonical equational proofs, Birkhéuser, Boston.

30

Bachmair, L. and Dershowitz, N. (1989). Completion for rewriting modulo a congruence, Theoretical
Computer Science 67: 173-201.

Bachmair, L., Dershowitz, N. and Hsiang, J. (1986). Orderings for equational proofs, Proceedings
of the First IEEE Symposium on Logic in Computer Science (Cambridge, MA), pp. 346-357.

Bachmair, L., Dershowitz, N. and Plaisted, D. (1989). Completion without failure, in H. Ait-Kaci
and M. Nivat (eds), Resolution of Equations in Algebraic Structures, vol. 2, Academic Press,
pp. 1-30.

Bachmair, L. and Ganzinger, H. (1990). On restrictions of ordered paramodulation with simpli-
fication, in M. Stickel (ed.), Proc. 10th Int. Conf. on Automated Deduction, Kaiserslautern,
Vol. 449 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 427-441.

Bachmair, L. and Ganzinger, H. (1995). Associative-commutative superposition, in N. Dershowitz
and N. Lindenstrauss (eds), Proc. 4th Int’l Workshop on Conditional and Typed Rewrite Sys-
tems, Jerusalem, Vol. 968 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
pp. 1-14.

Bachmair, L. and Ganzinger, H. (1997a). Strict basic superposition and chaining, Research Report
MPI-1-97-2-011, Max-Planck-Institut fiir Informatik, Saarbriicken.
*http://www.mpi-sb.mpg.de/ hg/pra.html#MPI-1-97-2-011

Bachmair, L. and Ganzinger, H. (1997b). A theory of resolution, Research Report MPI-I-97-2-005,
Max-Planck-Institut fiir Informatik, Saarbriicken. To appear in the Handbook of Automated
Reasoning.

*http://www.mpi-sb.mpg.de/ hg/pra.html#MPI-1-97-2-005

Bachmair, L., Ganzinger, H., Lynch, C. and Snyder, W. (1992). Basic paramodulation and super-
position, in D. Kapur (ed.), Automated Deduction — CADE’11, Vol. 607 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, pp. 462-476.

Bachmair, L., Ganzinger, H., Lynch, C. and Snyder, W. (1995). Basic paramodulation, Information
and Computation 121(2): 172-192.
*http://www.mpi-sb.mpg.de/ hg/pja.html#1C95

Bachmair, L., Ganzinger, H. and Voronkov, A. (1997). Elimination of equality via transformation
with ordering constraints, Research Report MPI-1-97-2-012, Max-Planck-Institut fiir Infor-
matik, Saarbriicken.

*http://www.mpi-sb.mpg.de/ hg/pra.html#MPI-1-97-2-012

Brand, D. (1975). Proving theorems with the modification method, STAM J. Computing 4: 412-430.

Comon, H. (1990). Solving symbolic ordering constraints, International Journal on Foundations of
Computer Science 1(4).

Comon, H., Narendran, P., Nieuwenhuis, R. and Rusinowitch, M. (1998). Decision problems in
ordered rewriting, Proc. 13th IEEE Conference on Logic in Computer Science. To appear.

Davis, M. and Putnam, H. (1960). A computing procedure for quantification theory, J. Association
for Computing Machinery 7: 201-215.

31

Degtyarev, A. (1979). The strategy of monotone paramodulation (in Russian), Fifth Soviet All-
Union Conference on Mathematical Logic, Novosibirsk, p. 39.

Degtyarev, A. and Voronkov, A. (1996a). Equality elimination for the tableau method, in J. Calmet
and C. Limongelli (eds), Design and Implementation of Symbolic Computation Systems. Inter-
national Symposium, DISCO’96, Vol. 1128 of Lecture Notes in Computer Science, Karlsruhe,
Germany, pp. 46-60.

Degtyarev, A. and Voronkov, A. (1996b). What you always wanted to know about rigid E-
unification, in J. Alferes, L. Pereira and E. Orlowska (eds), Logics in Artificial Intelligence.
European Workshop, JELIA’96, Vol. 1126 of Lecture Notes in Artificial Intelligence, Evora,
Portugal, pp. 50-69.

Dershowitz, N. (1987). Termination of rewriting, J. Symbolic Computation 3(1): 69-115.

Gallier, J. H. (1986). Logic for Computer Science: Foundations of Automatic Theorem Proving,
Harper and Row.

Ganzinger, H. (1991). A completion procedure for conditional equations, J. Symbolic Computation
11: 51-81.

Gilmore, P. C. (1960). A proof method for quantification theory, IBM J. Res. Develop. 4: 28-35.

Hsiang, J. and Rusinowitch, M. (1987). On word problems in equational theories, Proc. 1jth
ICALP, Vol. 267 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 54-71.

Hsiang, J. and Rusinowitch, M. (1991). Proving refutational completeness of theorem proving
strategies: The transfinite semantic tree method, J. Association for Computing Machinery
38(3): 559-587.

Huet, G. (1972). Constrained Resolution: A Complete Method for Higher-Order Logic, PhD thesis,
Case Western Reserve University.

Huet, G. (1981). A complete proof of correctness of the Knuth and Bendix completion algorithm,
J. Computer and System Sciences 23: 11-21.

Hullot, J.-M. (1980). Canonical forms and unification, Proc. 5th Conf. on Automated Deduction,
Les Arcs, Vol. 87 of Lecture Notes in Computer Science, Springer-Verlag.

Ibens, O. and Letz, R. (1997). Subgoal alternation in model elimination, in D. Galmiche (ed.),
Automated Reasoning with Analytic Tableaur and Related Methods, Vol. 1227 of Lecture Notes
in Artificial Intelligence, Springer-Verlag, pp. 201-215.

Jaffar, J. and Lassez, J.-L. (1987). Constraint logic programming, in M. J. O’Donnell (ed.), Proc.
14th Annual ACM Symposium on Principles of Programming Languages, ACM Press, Munich,
FRG, pp. 111-119.

Jouannaud, J.-P. and Kirchner, H. (1986). Completion of a set of rules modulo a set of equations,
SIAM J. Computing 15: 1155-1194.

Jouannaud, J.-P. and Waldmann, B. (1986). Reductive conditional term rewriting systems, Proc.
Third IFIP Working Conference on Formal Description of Programming Concepts, Ebberup,
Denmark, pp. 223-244.

32

Kaplan, S. (1987). Simplifying conditional term rewriting systems: Unification, termination and
confluence, J. Symbolic Computation 4(3).

Kapur, D. (1997). Shostak’s congruence closure as completion, in H. Comon (ed.), Rewriting
Techniques and Applications, Vol. 1232 of Lecture Notes in Computer Science, Springer, Sitges,
Spain, pp. 23-37.

Kapur, D. and Narendran, P. (1992). Complexity of unification problems with associative-
commutative operators, J. Automated Reasoning 9(2): 261-288.

Kirchner, C., Kirchner, H. and Rusinowitch, M. (1990). Deduction with symbolic constraints,
Revue Frangaise d’Intelligence Artificielle 4(3): 9-52. Special issue on automatic deduction.

Knuth, D. and Bendix, P. (1970). Simple word problems in universal algebras, in J. Leech (ed.),
Computational Problems in Abstract Algebra, Pergamon Press, Oxford, pp. 263-297.

Kounalis, E. and Rusinowitch, M. (1987). On word problems in Horn logic, in B. Caviness (ed.),
Proc. First Int. Workshop on Conditional Term Rewriting, Vol. 204 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, pp. 390-399.

Lankford, D. (1975). Canonical inference, Technical Report ATP-32, Dept. of Mathematics and
Computer Science, University of Texas, Austin.

Marché, C. (1994). Normalized rewriting and normalized completion, Proc. 9th IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press, pp. 394-405.

Martin, U. and Nipkow, T. (1990). Ordered rewriting and confluence, in M. Stickel (ed.), Proc. 10th
Int. Conf. on Automated Deduction, Kaiserslautern, Vol. 449 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 366-380.

McCune, W. (1990). Skolem functions and equality in automated deduction, in T. Dietterich and
W. Swartout (eds), Proceedings of the 8th National Conference on Artificial Intelligence, MIT
Press, pp. 246-251.

McCune, W. (1997). Solution of the Robbins problem, J. Automated Reasoning 19(3): 263-276.

Moser, M., Lynch, C. and Steinbach, J. (1995). Model elimination with basic ordered paramodu-
lation, Technical Report AR-95-11, Fakultat fiir Informatik, Technische Universitdt Miinchen,
Miinchen.

Moser, M. and Steinbach, J. (1997). STE-modification revisited, Technical Report AR-97-03, Tech-
nische Universitat Miinchen.

Narendran, P. and Rusinowitch, M. (1996). Any ground associative-commutative theory has a
finite canonical system, J. Automated Reasoning 17(1): 131-143.

Nieuwenhuis, R. (1993). Simple LPO constraint solving methods, Information Processing Letters
47(2): 65-69.

Nieuwenhuis, R. and Rubio, A. (1992a). Basic superposition is complete, ESOP’92, Vol. 582 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 371-389.

33

Nieuwenhuis, R. and Rubio, A. (1992b). Theorem proving with ordering constrained clauses,
Automated Deduction — CADE’11, Vol. 607 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 477-491.

Nieuwenhuis, R. and Rubio, A. (1994). AC-superposition with constraints: No AC-unifiers needed,
Proc. 12th International Conference on Automated Deduction, Vol. 814 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, pp. 545-559.

Nieuwenhuis, R. and Rubio, A. (1995). Theorem proving with ordering and equality constrained
clauses, J. Symbolic Computation 19(4): 321-352.

Pais, J. and Peterson, G. (1991). Using forcing to prove completeness of resolution and paramod-
ulation, J. Symbolic Computation 11: 3-19.

Paul, E. (1986). On solving the equality problem in theories defined by Horn clauses, Theoretical
Computer Science 44: 127-153.

Paul, E. (1992). A general refutational completeness result for an inference procedure based on
associative-commutative unification, J. Symbolic Computation 14: 577-618.

Peterson, G. (1983). A technique for establishing completeness results in theorem proving with
equality, SIAM J. Computing 12: 82-100.

Peterson, G. and Stickel, M. (1981). Complete sets of reductions for some equational theories, J.
Association for Computing Machinery 28: 233-264.

Robinson, G. and Wos, L. T. (1969). Paramodulation and theorem proving in first order theories
with equality, in B. Meltzer and D. Michie (eds), Machine Intelligence 4, American Elsevier,
New York, pp. 133-150.

Robinson, J. A. (1965a). Automatic deduction with hyper-resolution, Int. J. of Comp. Math.
1: 227-234.

Robinson, J. A. (1965b). A machine-oriented logic based on the resolution principle, J. Association
for Computing Machinery 12: 23—41.

Rubio, A. and Nieuwenhuis, R. (1993). A precedence-based total ac-compatible ordering, Proc. 5th
Int. Conf. on Rewriting Techniques and Applications, Vol. 690 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 374-388.

Rusinowitch, M. (1987). Démonstration automatique par des techniques de réécriture, These d’Etat,
Univ. Nancy, France.

Rusinowitch, M. and Vigneron, L. (1991). Automated deduction with associative-commutative
operators, Proc. Int. Workshop on Fundamentals of Artificial Intelligence Research, Vol. 535
of Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, pp. 185-199.

Vigneron, L. (1994). Associative-commutative dedution with constraints, Proc. 12th International
Conference on Automated Deduction, Vol. 814 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 530-544.

Waldmann, U. (1997). Cancellative Abelian Monoids in Refutational Theorem Proving., PhD thesis,
Fachbereich Informatik, Universitat des Saarlandes, Germany.

34

Wertz, U. (1992). First-order theorem proving modulo equations, Research Report MPI-1-92-216,
Max-Planck-Institut fiir Informatik, Saarbriicken.

Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems, Prentice-Hall, Englewood
Cliffs, New Jersey.

Wos, L. T., Robinson, G. A., Carson, D. F. and Shalla, L. (1967). The concept of demodulation in
theorem proving, J. Association for Computing Machinery 14: 698-709.

Zhang, H. (1988). Reduction, superposition and induction: Automated reasoning in an equational
logic, PhD thesis, Rensselaer Polytechnic Institute, Schenectady, NY, USA.

Zhang, H. and Kapur, D. (1988). First-order theorem proving using conditional rewrite rules, in
E. Lusk and R. Overbeek (eds), Proc. 9th Int. Conf. on Automated Deduction, Vol. 310 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 1-20.

35

Index

candidate model, I8 paramodulation, &

clause merging, 1§
constrained, 28 ordered, 18
flat, 7, proof
marked position, 25 direct rewrite proof, 24
productive, 20 equational, 12
reduced, 26 rewrite proof, i, i3
redundant, 21, 22 proof ordering, i3

substitution part, 25
congruence axioms, B
constraints, 28

solution of a constraint, 28
counterexample, 19

weak, 24
critical pair, 10}

conditional, i[5

convergent, :_1-5

ordered, i1,

overlapped term, il(

reduction property

for counterexamples, 19

for weak counterexamples, 24
reductive

clause, 19

Horn clause, 114

instance of equation, i1,
redundancy

of clauses, 21,

of inferences, 21
reflexivity resolution, &, 17

factoring, 4 resolution
equality factoring, 17 binary, &
ordered factoring, % with selection_, 4
functional reflexivity, 5 rewrite relation, {i(
confluent, (]
inference _ Convergent’ :_l-g
ground inst'aﬁnce, 22 ground convergent, {1,
monotone, '_19 normal form, (
redundant, 21 terminating, 10}
interpretation rewrite rule, 1d
equality Herbrand interpretation, 2, 9 o _
equality interpretation, 2 saturation up to redundancy, 3_214'
B selection function, 4
model functor, [§ i selected literal, 4
modification method, 7 substitution position, 25
induced, 25

order reducibility, 26 o
7)== superposition

ordered completlo_n basic. 96
derivations, i[3 e
fair derivations, 14

ordered rewriting, 11,

ordering
admissible, 18
complete reduction ordering, [
lexicographic path ordering (Ipo), i
reduction ordering, 0 theorem proving derivations, 21,

negative, 7

of equations, 1

of reductive rewrite rules, 5

of rewrite rules, 110

positive, 17,

positive basic with constraints, 29

36

deduction, 22
deletion, 22
fairness, 22
limit, 12, 23
simplification, 24

37

