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Chapter 1FoundationsA multiset over a set A is a fun
tion M from A to the natural numbers. Intuitively, M(a) spe
i�es thenumber of o

urren
es of a inM . We say that a is an element ofM ifM(a) > 0. The union, interse
tion,and differen
e of multisets are de�ned by the identities (M1[M2)(x) =M1(x)+M2(x), (M1\M2)(x) =min(M1(x);M2(x)), and (M1nM2)(x) = max (0;M1(x)�M2(x)). We use a set-like notation to des
ribemultisets.A �rst-order language is 
onstru
ted over a signature � = (F ;R), where F and R are non-empty,disjoint, in general in�nite sets of fun
tion and predi
ate symbols, respe
tively. Every fun
tion or predi
atesymbol has some �xed arity. Fun
tion and predi
ate symbols with arity one are 
alledmonadi
. In additionto these sets that are spe
i�
 for a �rst-order language, we assume a further, in�nite set X of variablesymbols disjoint from the symbols in �. Then the set of all terms T (F ;X ) is re
ursively de�ned by:(i) every fun
tion symbol 
 2 F with arity zero (a 
onstant) is a term, (ii) every variable x 2 X is a termand (iii) whenever t1; : : : ; tn are terms and f 2 F is a fun
tion symbol with arity n, then f(t1; : : : ; tn) isa term. A term not 
ontaining a variable is a ground term. If t1; : : : ; tn are terms and R 2 R is a predi
atesymbol with arity n, then R(t1; : : : ; tn) is an atom. An atom or the negation of an atom is 
alled a literal.Disjun
tions of literals are 
lauses where all variables are impli
itly universally quanti�ed. Clauses areoften denoted by their respe
tive multisets of literals where we write multisets in usual set notation. A
lause 
onsisting of exa
tly one literal is 
alled a unit.The set of free variables of an atom (term) � denoted by vars(�) is de�ned as follows: vars(P (t1; : : : ; tn)) =[ivars(ti) and vars(f(t1; : : : ; tn)) = [ivars(ti), vars(x) = fxg. The fun
tion naturally extends to lit-erals, 
lauses and (multi)sets of terms (literals, 
lauses).A substitution � is a mapping from the set of variables to the set of terms su
h that x� 6= x foronly �nitely many x 2 X . We de�ne the domain of � to be dom(�) = fx j x� 6= xg and the
o-domain of � to be 
dom(�) = fx� j x� 6= xg. Hen
e, we 
an denote a substitution � by the�nite set fx1 7! t1; : : : ; xn 7! tng where xi� = ti and dom(�) = fx1 ; : : : ; xng. A ground substitu-tion � has no variable o

urren
es in its 
o-domain, vars(
dom(�)) = ;. An inje
tive substitution �where 
dom(�) � X is 
alled a variable renaming. The appli
ation of substitutions to terms is givenby f(t1; : : : ; tn)� = f(t1�; : : : ; tn�) for all f 2 F with arity n. We extend the appli
ation of substi-tutions to literals and 
lauses as usual: P (t1; : : : ; tn)� = P (t1�; : : : ; tn�) (a

ordingly for literals) andfL1; : : : ; Lng� = fL1�; : : : ; Ln�g.Given two terms (atoms) s, t, a substitution � is 
alled a uni�er for s and t if s� = t�. It is 
alleda most general uni�er (mgu) if for any other uni�er � of s, t there exists a substitution � with �� = � .A substitution � is 
alled a mat
her from s to t if s� = t. The notion of a mgu is extended to atoms,literals in the obvious way. We say that � is a uni�er for a sequen
e of terms (atoms, literals) t1; : : : ; tn ifti� = tj� for all 1 � i; j � n and � is a mgu if in addition for any other uni�er � of t1; : : : ; tn, there existsa substitution � with �� = � .A position is a word over the natural numbers. The set pos(f(t1; : : : ; tn)) of positions of a given termf(t1; : : : ; tn) is de�ned as follows: (i) the empty word � is a position in any term t and t j�= t, (ii) iftj�= f(t1; : : : ; tn), then �:i is a position in t for all i = 1; : : : ; n, and tj�:i= ti. We write t[s℄� for tj�= s.With t[�=s℄, where � 2 pos(t), we denote the term (atom) obtained by repla
ing tj� by s at position � in5



6 CHAPTER 1. FOUNDATIONSt. The length of a position � is de�ned by length(�) = 0 and length(i:�) = 1 + length(�). The notion ofa position 
an be extended to atoms, literals and even formulae in the obvious way.As an alternative to the already mentioned multiset notation of 
lauses, we also write 
lauses in theform � k� ! � where � is a multiset of monadi
 atoms1 and �, � are multisets 
ontaining arbitraryatoms. Logi
ally, the atoms in � and � denote negative literals while the atoms in � denote the positiveliterals in the 
lause. The empty 
lause 2 denotes ? (falsity). The multiset � is 
alled the sort 
onstraintof � k� ! �. A sort 
onstraint � is solved in a 
lause � k� ! � if it does not 
ontain non-variableterms and vars(�) � vars(� [ �). If the 
lause is determined by the 
ontext, we simply say that asort 
onstraint is solved. In 
ase we are not interested in a separation of the negative literals in a 
lause,we write 
lauses in the form � ! �. We often abbreviate disjoint set union with sequen
ing, e.g., wewrite � k� ! �; R(t1; : : : ; tn) for � k� ! � [ fR(t1; : : : ; tn)g. Equality atoms are written l � r andare mostly distinguished from non-equality atoms. The latter are named A, B. In 
ase we don't want todistinguish these two different kinds of atoms we use the letter E (possibly indexed) to denote an arbitraryatom. Inferen
es and redu
tions where equations are involved are applied with respe
t to the symmetry of�. A 
lause �1 k�1 ! �1 subsumes a 
lause �2 k�2 ! �2 if �1� � �2, �1� � �2 and �1� � �2for some mat
her �. The relation �is subsumed by� between 
lauses is a quasi-ordering on 
lauses. Pleasere
all that we 
onsider 
lauses to be multisets. Hen
e, e.g., the 
lause fP (x); P (y)g (also possibly written! P (x); P (y)) does not subsume the 
lause fP (x)g (possibly written! P (x)).The fun
tion size maps terms, atoms, literals to the number of symbols they are built from, e.g.,size(t) = jpos(t)j. In 
ase of a literal, we don't 
onsider the negation symbol for its size. The depthof a term, literal is the maximal length of a position in the term, literal, e.g., depth(t) = max (flength(�) j� 2 pos(t)g). The depth of a 
lause is the maximal depth of its literals. The size of 
lause is the sum of itsliteral sizes.For the de�nition of our inferen
e/redu
tion rules we shall often need the notion of an ordering to
ompare terms. This notion is then lifted to tuples, sets, 
lauses and (multi)sets of 
lauses. A partial orderis a re�exive, transitive and antisymmetri
 relation. A stri
t order is a transitive and irre�exive relation.Every partial order � indu
es a stri
t order � by t � s iff t � s and t 6= s. The lexi
ographi
 extension�lex on tuples of some stri
t order � is de�ned by (t1; : : : ; tn) �lex (s1; : : : ; sn) if for some 1 � i � nwe have ti � si and for all 1 � j < i it is the 
ase that ti = si. The multiset extension �mul is de�nedbyM �mul N if N 6= M and for all n 2 N nM there exists an m 2 M nN with m � n. A redu
tionordering � is a well-founded, transitive relation satisfying for all terms t, s, l, positions p 2 pos(l) andsubstitutions � that whenever s � t then l[p=s�℄ � l[p=t�℄. For the purpose of this arti
le, we are mainlyinterested in redu
tion orderings that are total on ground terms, possibly up to some 
ongruen
e on theground terms. Any (redu
tion) ordering � on terms (atoms) 
an be extended to 
lauses in the followingway. We 
onsider 
lauses as multisets of o

urren
es of equations and atoms. The o

urren
e of anequation s � t in the ante
edent is identi�ed with the multiset ffs; tgg, the o

urren
e of an atom A inthe ante
edent is identi�ed with the multiset ffA;>gg, the o

urren
e of an equation in the su

edent isidenti�ed with the multiset ffsg; ftgg and the o

urren
e of an atom in the su

edent is identi�ed withthe multiset ffAg; f>gg. We always assume that > is the minimal 
onstant with respe
t to �. Now weoverload � on literal o

urren
es to be the twofold multiset extension of � on terms (atoms) and � on
lauses to be the multiset extension of � on literal o

urren
es. If � is well-founded (total) on terms(atoms), so are the multiset extensions on literals and 
lauses.Observe that an o

urren
e of an equation s � t (an atom) in the ante
edent is stri
tly bigger thanan o

urren
e of s � t in the su

edent. The atoms in the sort 
onstraint will not be subje
t to orderingrestri
tions but will be pro
essed by spe
i�
 inferen
e/redu
tion rules.An ante
edent or su

edent o

urren
e of an equation s � t (an atom A) is maximal in a 
lause� k� ! � if there is no o

urren
e of an equation or atom in � ! � that is stri
tly greater than theo

urren
e s � t (the atom A) with respe
t to �. An ante
edent or su

edent o

urren
e of an equations � t is stri
tly maximal in a 
lause � k� ! � if there is no o

urren
e of an equation in � ! � thatis greater or equal than the o

urren
e s � t with respe
t to �. A 
lause � k� ! �; s � t (
lause� k�! �; A) is redu
tive for the equation s � t (the atom A), if s � t (the atom A) is a stri
tly maximal1These are atoms with a monadi
 predi
ate as their top symbol that form the sort 
onstraint.
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urren
e of an equation (atom) and t 6� s.For the spe
i�
 sort 
onstraint approa
h introdu
ed here, monadi
 Horn theories are of parti
ular im-portan
e. Su
h theories provide a natural representation of sort/type information (see Se
tion 2.3.2). AHorn 
lause is a 
lause with at most one positive literal. A monadi
 Horn theory is a set of Horn 
lauseswhere all o

urring predi
ates are monadi
. A de
laration is a 
lause S1(x1); : : : ; Sn(xn) ! S(t) withfx1; : : : ; xng � vars(t). It is 
alled a term de
laration if t is not a variable and a subsort de
larationotherwise. A subsort de
laration is 
alled trivial if n = 0. A term t is 
alled shallow if t is a variableor is of the form f(x1; : : : ; xn) where the xi are not ne
essarily different variables. A term t is 
alledlinear if every variable o

urs at most on
e in t. It is 
alled semi-linear if it is a variable or of the formf(t1; : : : ; tn) su
h that every ti is semi-linear and whenever vars(ti) \ vars(tj) 6= ; we have ti = tj forall i, j. A term de
laration is 
alled shallow (linear, semi-linear) if t is shallow (linear, semi-linear). Notethat shallow term de
larations don't in
lude arbitrary ground terms. However, any ground term de
laration
an be equivalently represented, with respe
t to the minimal model semanti
s, by �nitely many shallowterm de
larations. For example, the ground term de
laration! S(f(a)) 
an be represented by the shallowde
larations T (x) ! S(f(x)), ! T (a). A sort theory is a �nite set of de
larations. It is 
alled shallow(linear, semi-linear) if all term de
larations are shallow (linear, semi-linear).A 
lause store is a multiset of 
lauses. A 
lause store 
olle
tion is a multiset of 
lause stores. Theinferen
e and redu
tion rules dis
ussed in this 
hapter operate on 
lauses o

urring in a 
lause store of a
lause store 
olle
tion. There are inferen
e rulesI �1 k�1 ! �1 : : : �n k�n ! �n	 k�! �redu
tion rules R �1 k�1 ! �1 : : : �n k�n ! �n	1 k�1 ! �1...	k k�k ! �kand splitting rules. S � k�! �	1;1 k�1;1 ! �1;1 	1;2 k�1;2 ! �1;2... ...	n;1 k�n;1 ! �n;1 	m;2 k�m;2 ! �m;2The 
lauses �i k�i ! �i are 
alled the parent 
lauses or premises of the splitting (redu
tion, inferen
e)rule and the 
lauses 	i(;j) k�i(;j) ! �i(;j) the 
on
lusions. A rule is applied to a 
lause store 
olle
tionP by sele
ting a 
lause store N out of P su
h that the premises of an inferen
e (redu
tion, splitting) ruleare 
ontained in N . In this 
ase, N is 
alled the 
urrent 
lause store. If an inferen
e is performed, the
on
lusion of the inferen
e is added to N . If a redu
tion is performed, the premises are repla
ed in Nby the 
on
lusions. As a spe
ial 
ase, if no 
on
lusion is present, the premises are deleted from N . If asplitting rule is applied, the 
urrent storeN is repla
ed in P by two storesN n f� k�! �g [ f	j;1 k�j;1 ! �j;1 j 1 � j � ngN n f� k�! �g [ f	j;2 k�j;2 ! �j;2 j 1 � j � mgOne 
an think of more general splitting rules but the above s
hema is suf�
ient for a general understand-ing of the implementation 
onsequen
es 
aused by su
h a rule and is a
tually implemented in SPASS (seeSe
tion 2.3.5). Semanti
ally, 
lause stores represent 
onjun
tions of their 
lauses whilst 
lause store 
ol-le
tions represent disjun
tions of their 
ontained 
lause stores. So a 
lause store 
olle
tion P represents adisjun
tion (
lause stores) of 
onjun
tions (of universally quanti�ed 
lauses) of disjun
tions (of literals).A 
lause storeN is saturated with respe
t to a set of inferen
e and redu
tion rules (no splitting rules),if any 
on
lusion of an inferen
e rule appli
ation to N yields a 
lause that 
an eventually be deleted by asequen
e of redu
tion rule appli
ations. This de�nition of saturation provides an operational point of view.
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Chapter 2SPASS2.1 What This Chapter is (not) AboutThis arti
le is about the design, the implementation and the use of SPASS Version 2.0 [54℄, a saturation-based automated theorem prover for �rst-order logi
 with equality. SPASS is unique due to the 
ombina-tion of the superposition 
al
ulus with spe
i�
 inferen
e/redu
tion rules for sorts (types) and a splittingrule for 
ase analysis motivated by the �-rule of analyti
 tableau and the 
ase analysis employed in theDavis-Putnam pro
edure [10℄. Furthermore, SPASS provides a sophisti
ated 
lause normal form transla-tion [37, 38℄. This 
hapter is not about 
ompleteness/soundness proofs for saturation-based �rst-order logi

al
uli. For this we refer to [4℄, [35℄ and the 
orresponding referen
es in this arti
le. Nevertheless, thisdo
umentation introdu
es a variety of inferen
e/redu
tion rules that are implemented in SPASS and thatform a basis for various �rst-order 
al
uli.At the heart of SPASS is a �rst-order 
al
ulus. It 
onsists of inferen
e rules that generate new 
lausesand redu
tion rules that redu
e the number of 
lauses or transform 
lauses into simpler ones. In SPASS weintrodu
ed a great variety of 
lause set1 based inferen
e and redu
tion rules that 
an be 
omposed to varioussound and 
omplete �rst-order 
al
uli. The 
lause store data stru
ture together with su
h a 
al
ulus arethe basis for most of today's theorem proving systems, like Otter, E or Vampire(see Appendix 2.7). SPASSgoes one step further by introdu
ing a splitting rule that supports expli
it 
ase analysis. This generalizes thestandard 
lause store based approa
h to a 
lause store 
olle
tion2 approa
h where different 
lause storesrepresent the different 
ases. Therefore, the splitting rule introdu
es a se
ond dimension in saturation-basedautomated theorem proving.The third dimension we 
onsider in SPASS are 
onstraints, extra information atta
hed to a 
lause re-stri
ting its semanti
s and/or usage with respe
t to the 
al
ulus. Well-known 
onstraints are ordering
onstraints, for
ing substituted terms to satisfy the atta
hed ordering restri
tions, basi
ness 
onstraints,forbidding paramodulation inferen
es on 
ertain terms in the 
lause, or type 
onstraints guaranteeing thatinstantiations for variables 
onform to the atta
hed type of the variable. From an abstra
t implementationpoint of view the handling of 
onstraints is always the same. The information is atta
hed to a 
lause, it ismaintained during the inferen
e/redu
tion appli
ation pro
ess and it is exploited by 
onstraint spe
i�
 al-gorithms/dedu
tion me
hanisms to restri
t inferen
es/redu
tions or to even eventually delete a 
lause. Weimplemented sort 
onstraints, spe
i�
 type 
onstraints for variables where the type (sort) theory is itselfexpressed by 
lauses.A software proje
t like SPASS is always a 
ompromise between different goals like maintainability,ef�
ien
y, �exibility, readability, short development time, modularity, et
. For SPASS, the most importantgoals are maintainability, �exibility, readability and modularity of the design (
ode). This does not meanthat SPASS is inef�
ient, but whenever there is a 
on�i
t between ef�
ien
y and, e.g., a modular design,we prefer the latter. Best eviden
e that SPASS really meets its design goals is the fa
t that its 
ode isused by several resear
h groups as a basis for 
ode development and that the proje
t has at the time of this1From an implementation point of view we 
onsider 
lause multisets, 
alled 
lause stores.2A 
lause store 
olle
tion is a multiset of 
lause stores. 9



10 CHAPTER 2. SPASSwriting run su

essfully for eight years. We also view this prover as a tool(box), so even for users that don'twant to spend effort in implementation work it offers great �exibility, ri
h do
umentation and a number ofindispensable extra tools like syntax translators or a proof 
he
ker.We believe that a sophisti
ated 
al
ulus, a �good theory�, has the highest impa
t on the performan
eof a prover. Therefore, we won't study the implementation of provers at the level of data stru
tures, obje
thierar
hies or module design. Instead, we will dis
uss the needs for an ef�
ient implementation of thevarious inferen
e/redu
tion rules and the impa
ts that the top-level sear
h algorithms have on an a
tualimplementation. This together with a spe
i�
 design goal de
ision 
an then lead to a design 
on
ept for areal prover like SPASS.Heuristi
s are also not in fo
us of SPASS, although they 
an play an important r�le in automated theo-rem proving. For example, the heuristi
 that 
hooses the next 
lause for inferen
es inside a typi
al �mainloop� of a saturation based prover (see Table 2.1 on page 12) 
an have a great impa
t on the su

ess/non-su

ess of a sear
h attempt for a proof. However, it is the nature of heuristi
s that they are sometimesuseful and sometimes make things even worse. In the 
ontext of automated theorem proving, it is often notpredi
table what will be the 
ase as long as we don't restri
t our attention to spe
i�
 problems (problem
lasses). Therefore again, the main fo
us of SPASS is on inferen
e/simpli�
ation/redu
tion te
hniques.For these te
hniques we know, e.g., that they 
an be 
omposed to de
ision pro
edures for a variety ofsynta
ti
ally identi�able sub
lasses of �rst-order logi
 [5, 34, 27, 53℄. Our level of abstra
tion is oftenlower 
ompared to papers that solely are 
on
erned with theory, be
ause we want to emphasize on the im-plementation relevant aspe
ts of inferen
e/simpli�
ation/redu
tion te
hniques. Hen
e, we always refrainfrom �more elegant� formulations in order to make the 
onsequen
es for an (ef�
ient) implementationmore expli
it.The design 
on
epts introdu
ed in SPASS and dis
ussed here are not ne
essarily original 
ontributionsof the author. For example, the 
ombination of saturation and splitting is original, but the use of indexingte
hniques [22℄ is a widely used method. Many of the design ideas introdu
ed in SPASS are �
ommonknowledge� among the developers of �rst-order saturation based theorem provers and are regularly dis-
ussed among these. Thus it is hard to say where the origin of some idea 
omes from and I refer to my
olleagues listed in the a
knowledgments.In this 
hapter I frequently use the notion in pra
ti
e to argue for design de
isions. This refers to theproblem domains we have been interested in so far: Problems resulting from the analysis/veri�
ation ofsoftware [16℄, from the area of automati
 type inferen
e [17, 8℄, from the analysis of se
urity proto
ols [24,53℄, planning problems [29℄, modal logi
 problems [26℄, and problems from the TPTP problem library [48℄.If we say that some te
hnique/design/
al
ulus is preferred over some other te
hnique/design/
al
ulus inpra
ti
e, this is always meant with respe
t to the above mentioned problem domains.SPASS is freely available from the SPASS homepage athttp://spass.mpi-sb.mpg.de/After a se
tion on notation and notions (Chapter 1), an introdu
tion to major design aspe
ts of saturation-based provers (Se
tion 2.2), we dis
uss the inferen
e/redu
tion rules (Se
tion 2.3) of SPASS. For ea
hrule we provide a formal de�nition and explain spe
i�
 aspe
ts of its pragmati
s and implementation. InSe
tion 2.4 we evolve the global design of a prover from all these rules. Finally, the appendix establisheslinks between all mentioned design 
on
epts, inferen
e/redu
tion rules and the user interfa
e of SPASS aswell as its sour
e 
ode.2.2 A First Simple ProverIn this se
tion, we dis
uss the implementation of a simple resolution based 
al
ulus. Although the 
al
uliimplemented by SPASS are mu
h more sophisti
ated than the simple resolution 
al
ulus 
onsidered here,some important design de
isions 
an already be explained on the basis of su
h a simple example. Theresolution 
al
ulus 
onsists of the inferen
e rules resolution, fa
toring and the redu
tion rules subsumptiondeletion and tautology deletion



2.2. A FIRST SIMPLE PROVER 11Resolution Fa
toring RightI �1; A! �1 �2 ! �2; B(�1;�2 ! �1;�2)� I �! �; A;B(�! �; A)�Subsumption Deletion Fa
toring LeftR �1 ! �1 �2 ! �2�1 ! �1 I �; A;B ! �(�; A! �)�Tautology DeletionR �; A! �; Awhere � is a most general uni�er (mgu) of the atoms A and B for the rules resolution, fa
toring and inorder to apply subsumption, the 
lause �1 ! �1 must subsume the 
lause �2 ! �2.For the resolution rule to be 
omplete, it is required that the parent 
lauses �1; A ! �1 and �2 !�2; B have no variables in 
ommon. A
tual implementations of the rule satisfy this requirement in dif-ferent ways. They all have in 
ommon that variables are represented by (natural) numbers, so this is ourassumption for the rest of this paragraph. The �rst solution expli
itely renames the 
lauses su
h that theyhave no variables in 
ommon. The se
ond solution a

epts 
lauses that share variables, but when runningthe uni�
ation algorithm the variables are separated by adding an offset to the variables of one 
lause.3A typi
al offset is the value of the maximal, with respe
t to number greater, variable of the other 
lause.The third solution also a

epts 
lauses that share variables and solves the problem by employing two sub-stitutions, one for ea
h 
lause. This requires some modi�
ations to the standard uni�
ation algorithms,be
ause the terms of the different atoms need to be expli
itely separated. This is the solution implementedin SPASS. In order to test appli
ability of the resolution rule, it is suf�
ient to expli
itely or impli
itlyrename the variables of the 
onsidered atoms, not the overall 
lause.For the fa
toring rule there is an extra variant for positive (Fa
toringRight) and negative literals (Fa
tor-ing Left). We 
ould have presented both variants in one rule, by denoting 
lauses as disjun
tions of literals.However, our representation is 
loser to the implementation of the rule. All 
lause data stru
tures used inwell-known provers expli
itely separate positive from negative literals. The reason is ef�
ien
y and alreadybe
omes obvious for fa
toring: Whenever we sear
h for a partner literal for a positive literal it does notmake sense to 
onsider negative literals at all. Similar situations arise for other inferen
e/redu
tion rules.Therefore, the de
ision in this arti
le is always to distinguish positive and negative literals when presentinginferen
e/redu
tion rules.Now let us 
ompose the inferen
e/redu
tion rules to an a
tual prover. The input of the prover is a 
lausestore 
ontaining 
lauses without equality and the output on termination is a proof or a saturated 
lausestore. The above resolution 
al
ulus is 
omplete, so we also want our sear
h pro
edure to be 
omplete inthe sense that if resour
es don't matter and our pro
edure is 
alled with an unsatis�able 
lause store then itwill eventually �nd a proof (the empty 
lause). In order to a
hieve this goal, we have to guarantee that the
onsidered 
lause set is saturated in the limit. This in
ludes that all inferen
es between 
lauses have beenperformed. An easy way to remember whi
h inferen
es have already been performed is to split the input
lause store in a set Wo of 
lauses (Worked off 
lauses) where all inferen
es between 
lauses in this setalready took pla
e and a set Us of 
lauses (Usable 
lauses) whi
h still have to be 
onsidered for inferen
es.Then a main loop iteration of the prover 
onsists of sele
ting a 
lause from the Us set, moving it to theWoset and then adding all inferen
es between the sele
ted 
lause and the 
lauses in Wo to the Us set. If thesele
tion is fair, i.e., no 
lause stays arbitrarily long in the Us set without being sele
ted, this results in a
omplete pro
edure. It remains to build redu
tions into this loop. The idea for this loop is due to the Ottertheorem prover and its prede
essors [32℄.The redu
tion rules tautology deletion and subsumption deletion de
rease the number of 
lauses in the
lause store while the inferen
e rules in
rease the number of 
lauses. Hen
e, exhaustive appli
ation of theredu
tion rules terminates and produ
es smaller 
lause stores. In pra
ti
e, small 
lause sets are preferredover large ones, hen
e redu
tions are preferred over inferen
es. This 
onsideration together with the idea ofthe main-loop introdu
ed above leads to ResolutionProver1 depi
ted in Table 2.1. Note that subsumption3Please re
all that we assume variables to be represented by naturals.



12 CHAPTER 2. SPASS1 ResolutionProver1 (N)2 Wo := ;;3 Us := taut(sub(N));4 While (Us 6= ; and 2 62 Us) f5 (Given ;Us):= 
hoose(Us);6 Wo :=Wo [ fGiveng;7 New := res(Given ;Wo) [ fa
(Given);8 New := taut(sub(New ));9 New := sub(sub(New ;Wo);Us);10 Wo := sub(Wo;New);11 Us := sub(Us ;New) [New ;12 g13 If (Us = ;) then print �Completion Found�;14 If (2 2 Us) then print �Proof Found�;Table 2.1: A First Resolution Based Proverand tautology deletion are independent in the sense that on
e all tautologies have been removed, subsump-tion does not generate new tautologies. Analyzing su
h dependen
ies between redu
tions is one key for anef�
ient implementation.For the des
ription of theorem proving pro
edures we use the following abbreviations: fa
(C) is theset of all fa
toring inferen
e 
on
lusions (left and right) from the 
lause C, res(C;D) is the set of allresolution inferen
e 
on
lusions between two 
lauses C and D, taut(N) is the set N after exhaustiveappli
ation of tautology deletion and sub(N;M) is the set of all 
lauses from N that are not subsumedby a 
lause in M . We overload sub for one argument, where sub(N) denotes the set N after exhaustiveappli
ation of subsumption deletion to the 
lauses in N . We overload res by de�ning res(C;N) to bethe set of all resolution inferen
es between the 
lause C and a 
lause in N . The fun
tion 
hoose sele
tsand removes a 
lause from its argument 
lause store and returns the sele
ted 
lause as well as the updatedargument 
lause store.As already motivated, the pro
edure ResolutionProver1 operates on two 
lause stores: Wo and Us.The storeWo holds all 
lauses that have already been sele
ted for inferen
es, while the store Us 
ontainsall 
andidate 
lauses to generate inferen
es. The prover ResolutionProver1 is 
alled with a �nite 
lausestore N and tests those for unsatis�ability. Lines 2 and 3 initialize the sets Wo and Us. Note that Us isnot initialized withN , but its 
ompletely inter-redu
ed equivalent. This step is 
alled input redu
tion. Thesear
h for the empty 
lause (a saturation) is implemented by the lines 4�12. The while-loop starting atline 4 terminates if the empty 
lause is found or the set Us is empty. We will argue below that this impliesthat the set Wo is saturated. If Us is not empty and the body of the while-loop is entered, the fun
tion
hoose sele
ts at line 5 a 
lause out of the usable set. The fun
tion is fair, if no 
lause stays in Us foran in�nite number of iterations through the while loop. A widely used, fair implementation (heuristi
) of
hoose is to sele
t a lightest 
lause that is a 
lause of smallest size. This sele
tion fun
tion is fair, be
ausethere are only �nitely many different 
lauses with respe
t to subsumption having less than k symbols, forany 
onstant k.4 Many re�nements of the 
hoose fun
tion are possible: using different weights for variableand signature symbols, preferring 
lauses with more/fewer variables, preferring 
lauses that 
ontain 
ertainatoms/term stru
tures or 
onsidering in addition the depth of a 
lause in the sear
h spa
e. The depth of a
lause in the sear
h spa
e is zero for all input 
lauses and every 
on
lusion of an inferen
e has the maximal4Note that sin
e the input set N is �nite, the relevant signature is �nite, too.



2.2. A FIRST SIMPLE PROVER 13depth of their parent 
lauses plus one. Many provers use a 
ombination of weight and depth sele
tion, e.g.,
hoosing four times 
lauses by minimal weight and every �fth time by minimal depth. This 
ombinationagain goes ba
k to Otter where the ratio 
an be 
ontrolled by the pi
k-given ratio parameter. The parameteris also available in SPASS.Then the 
lause Given is sele
ted, removed from Us and added to Wo (lines 5, 6). Next (line 7)all resolution inferen
e 
on
lusions between Given andWo and all fa
toring inferen
e 
on
lusions fromGiven are stored in New . Note that sin
e Given is already 
ontained in Wo these inferen
es in
lude selfresolution inferen
es. The 
lauses generated so far are 
alled derived 
lauses. The lines 8�11 are devotedto redu
tion. First, all tautologies and subsumed 
lauses are removed from New . Then all 
lauses that aresubsumed by a 
lause in Wo or Us are deleted from New . This operation is 
alled forward subsumption.Clauses remaining in New are then used for ba
kward subsumption, the subsumption of 
lauses in the setsWo and Us by 
lauses from New . Finally, the 
lauses from New are added to Us. These 
lauses areusually 
alled kept 
lauses.There are two invariants that hold ea
h time line 4 is exe
uted:� Any resolution inferen
e 
on
lusion from two 
lauses inWo (fa
toring inferen
e 
on
lusion from a
lause inWo) is either 
ontained inWo, Us or is subsumed by a 
lause inWo, Us or is a tautology.� The sets Wo and Us are 
ompletely inter-redu
ed:Wo [Us = taut(Wo [ Us) andWo [Us = sub(Wo [ Us).A 
onsequen
e of these invariants to hold is that if the pro
edure stops then the set Wo is saturated.Furthermore, if the fun
tion 
hoose is fair, then the ResolutionProver1 is 
omplete.In 
ase that for the set N a satis�able subset N 0 is known, e.g., if the 
lauses represent a proof attemptof a 
onje
ture with respe
t to some theory that is known to be satis�able, we 
ould also initialize the setsby Wo := N 0 and Us := (N nN 0), obtaining the so 
alled set of support (SOS) strategy [55℄. The SOSstrategy preserves 
ompleteness.Many other saturation based provers (e.g., Otter, SPASS, Waldmeister, see Appendix 2.7) have a sear
halgorithm based on two sets of 
lauses.5 SPASS implements ResolutionProver1 on a Unix system by theshell invo
ationSPASS -Auto=0 -ISRe -ISF
 -RTaut -RFSub -RBSub <�le>where the option -Auto=0 turns off the automati
 mode of SPASS. In this mode SPASS de
ides onthe basis of the input problem the set of inferen
e and redu
tion rules. If the automati
 mode is turnedoff, no inferen
e/redu
tion rules are a
tivated. All options starting with an I (de)a
tivate inferen
e rules,options starting with an R (de)a
tivate redu
tion rules. So the above 
all to SPASS a
tivates the infer-en
e rules standard resolution (-ISRe), standard fa
toring (-ISF
) and the redu
tion rules tautologydeletion (-RTaut), forward subsumption(-RFSub) and ba
kward subsumption (-RBSub). An infer-en
e/redu
tion rule option is a
tivated by setting it to 1 (the default) and dea
tivated by setting it to 0. Forfurther details 
onsider Appendix 2.5.For example, we simulate a run of ResolutionProver1 on the 
lauses1: !P (f(a))2: P (f(x))!P (x)3: P (f(a)); P (f(x))!shown in Table 2.2. For ea
h while-loop iteration, we show the 
ontent of theWo and Us set at line 4,the sele
ted Given 
lause and the 
ontent of New before exe
ution of line 8. Newly generated 
lauses areprinted in full detail while we refer to a 
lause in the sets Wo and Us only by its unique 
lause number.The fun
tion 
hoose sele
ts lightest 
lauses.Every box in Table 2.2 represents one while-loop iteration. For newly generated 
lauses we also showthe applied inferen
e rule and parent 
lauses/literals. Here Res indi
ates a resolution inferen
e, Fa
 afa
toring inferen
e and the notion n.m refers to literal m of 
lause n. So, for example, 
lause 7 is generated5However, they use different names for the sets. So don't be 
onfused.
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Iteration 1Wo = ; Us = f1; 2; 3gGiven = 1: ! P (f(a))New = ;Iteration 2 #Wo = f1g Us = f2; 3gGiven = 2: P (f(x))! P (x)New = f4:[Res:1.1,2.1℄ ! P (a),5:[Res:2.1,2.2℄ P (f(f(x)))! P (x) gIteration 3 #Wo = f1; 2g Us = f3; 4; 5gGiven = 4: ! P (a)New = ;Iteration 4 #Wo = f1; 2; 4g Us = f3; 5gGiven = 3: P (f(a)); P (f(x))!New = f 6:[Res:1.1,3.1℄ P (f(x))!,7:[Res:1.1,3.2℄ P (f(a))!,8:[Res:2.2,3.1℄ P (f(f(a))); P (f(x))!,9:[Res:2.2,3.2℄ P (f(a)); P (f(f(x)))!,10:[Fa
:3.1,3.2℄ P (f(a))!gIteration 5 #Wo = f1; 4g Us = f6gGiven = 6: P (f(x))!New = f11:[Res:1.1,6.1℄ 2 gTable 2.2: A Run of ResolutionProver1



2.2. A FIRST SIMPLE PROVER 151 ResolutionProver2 (N)2 Wo := ;;3 Us := taut(sub(N));4 While (Us 6= ; and 2 62 Us) f5 (Given ;Us):= 
hoose(Us);6 if (sub(fGiveng;Wo) 6= ;) f7 Wo := sub(Wo; fGiveng);8 Wo := Wo [ fGiveng;9 New := res(Given ;Wo) [ fa
(Given);10 New := taut(sub(New));11 New := sub(New ;Wo);12 Us := Us [New ;13 g14 g15 If (Us = ;) then print �Completion Found�;16 If (2 2 Us) then print �Proof Found�;Table 2.3: A Se
ond Resolution Based Proverby a resolution inferen
e between the �rst literal of 
lause 1 and the se
ond literal of 
lause 3 whereliterals are 
ounted from left to right. Iteration 4 shows already some 
ommon phenomena of saturationbased 
al
uli. First, these 
al
uli are typi
ally redundant in the sense that the very same 
lause 
an begenerated in various, different ways. For example, 
lause 7 and 
lause 10 are logi
ally identi
al, althoughthe former is generated by a resolution inferen
e while the latter is the result of a fa
toring appli
ation. Asa 
onsequen
e, subsumption is indispensable for saturation based 
al
uli to 
ut down the number of kept
lauses. The situation gets even more dramati
 in the 
ontext of equality, where a single loop iteration
an already 
ause an explosion in the number of newly generated 
lauses. This will be dis
ussed in moredetail in Se
tion 2.3. Coming ba
k to our run, note that in the redu
tion part of while-loop iteration 4, the
lauses 2, 3, 5, 7�10 are all subsumed by 
lause 6. Se
ond, even for this simple example, it happened thatthe sele
tion of the Given 
lause is not always unique when 
hoosing lightest 
lauses. During iteration 4,the 
lauses 3 and 5 have both size 6, but 
hoosing 
lause 5 instead of 
lause 3 would have 
aused anadditional while loop iteration before the empty 
lause is derived. Of 
ourse, the fun
tion 
hoose 
ould bere�ned and we will in fa
t dis
uss su
h re�nements, but in pra
ti
e it happens (and must happen) frequentlythat several 
lauses have the same pre
eden
e with respe
t to 
hoose . Then sele
ting the right 
lause (bya

ident) 
an enable a prover to �nd a proof where it gets lost in the sear
h spa
e by sele
ting a differentone. This phenomenon is 
ommon to all theorem provers and 
an be observed at the yearly CADE CASCsystem 
ompetitions (e.g., see [49℄), where the performan
e of provers varies depending on the ordering ofthe input problem 
lauses.If ResolutionProver1 is ran on non-trivial examples, the Us set rapidly gets mu
h larger than theWoset. It easily happens that after some iterations the size in
reases by a fa
tor of 1000. In parti
ular, it is
ommon in the 
ontext of problems 
ontaining equality. Therefore, at least with respe
t to the number of
lauses that have to be 
onsidered, the subsumption tests with respe
t to the Us set are the most expensiveparts of the algorithm. Typi
al runs of ResolutionProver1 show a behavior where more than 95% of theoverall time is spent for subsumption 
he
ks. This motivates the design of ResolutionProver2 shown inTable 2.3.



16 CHAPTER 2. SPASSResolutionProver2 (N) does not perform any subsumption tests with respe
t to the Us set and ba
ksubsumption is only performed with respe
t to the a
tually sele
ted given 
lause. The two invariants forResolutionProver2 are� Any resolution inferen
e 
on
lusion from two 
lauses inWo (fa
toring inferen
e 
on
lusion from a
lause inWo) is either 
ontained inWo, Us or is subsumed by a 
lause inWo or is a tautology.� The setWo is 
ompletely inter-redu
ed:Wo = taut(Wo) andWo = sub(Wo).These two invariants are still strong enough to guarantee that if the while loop terminates, the Wo set issaturated. Note that althoughNew is always redu
ed with respe
t toWo at line 11, the set Us is in generalnot redu
ed with respe
t toWo, i.e., Us 6= sub(Us ;Wo).If we assume that 
hoose sele
ts light 
lauses there is a furthermotivation to leave out subsumption testswith respe
t to the Us set. If a 
lause C subsumes a 
lause D, then size(C) � size(D). So small 
lauseshave a higher probability to subsume other 
lauses than larger 
lauses. Therefore, be
ause we always sele
tthe lightest given 
lause, the hope is that not too many 
lauses that 
ould have been subsumed stay in theUs set. In pra
ti
e, ResolutionProver2 saves about 10% of the time spent for redu
tions (subsumption)
ompared to ResolutionProver1. For the simple resolution 
al
ulus we studied so far, ResolutionProver2is mostly in favor of ResolutionProver1when run in pra
ti
e. As soon as our redu
tion te
hniques in
luderules that produ
e lighter 
lauses (see Se
tion 2.3) the 
hoi
e is no longer obvious in general. There areexamples where an overall interredu
tion easily yields the empty 
lause, but for a ResolutionProver2 stylealgorithm sophisti
ated heuristi
s are needed to still �nd a proof.Running ResolutionProver2 on the example 
lause store, the result is similar to the run of Resolution-Prover1 (Table 2.2). The �rst three iterations are identi
al, but at iteration 4, the 
lauses 2, 3, 5, 7�10 arenot subsumed but stay in their respe
tive sets. Then, in iteration 5, where 
lause 6 is sele
ted as given
lause, the 
lauses 2, 3 are removed from the Wo set (line 7 of ResolutionProver2, Table 2.3) and theempty 
lause is derived.SPASS implements ResolutionProver2 by the 
allSPASS -Auto=0 -FullRed=0 -ISRe -ISF
 -RTaut -RFSub -RBSub <�le>where the option-FullRed=0 dea
tivates redu
tion with respe
t to theUs set and modi�es the algorithma

ordingly. For further details 
onsider Appendix 2.5.There are many possible alternatives, variations, re�nements for the two loops suggested here. Let usdis
uss some aspe
ts. First, 
on
erning fa
toring, any 
lause store 
an be �nitely saturated with respe
tto fa
toring, sin
e a fa
tor has stri
tly fewer literals than its parent. So one 
ould get the idea to keep theWo set always saturated with respe
t to fa
toring. The disadvantage of this approa
h is that the numberof fa
tors that 
an be generated out of one 
lause grows worst 
ase exponentially in the number of literals.The prover Bliksem allows a user to prefer fa
tors (see Appendix 2.7).Se
ond, 
on
erning resolution and the sele
tion of the given 
lause, we 
ould also a priori built for ea
hloop iteration all one step resolvents between the 
lauses in theUs set and between one parent from the Usset and one parent from theWo set. Then instead of pi
king a Given 
lause, we pi
k one resolvent, use itfor (ba
k and/or forward) redu
tion and �nally add it to the Wo set. This approa
h results in a more �negrained development of the sear
h spa
e. This design for a proof sear
h is 
losely related to 
lause graphresolution [15℄.Third, on the implementation side, if we on
e de
ide to implement ResolutionProver2, the only in-formation we need for the 
lauses in Us are their properties with respe
t to the 
hoose fun
tion and howthese 
lauses 
an be generated. For all 
lauses ex
ept the input 
lauses it suf�
es to store referen
es for theparents and the used inferen
e. This way it is possible to store all Us 
lauses in a 
ompa
t way. In pra
ti
e
onstant spa
e suf�
es for any 
lause. This dramati
ally de
reases memory 
onsumption and results inan extra speed up. The ne
essary regeneration of 
lauses on
e they are sele
ted, plays no r�le 
on
erningperforman
e. The Waldmeister prover follows this approa
h. Fourth, another way to keep the Us set smallis to throw away 
lauses with respe
t to 
ertain weight or 
omplexity restri
tions on the newly generated
lauses. Either these 
lauses are just thrown away resulting in an in
omplete pro
edure, this is supported



2.3. INFERENCE AND REDUCTION RULES 17by Otter, SPASS and Vampire (see Appendix 2.7), or the restri
tions 
an be set in a way su
h that only�nitely many 
lauses 
an pass the restri
tion test and on
e the sear
h results in su
h a saturated set, therestri
tions are adjusted and the sear
h is restarted. This design is supported by Bliksem, SPASS and Fiesta.In SPASS the resour
e restri
tion strategy is 
ontrolled by the �ags BoundMode spe
ifying the resour
etype where 0 means no resour
e restri
tion, 1 means 
lause size restri
tion and 2 means 
lause depth re-stri
tion, the �ag BoundStart spe
ifying the initial start value to restri
t the sele
ted resour
e type andBoundLoops determines how often a saturation 
aused by resour
e restri
tions is restarted with adjustedrestri
tions. So the 
allSPASS -BoundMode=1 -BoundStart=5 -BoundLoops=3 <�le>
auses SPASS to throw away all 
lauses that have a weight greater 5. If this leads to an empty Us setwithout �nding the empty 
lause, the bound is in
reased to the smallest size greater 5 that 
aused a 
lauseto be deleted. This pro
ess is repeated at most 3 times, then any weight restri
tions are dis
arded. Su
h anexploration of the sear
h spa
e 
an be parti
ularly useful in the 
ontext of unit equational problems.2.3 Inferen
e and Redu
tion RulesIn this se
tion we des
ribe a variety of inferen
e/redu
tion rules. For every rule, we start with a formalde�nition of the rule and then, if ne
essary, dis
uss aspe
ts of its pragmati
s, 
omplexity, intera
tion withother rules or design 
on
epts and its implementation and usage. Some rules are stated in a general,possibly non-effe
tive form (e.g., see the 
on�i
t rule, De�nition 2.3.19). In this 
ase we also dis
usseffe
tive instantiations. The rules don't form a parti
ular 
al
ulus, instead several well-known 
al
uli 
anbe implemented by forming appropriate groups of rules. An example is the simple resolution 
al
ulus
onsidered in Se
tion 2.2.Many redu
tion rules 
an be simulated by one or several inferen
e rule appli
ations followed by a (triv-ial) subsumption step. As long as the inferen
e rule set is 
omplete this observation is not too surprising,sin
e we require all our rules to be sound. So one might think that the sophisti
ated redu
tion ma
hineryintrodu
ed in this se
tion is not really ne
essary but just a waste of resour
es when implemented. How-ever, it is just the other way round. Redu
tion rules always lead to �simpler� 
lause stores by deletingsome 
lause or by repla
ing a 
lause by a �simpler� one. This often ensures the termination of exhaustiveappli
ation of (groups of) su
h rules and enables appli
ation of these rules to all 
lauses. Therefore, inthe 
ontext of an implementation, redu
tion rules 
annot be simulated by inferen
e rule appli
ations sin
ethose don't terminate when applied exhaustively. Inferen
e rules are only applied to some sele
ted Given
lause. Redu
tion rules should be viewed as restri
ted inferen
e rules that eventually lead to simpler 
lausestores and help to explore the �easy� parts of the sear
h spa
e (problem). They repla
e sear
h spa
e explo-ration by (ef�
ient) 
al
ulation. In fa
t, some of the redu
tion rules introdu
ed in this se
tion are motivatedby de
idability results for various �rst-order logi
 fragments.2.3.1 Redu
tion OrderingsFor many of the inferen
e/redu
tion rules de�ned in the sequel, maximality restri
tions on literals, termsplay an important r�le. The two most popular orderings are the Knuth-Bendix ordering (KBO) [30, 39℄and the re
ursive path ordering with status (RPOS) [11℄. For a broad introdu
tion to orderings, 
onsiderthe arti
le by [12℄ and the more re
ent book by [2℄. The de�nitions below differ in some details from otherde�nitions found in the literature, but re�e
t implementation experien
e.Nearly all orderings used in todays provers are variations of the KBO and the RPOS. In parti
ular,weaker versions the orderings are often used. For example, purely weight based orderings or variantsof the RPOS without re
ursive 
onsideration of subterms. These weaker versions have the advantage of
heaper 
omputation and when used to restri
t inferen
e rules (see Se
tion 2.3.3) of a broader explorationof the sear
h spa
e. This 
an be useful for the sear
h of short proofs. We des
ribe KBO and RPOS exa
tlythe way they are implemented in SPASS.Let > be a stri
t order on the set of signature symbols (fun
tions, predi
ates), 
alled a pre
eden
e. Letweight be a mapping from the set of signature symbols into the non-negative integers. We 
all a weight
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tion admissible for some pre
eden
e if for every unary fun
tion symbol f with weight(f) = 0, thefun
tion f is maximal in the pre
eden
e, i.e., f � g for all other fun
tion symbols g. The fun
tion weightis extended to a weight fun
tion for terms (atoms) as follows: (i) if t is a variable, then weight(t) = k,where k is the minimumweight of any 
onstant and (ii) if t = f(t1; : : : ; tn), thenweight(t) = weight(f)+Pi weight(ti). Let o

 be a fun
tion returning the number of o

urren
es o

(s; t) of a term s in a term t,de�ned by o

(s; t) = jfp 2 pos(t) j tjp= sgj and let status be a mapping from the signature symbols tothe set fleft ; right ;mulg.De�nition 2.3.1 (KBO)If t, s are terms, then t �kbo s if o

(x; t) � o

(x; s) for every variable x 2 (vars(t) [ vars(s)) and(1) weight(t) > weight(s) or(2) weight(t) = weight(s) and t = f(t1; : : : ; tk) and s = g(s1; : : : ; sl) and(2a) f > g in the pre
eden
e or(2b) f = g and(2b1) status(f) = left and (t1; : : : ; tk) �lexkbo (s1; : : : ; sl) or(2b2) status(f) = right and (tk; tk�1; : : : ; t1) �lexkbo (sl; sl�1; : : : ; s1)Note that in 
ase (2b) the 
ondition f = g implies k = l. Multiset status for fun
tion symbols 
analso be de�ned but does not pay off in pra
ti
e for the KBO. If the weight fun
tion is admissible for thepre
eden
e, then the KBO is a redu
tion ordering [2℄. If the pre
eden
e > is total, then the KBO is totalon ground terms (atoms). For some �nite set of signature symbols6 and two terms s, t with s �kbo t, thereare �nitely many terms s0 with s �kbo s0 �kbo t.The motivation to 
onsider unary fun
tion symbols with weight zero 
omes in parti
ular from grouptheory. The standard group axioms 
an be turned into a 
onvergent system [2℄ using the KBO with pre
e-den
e i > f > e and weights weight(i) = 0, weight(f) = weight(e) = 1 where i is the inverse fun
tion,f denotes group multipli
ation and e represents the neutral element. During the saturation (
ompletion)pro
ess it is 
ru
ial to orient the derived equation i(f(x; y)) � f(i(y); i(x)) from left to right, for oth-erwise the saturation pro
ess won't terminate. The only way to a
hieve i(f(x; y)) � f(i(y); i(x)) is toassign weight 0 to the fun
tion symbol i.Implementation of the KBO 
an be done straightforward from the de�nition. For the RPOS we alsoassume > to be a stri
t order (pre
eden
e) on the set of signature symbols (fun
tions, predi
ates).De�nition 2.3.2 (RPOS)If t, s are terms, then t �rpos s if(1) s 2 vars(t) and t 6= s or(2) t = f(t1; : : : ; tk) and s = g(s1; : : : ; sl) and(2a) ti �rpos s for some 1 � i � k or(2b) f > g and t �rpos sj for all 1 � j � l or(2
) f = g and(2
1) status(f) = left and (t1; : : : ; tk) �lexrpos (s1; : : : ; sl) andt �rpos sj for all 1 � j � l or(2
2) status(f) = right and (tk; tk�1; : : : ; t1) �lexrpos (sl; sl�1; : : : ; s1) andt �rpos sj for all 1 � j � l or(2
3) status(f) = mul and ft1; : : : ; tkg �mulrpos fs1; : : : ; slg6For an in�nite set the 
ondition does obviously not hold.
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tion ordering as well and if the pre
eden
e> is total RPOS is also total on groundterms (atoms), up to the 
ongruen
e relation =mul generated from the symbols with multiset status. If fis a fun
tion symbol with status(f) = mul then f(t1; : : : ; tn) =mul f(s1; : : : ; sn) if ft1; : : : ; tng =mulmulfs1; : : : ; sng, for example f(a; f(a; b)) =mul f(f(b; a); a). Even for some �nite set of signature symbolsand two terms s, t with s �rpos t, there are in general in�nitely many terms s0 with s �rpos s0 �rpos t.The RPOS 
an for example be used to orient distributivity the �right way�. If f > g, then the equationf(x; g(y; z)) � g(f(x; y); f(x; z)) is oriented by RPOS from left to right. Note that KBO 
annot orientthe equation from left to right, be
ause the right hand side has one more o

urren
e of the variable x.Given a spe
i�
 theorem proving problem, the relevant signature is �nite and �xed. In this 
ase it
an be useful to further re�ne an ordering by de�ning t � s if t� � s� for all ground substitutions �where (vars(t) [ vars(s)) � dom(�). Following this idea, RPOS 
an be instantiated to an ordering thattotally orders all atoms by predi
ate symbols and only in se
ond pla
e 
onsiders possible argument terms,independently from variable o

urren
es! This 
an be a
hieved by making all (some) predi
ate symbolslarger in the pre
eden
e than all fun
tion symbols. For example, with respe
t to the above suggested liftingand a signature with predi
ate symbols P , Q and fun
tion symbols f , a where P > Q > f > a it holdsthat P (x) �rpos Q(f(x; y)) be
ause P is greater in the pre
eden
e than Q, f , a and hen
e any groundterm that 
an be substituted for x or y. Predi
ates 
an be de
lared to be superior over fun
tion symbols, bya de
laration set_DomPred(< predi
ate sequen
e >).in the SPASS settings se
tion of an input �le [23℄. Su
h an appli
ation of RPOS 
an, e.g., be useful to makeliterals built from newly introdu
ed formula renaming predi
ates minimal. This prevents the generation ofthe standard CNF via ordered resolution [38℄.Straightforward re
ursive implementation of RPOS following the de�nition results in an algorithmwithworst 
ase exponential 
omplexity. Using a dynami
 programming idea, a polynomial algorithm 
an bedevised [45℄. However, in pra
ti
e, it turns out that the straightforward implementation is superior to thedynami
 programming approa
h, if the following �lter is added. Whenever we test t �rpos s for two termss, t, we �rst 
he
k vars(s) � vars(t).2.3.2 SortsThe motivation for sorts 
omes from programming languages, where one likes to 
at
h as many errors at
ompile time as possible. For example, if the addition fun
tion is only de�ned for number sorts (types) butused in a program with a list type, the 
ompiler 
an 
omplain about su
h a statement by exploiting the sortinformation. Of 
ourse, the sort 
he
king must be tra
table, i.e., it should at least be de
idable and/or showa

eptable performan
e for real world programs. A prerequisite for the sort information to be 
he
ked at
ompile time, is that the sort information is separated from the program and it is typi
ally in
luded in anextra de
laration part.Here we generalize this situation. The sort information is not separated from the �rst-order problem as,e.g., done in algebrai
 spe
i�
ation languages, but part of the problem itself. Therefore, we 
annot 
he
ksort information at 
ompile time, after or while reading the problem. Instead the sort information is used atrun time, during proof sear
h, to dete
t ill-sorted and therefore redundant 
lauses and to simplify the sortinformation 
ontained in the 
lauses by spe
i�
 algorithms. These algorithms exploit the sort informationin a mu
h more ef�
ient way than their standard �rst-order redu
tion rule 
ounterparts.Sorts are a
tivated in SPASS by the -Sorts option. If SPASS is 
alled with option -Sorts=1 allnegative monadi
 literals with a variable argument are 
onsidered for the initial sort 
onstraints, whereas-Sorts=2 
auses SPASS to 
onsider all negative monadi
 literals for the initial sort 
onstraints. The latter
hoi
e 
an affe
t 
ompleteness, be
ause of the basi
ness restri
tion on the sort 
onstraint.De�nition 2.3.3 (Sort Constraint Resolution)The inferen
eI T1(t); : : : ; Tn(t);	 k�! � �i k�i ! �i; Ti(si) (1 � i � n)(�1; : : : ;�n;	 k�1; : : : ;�n;�! �1; : : : ;�n;�)�



20 CHAPTER 2. SPASSwhere (i) � is the simultaneous mgu of t; s1; : : : ; sn, (ii) t is a non-variable term and there is no furtherliteral S(t) 2 	, (iii) all �i are solved, (iv) all Ti(si)� are redu
tive for (�i k�i ! �i; Ti(si))� is a sort
onstraint resolution inferen
e.Sort 
onstraint resolution is a hyper resolution (see De�nition 2.3.14) like inferen
e rule. It simulatesthe rule weakening of sorted uni�
ation [52℄ on the relativization of sorted variables represented by thesort 
onstraint. Sort 
onstraint resolution is a
tivated by the -ISoR option.De�nition 2.3.4 (Empty Sort)The inferen
eI T1(x); : : : ; Tn(x);	 k�! � �i k�i ! �i; Ti(si) (1 � i � n)(�1; : : : ;�n;	 k�1; : : : ;�n;�! �1; : : : ;�n;�)�where (i) � is the simultaneous mgu of s1; : : : ; sn, (ii) x 62 vars(� [ � [ 	) and no non-variable termo

urs in 	, (iii) all �i are solved, (iv) all Ti(si)� are redu
tive for (�i k�i ! �i; Ti(si))� is an emptysort inferen
e.Empty sort is similar to sort resolution and, in fa
t, in some of our papers (e.g., [27℄) we uni�ed bothrules into one inferen
e rule. For the purpose of the de
idability results presented in these papers this isappropriate. It makes sense to distinguish these rules, be
ause the eventual su

ess of empty sort, i.e., weare able to show that some sort is non-empty, does not rely on the parti
ular sort 
onstraint, but only on theset of monadi
 (sort) symbols that share their variable argument. We 
he
k emptiness of an interse
tionof sort symbols. Sin
e there are only �nitely many different su
h sorts with respe
t to some �nite 
lausestore, it may make sense to store 
onstraints that resulted in su

essful non-emptiness proofs and to reusethem. One appli
ation domain are the proofs required in the 
ontext of stati
 soft typing (De�nition 2.3.6).Empty sort is a
tivated by the -IEmS option.De�nition 2.3.5 (Sort Simpli�
ation)LetN be the 
urrent 
lause store andN 0 � N be exa
tly the set of all de
larations inN . The redu
tionR S(t);� k�! �� k�! �where N 0 j= 8x1; : : : ; xn [S1(x1); : : : ; Sn(xn) � S(t)℄ and fS1(x1); : : : ; Sn(xn)g � � is the maximalsubset of � for whi
h fx1; : : : ; xng � vars(t) is 
alled sort simpli�
ation.Given an arbitrary sort theoryN 0, the relationN 0 j= 8x1; : : : ; xn [S1(x1); : : : ; Sn(xn) � S(t)℄is always de
idable in polynomial time. In terms of sorted uni�
ation the problem means de
iding well-sortedness [52℄. A bottom-up algorithm based on dynami
 programming yields the polynomial 
omplexitywhereas a simple top down approa
h results in an exponential pro
edure. The latter pro
edure would
orrespond to solve the problem with ordered resolution and an SOS strategy. The former algorithm isimplemented in SPASS. Sort simpli�
ation is a
tivated by the -RSSi option.Sort simpli�
ation is one important reason why it makes sense to treat parti
ular o

urren
es of mo-nadi
 predi
ates in a spe
ial way. Sort simpli�
ation 
annot be simulated via other standard redu
tionte
hniques like mat
hing repla
ement resolution (see De�nition 2.3.20) and 
annot be extended to non-monadi
 predi
ates. For example, for binary relations, the unde
idable problem whether two ground termsare 
ontained in a transitive binary relation generated by some positive unit 
lauses [43℄ 
an be redu
edto de
iding appli
ability of an extended sort simpli�
ation rule for binary relations. So without furtherrestri
tions, sort simpli�
ation 
annot be effe
tively used for other n-ary relations.
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 Soft Typing)Let N be the 
urrent 
lause store over some �xed signature � andM be a sort theory su
h thatN j= S(t)impliesM j= S(t) for any ground monadi
 atom S(t) over � where S o

urs in some sort 
onstraint inN . The redu
tion R � k�! �whereM 6j= 9x1; : : : ; xn� with vars(�) = fx1; : : : ; xng is 
alled stati
 soft typing.The above de�nition of stati
 soft typing is not effe
tive. The problem M 6j= 9x1; : : : ; xn� is notde
idable for arbitrary sort theories M and sort 
onstraints �. It in
ludes the general problem of sorteduni�
ation [52℄ that is well-known to be unde
idable, in general. Furthermore, it is not obvious how thesort theory M 
an be 
onstru
ted out of N su
h that it meets the requirements of De�nition 2.3.6. Asolution to all these problems is the following. First, all 
lauses that 
ontain positive monadi
 atoms aresafely approximated and restri
ted to the sort information they 
ontain:R � k�! �; S1(t1); : : : ; Sn(tn)�1 k !S1(t1)...�n k !Sn(tn)where no monadi
 atom o

urs in �, � is solved and �i = fS(x) j S(x) 2 � and x 2 vars(Si(ti))g for1 � i � n. By 
onstru
tion all�i are solved and the rule does not modify de
larations. If the initial 
lauseset N does not 
ontain positive equations, then the sort theory N 0 obtained by a �x-point 
omputation ofthe above redu
tion onN approximatesN in the desired way (see De�nition 2.3.6). Se
ond, the sort theoryN 0 is approximated to a sort theoryN 00 su
h that satis�ability of sort 
onstraints inN 00 gets de
idable.R � k ! S(f(t1; : : : ; tn))�1; T (x) k !S(f(s1; : : : ; sn))�2 k !T (ti)where ti is not a variable and for all 1 � j � n we de�ne sj = x if tj = ti and sj = tj otherwise.Furthermore,�1 = fS(y) j S(y) 2 � and y 2 vars(S(f(s1; : : : ; sn)))g and �2 is the restri
tion of � toatoms with argument x 2 vars(ti).By 
onstru
tion, the derived 
lauses have a solved sort 
onstraint andN 00 approximatesN 0 as desired.The sort theory N 00 is shallow and satis�ability of sort 
onstraints with respe
t to shallow sort theories isde
idable by the inferen
e rules sort resolution, empty sort and the redu
tion rules sort simpli�
ation, sub-sumption deletion (De�nition 2.3.16) and 
ondensation (De�nition 2.3.17) [27, 53℄. Hen
e, this instan
eof stati
 soft typing is effe
tive.So if we start with a 
lause store N that does not 
ontain positive equations, we 
onstru
t on
e theapproximated sort theory N 00. If this theory is not trivial, i.e., there is at least one monadi
 predi
ate Swith N 00 6j= 8xS(x), the sort theory N 00 is stored and stati
 soft typing is applied to any input or derived
lause. Sin
eN 00 is only approximated on
e, typi
ally at the beginning of the inferen
e pro
ess, the rule is
alled stati
 soft typing. If in the input 
lause store all sort 
onstraints are solved and there are no positiveequations, stati
 soft typing preserves 
ompleteness [51, 18℄.If equations o

ur in a 
lause store a dynami
 soft typing approa
h seems to be more suitable. Consider[18℄ and [33℄ for details. These te
hniques are not implemented in SPASS Version 2.0 but are an option forlater releases. Stati
 soft typing is a
tivated by the -RRSST option.2.3.3 Inferen
e RulesThe introdu
ed inferen
e rules 
an be 
omposed to a variety of (well-known) 
al
uli. The 
al
uli rangefrom the ordinary resolution 
al
ulus investigated in Se
tion 2.2 to a superposition 
al
ulus with sele
tion,splitting and sort 
onstraints that are subje
t to the basi
ness restri
tion. To 
over all these 
ases, therules de�ned here are given in generi
 way su
h that ea
h de�nition 
overs several variants of the rule.
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ular, all rules are available with a sele
tion restri
tion of negative literals that does not destroy
ompleteness [3℄. For any 
lause we 
an sele
t some negative literals with the effe
t that all inferen
erule appli
ations taking this 
lause as a parent 
lause must involve the sele
ted literals. For example, ifwe sele
t the literal R(x; y) in the 
lause kR(x; y); f(g(x); y) � f(y; z) ! then no equality resolutioninferen
e (see below) is possible from this 
lause.De�nition 2.3.7 (Equality/Re�exivity Resolution)The inferen
e I � k l � r;�! �(� k�! �)�where (i) � is the mgu of l and r, (ii) � is solved, (iii) l � r is sele
ted or (l � r)� is maximal in (� k l �r;� ! �)� and no literal is sele
ted in � is 
alled an equality resolution inferen
e. If 
ondition (iii) isrepla
ed by l � r is sele
ted or no literal is sele
ted in �, the inferen
e is 
alled re�exivity resolution.Equality resolution is a
tivated by the -IEqR option. Re�exivity resolution is a
tivated by the -IERRoption.De�nition 2.3.8 ((Ordered) Paramodulation/Superposition Left)The inferen
es I �1 k�1 ! �1; l � r �2 k s[l0℄p � t;�2 ! �2(�1;�2 k s[p=r℄ � t;�1;�2 ! �1;�2)�and I �1 k�1 ! �1; l � r �2 kA[l0℄p;�2 ! �2(�1;�2 kA[p=r℄;�1;�2 ! �1;�2)�where (i) � is the mgu of l0 and l, (ii) l0 is not a variable, (iii) �1 and �2 are solved (iv) no literal in �1is sele
ted, (v) s � t (the atom A) is sele
ted or no literal in �2 is sele
ted, is 
alled a paramodulationleft inferen
e. If, in addition, r� 6� l� the inferen
e is an ordered paramodulation left inferen
e. If, inaddition, l� � r� is redu
tive for (�1 k�1 ! �1; l � r)�, (v) is repla
ed by s� � t� (the atom A�)is sele
ted or it is maximal in (�2 k s � t;�2 ! �2)� (in (�2 kA;�2 ! �2)�) and no literal in �2 issele
ted and t� 6� s� then the inferen
e is 
alled a superposition left inferen
e.Standard paramodulation is a
tivated by the -ISPm option. Ordered paramodulation is a
tivated bythe -IOPm option. Superposition left is a
tivated by the -ISpL option.Note that no paramodulation/superposition inferen
e is performed into the sort 
onstraint. Hen
e, thesort 
onstraint is subje
t to the basi
ness restri
tion. In 
ase all sort 
onstraints of an initial 
lause storewere solved, the basi
ness restri
tion preserves 
ompleteness.De�nition 2.3.9 ((Ordered) Paramodulation/Superposition Right)The inferen
es I �1 k�1 ! �1; l � r �2 k�2 ! �2; s[l0℄p � t(�1;�2 k�1;�2 ! �1;�2; s[p=r℄ � t)�and I �1 k�1 ! �1; l � r �2 k�2 ! �2; A[l0℄p(�1;�2 k�1;�2 ! �1;�2; A[p=r℄)�where (i) � is the mgu of l0 and l, (ii) l0 is not a variable, (iii) �1 and �2 are solved (iv) no literal in�1, �2 is sele
ted is a paramodulation right inferen
e. If, in addition, r� 6� l� the inferen
e is an orderedparamodulation right inferen
e. If, in addition, l� � r� is redu
tive for (�1 k�1 ! �1; l � r)�, s� � t�(A�) is redu
tive for (�2 k�2 ! �2; s � t)� (�2 k�2 ! �2; A)� the inferen
e is 
alled a superpositionright inferen
e.
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tivated by the -ISpR option.In SPASS the parallel extensions of the above de�ned paramodulation/superposition left/right infer-en
es [6℄ are preferred. Whenever su
h an inferen
e rule is appli
able, we don't only repla
e the initiallyfound o

urren
e of l� in the se
ond 
lause by r�, but all o

urren
es. On the ground level the parallel re-pla
ement 
orresponds to an appli
ation of the inferen
e rules exa
tly the way they are de�ned above plusexhaustive appli
ation of non-unit rewriting with the left premise (De�nition 2.3.21) on the 
on
lusion.Note that the ordering 
onditions of the above inferen
e rules as well as the ordering 
onditions of theinferen
e rules de�ned below, are 
he
ked with respe
t to the found uni�er. This is 
alled the a posterioriordering 
he
k. For all inferen
e rules that have ordering restri
tions, SPASS �rst orders the 
lauses as theyare and only sear
hes for inferen
es with respe
t to the found 
andidates (maximal literals, maximal sidesof equations). This is 
alled the a priori ordering 
he
k. Then, after having found a se
ond 
andidate 
lausetogether with a uni�er, the a posteriori 
he
k is evaluated. This se
ond 
he
k is more expensive than the�rst, be
ause it has to be dynami
ally 
omputed with respe
t to any found uni�er. However, sin
e most ofthe time in a saturation prover is spent with redu
tion (see Se
tion 2.2), the extra time for the a posteriori
he
k does not matter, but needs some effort for an (ef�
ient) implementation.The following example shows that the a posteriori 
he
k 
an in fa
t prevent the generation of extra
lauses. Consider the two 
lauses ! f(x; y) � f(y; x)!P (f(a; b))The equation f(x; y) � f(y; x) 
annot be oriented by any redu
tion ordering. So without an a pos-teriori ordering 
he
k, we 
an derive the 
lause ! P (f(b; a)) by a superposition right inferen
e. Now
onsider the very same example where we use an RPOS with pre
eden
e f > b > a and status(f) = left .This implies f(b; a) �rpos f(a; b) and therefore the a posteriori ordering 
he
k for the potential super-position right inferen
e 
on
lusion! P (f(b; a)) fails. No inferen
e is possible between the above two
lauses.Next we de�ne three fa
toring rules, namely (ordered) fa
toring, equality fa
toring andmerging paramod-ulation. The different rules are needed to obtain 
ompleteness results with respe
t to different inferen
e rulesets. For the standard resolution/paramodulation 
al
ulus [42, 41, 7, 39℄ the fa
toring rule without orderingrestri
tions suf�
es for 
ompleteness. For the ordered resolution/superposition 
al
ulus, ordered fa
toringhas to be 
ombined with either equality fa
toring or merging paramodulation to obtain 
ompleteness [3℄.De�nition 2.3.10 ((Ordered) Fa
toring)The inferen
es I � k�! �; E1; E2(� k�! �; E1)�and I � k�; E1; E2 ! �(� k�; E1 ! �)�where (i) � is the mgu of E1 and E2, (ii) � is solved (iii) (E1; E2 o

ur positively, E1 is maximal andno literal in � is sele
ted) or (E1; E2 o

ur negatively, E1 is maximal and no literal in � is sele
ted orE1 is sele
ted) are 
alled ordered fa
toring right and ordered fa
toring left, respe
tively. If 
ondition(iii) is repla
ed by (E1; E2 o

ur positively and no literal in � is sele
ted) or (E1; E2 o

ur negatively,E1 is sele
ted or no literal in � is sele
ted ) the inferen
es are 
alled fa
toring right and fa
toring left,respe
tively.Standard fa
toring is a
tivated by the -ISF
 option. Ordered fa
toring is a
tivated by the -IOF
option.There is an overlap between Ordered Fa
toring de�ned above and Equality Fa
toring de�ned below,be
ause the rule ordered fa
toring also 
onsiders equations. We did so be
ause for the ordered paramodu-lation 
al
ulus with respe
t to our de�nitions Equality Fa
toring is not needed for 
ompleteness. The ruleOrdered Fa
toring suf�
es for 
ompleteness.



24 CHAPTER 2. SPASSDe�nition 2.3.11 (Equality Fa
toring)The inferen
e I � k�! �; l � r; l0 � r0(� k�; r � r0 ! �; l0 � r0)�where (i) � is the mgu of l0 and l, (ii) r� 6� l�, (iii) � is solved, (iv) no literal in � is sele
ted, (v) l� � r�is a maximal o

urren
e in (� k�! �; l � r; l0 � r0)� is 
alled an equality fa
toring inferen
e.Equality fa
toring is a
tivated by the -IEqF option.De�nition 2.3.12 (Merging Paramodulation)The inferen
e I �1 k�1 ! �1; l � r �2 k�2 ! �2; s � t[l0℄p; s0 � t0(�1;�2 k�1;�2 ! �1;�2; s � t[p=r℄; s � t0)�where (i) � is the 
omposition of the mgu � of l and l0 and the mgu � of s� and s0� , (ii) the 
lause(�1 k�1 ! �1; l � r)� is redu
tive for l� � r�, (iii) �1 and �2 are solved, (iv) no literal in �1, �2 issele
ted, (v) the 
lause (�2 k�2 ! �2; s � t; s0 � t0)� is redu
tive for s� � t�, (vi) s� � t� , (vii) l0 isnot a variable is 
alled a merging paramodulation inferen
e.Merging paramodulation is a
tivated by the -IMPm option.De�nition 2.3.13 ((Ordered) Resolution)The inferen
e I �1 k�1 ! �1; E1 �2 kE2;�2 ! �2(�1;�2 k�1;�2 ! �1;�2)�where (i) � is the mgu of E1 and E2, (ii) �1 and�2 are solved, (iii) no literal in �1 is sele
ted, (iv) E1� isstri
tly maximal in (�1 k�1 ! �1; E1)�, (v) the atomE2� is sele
ted or it is maximal in (�2 kE2;�2 !�2)� and no literal in �2 is sele
ted is 
alled ordered resolution. If 
onditions (iv), (v) are repla
ed by E2is sele
ted or no literal is sele
ted in �2, the inferen
e is 
alled resolution.Standard resolution is a
tivated by the -ISRe option. Ordered resolution is a
tivated by the -IOReoption. If any of the options is set to 2, equations are also 
onsidered for the inferen
es.If, in De�nition 2.3.13, one of the parent 
lauses of the inferen
e is a unit, the inferen
e is 
alled(ordered) unit resolution. The standard resolution rule is an instan
e of this rule if we omit the 
onditions(ii)�(iv) and restri
t our attention to non-equational atoms.De�nition 2.3.14 ((Ordered) Hyper Resolution)The inferen
e I � kE1; : : : ; En ! � �i k ! �i; E0i (1 � i � n)(�;�1; : : : ;�n k ! �;�1; : : : ;�n)�(i) � is the simultaneousmgu ofE1; : : : ; En; E01; : : : ; E0n, (ii)� as well as all�i are solved, (iii) allE0i� arestri
tly maximal in (�i k�i ! �i; E0i)� is 
alled an ordered hyper resolution inferen
e. If 
ondition (iii)is dropped, the inferen
e is 
alled a hyper resolution inferen
e.Standard hyper resolution is a
tivated by the -ISHy option. Ordered hyper resolution is a
tivated bythe -IOHy option.In the appli
ation of the inferen
e rule hyper resolution as well as the inferen
e rules sort resolution(De�nition 2.3.3) and empty sort (De�nition 2.3.4) more than two parent 
lauses are involved, in general.So the sear
h for 
andidate 
lauses gets more 
ompli
ated. In parti
ular, an appropriate ordering of theliterals E1; : : : ; En for sear
hing partner 
lauses 
an be indispensable for ef�
ien
y reasons. For example,if we sear
h partners for the literals P (x); Q(a; f(x)) it may be the 
ase that we �nd thousand potentialpartners for P (x) (all 
lauses with a positive (maximal) literal P (t)) but only a few for Q(a; f(x)) (only
lauses with a positive (maximal) literalQ(a; f(t)) or with variable o

urren
es at the positions of a, f(t)).



2.3. INFERENCE AND REDUCTION RULES 25So starting with Q(a; f(x)) for partner sear
h is the more ef�
ient way, sin
e it will potentially provideinstantiation of x when we subsequently sear
h for partners of P (x). So a good heuristi
 is to pro
eed atany time of the partner sear
h with the literals that has a maximal number of symbols with respe
t to thealready established partial uni�er. Nevertheless, please note that the number of hyper resolvents grows inthe worst 
ase exponentially in n.2.3.4 Redu
tion RulesOur philosophy is that redu
tion rules are at the heart of su

essful automated theorem proving. The aimof redu
tion rules is to transform 
lauses (or even formulas see [38℄) in simpler ones. So whereas inferen
erules are at the sear
h side of automated theorem proving, redu
tion rules are at the 
omputation side.De�nition 2.3.15 (Dupli
ate/Trivial Literal Elimination)The redu
tions R � k�! �; E;E� k�! �; Eand R � k�; E;E ! �� k�; E ! �and R �; A;A k�! ��; A k�! �are 
alled dupli
ate literal eliminations. The redu
tionsR � k�; t � t! �� k�! �and R k t � s!2where for the �nal variant we assume that t and s are uni�able, are 
alled trivial literal eliminations.Dupli
ate/trivial literal elmination are both a
tivated by the -RObv option.Please re
all that although trivial literal elimination 
an be simulated by equality resolution or fa
toring,for these inferen
e rules to apply a 
lause must �rst be sele
ted as Given 
lause. Redu
tion rules likedupli
ate or trivial literal elimination apply to all (newly) generated 
lauses.De�nition 2.3.16 (Subsumption Deletion)The redu
tion R �1 k�1 ! �1 �2 k�2 ! �2�1 k�1 ! �1where �2 k�2 ! �2 is subsumed by �1 k�1 ! �1 is 
alled subsumption deletion.Subsumption deletion is a
tivated by the -RFSub and -RBSub option for forward and ba
kwardsubsumtion, respe
tively (see Se
tion refse
�rstsimpprover).Testing subsumption between two 
lauses is an NP-
omplete problem [19℄. Nevertheless, subsumptionis indispensable for saturation based theorem proving as we already dis
ussed in Se
tion 2.2. Hen
e, thereexist a variety of papers presenting algorithms that show a polynomial behavior on 
ertain sub
lasses of
lauses (e.g., [21℄) or that introdu
e spe
i�
 data stru
tures to speed up the subsumption test in pra
ti
e(e.g., [46, 50℄). Many of todays provers use a variant of the [47℄ algorithm for the subsumption test.Basi
ally, the algorithm tries to �nd for every literal in�1 k�1 ! �1 a different instan
e in�2 k�2 ! �2su
h that all single instantiations are 
ompatible, i.e., identi
al variables are mapped to identi
al terms. Thissimple version is not tra
table in pra
ti
e. Pre�lters must be added to the algorithm that make it tra
table
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ti
e. In SPASS we introdu
ed two �lters [37℄. The �rst �lter is based on the size of the 
lauses. Ane
essary 
ondition for a subsumption deletion appli
ation over multisets is that size(�1 k�1 ! �1) �size(�2 k�2 ! �2). Sin
e the size of 
lauses is usually needed for sele
tion heuristi
s (see the dis
ussionon the 
hoose fun
tion in Se
tion 2.2), the size of a 
lause is already stored in a 
lause data stru
ture andtherefore this test is almost for free. For every two 
lauses passing this test, the se
ond pre�lter 
he
kswhether for every literal in �1 k�1 ! �1 there exists some instan
e literal in �2 k�2 ! �2 at all. Sowe 
onsider the literals in �1 k�1 ! �1 separately and don't 
he
k 
ompatibility between the differentsubstitutions. This 
he
k is again a ne
essary 
ondition for the subsumption test to su

eed and 
an bedone in polynomial time. Clauses passing these two tests are then subje
t to the Stillman algorithm. Inpra
ti
e, more than 95% of all subsumption tests 
an already be reje
ted by the two �lters.Note that there is a subtle differen
e between multiset subsumption (
onsidered here) and set subsump-tion. The 
lause! Q(a; x); Q(y; b) subsumes the 
lause! Q(a; b) if we 
onsider 
lauses to be sets, butdoes not if we 
onsider 
lauses to be multisets. Therefore, in our version of the Stillman algorithm werequire mat
hed literals to be different.When integrated into a prover, subsumption deletion is not an operation applied to two 
lauses butapplied to two sets of 
lauses or a 
lause and a set of 
lauses (see Table 2.1 and Table 2.3). The former test
an be redu
ed to the latter by 
onsidering the 
lauses in one set separately. So it remains to test whethersome 
lause C subsumes some 
lause in a set N or is subsumed by some 
lause in N . We already arguedthat the set N (in parti
ular the Us set) 
an be
ome very large. Then it is in pra
ti
e intra
table to traverseall 
lauses in N and then to apply the subsumption test to ea
h 
lause. An additional �lter is needed:Indexing. Indexing is the data base te
hnology of automated theorem proving. The 
ru
ial operationsprovided by an index of a 
lause storeN are: 
ompute all 
lauses that in
lude an atom that is an instan
e/ageneralization/uni�able with some query atom. Typi
ally, the result of su
h a query 
onsists of the 
lausestogether with the found atom. So in order to test whether some 
lause C is subsumed by a 
lause in anindexed 
lause store N , one pi
ks a literal from C that has a low probability of being subsumed, sear
hesthe index for generalizations of that literal and then tests C and the found 
lauses for subsumption. Sin
ethe query and the result literal are already found, using appropriate data stru
tures of SPASS it is suf�
ientto test the 
lauses without these literals. We use a more general subsumption test with the possibility tohide at least one literal in ea
h 
lause and we are able to keep the bindings of an indexing query result. Thisextended test is also needed for the redu
tion rules mat
hing repla
ement resolution (De�nition 2.3.20) andnon-unit rewriting (De�nition 2.3.21).De�nition 2.3.17 (Condensation)The redu
tion R �1 k�1 ! �1�2 k�2 ! �2where �2 k�2 ! �2 subsumes �1 k�1 ! �1 and �2 k�2 ! �2 is derived from �1 k�1 ! �1 byinstantiation and (exhaustive) appli
ation of trivial literal elimination is 
alled 
ondensation.Condensation is a
tivated by the -RCon option.In the literature 
ondensation is often de�ned on the basis of fa
toring appli
ations. From an imple-mentation point of view the above de�nition is mu
h sharper, be
ause it only suggests mat
hers to generatedupli
ate literals that 
an be eventually removed, not uni�ers as suggested by a de�nition based on fa
tor-ing. All these 
andidate instantiation substitutions 
an be effe
tively 
omputed by subsequently sear
hingfor mat
hers � su
h that E1� = E2 for E1; E2 2 �1 (respe
tively for �1, �1) and then testing whether(�1 k�1 n fE2g ! �1)� subsumes �1 k�1 ! �1. This idea leads to a pro
edure that is more ef�
ientthan the fa
toring based algorithm suggested by [28℄ and related to the te
hniques presented by [20℄.De�nition 2.3.18 (Tautology Deletion)The redu
tion R � k�! �where j= � k�! � is 
alled tautology deletion.
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alled semanti
 tautology deletion, sin
e it is based on a semanti
tautology test. This test 
orresponds to testing unsatis�ability of a set of ground literals. If we keep inmind that any literal 
an be 
oded as an (dis)equation, in order to test unsatis�ability of a set of groundliterals it is suf�
ient to test 
ongruen
e 
losure with respe
t to the positive equations. This 
an be done inpolynomial time [14℄. There are 
ertain weaker synta
ti
 
onditions that 
an be 
he
ked in linear time:R � k�; E ! �; Eor R �; A k�! �; Aor R � k�! �; t � tIn SPASS the synta
ti
 as well as the semanti
 
he
k is implemented (see Appendix 2.5). For the semanti
test we adopted the algorithm presented by [14℄ to our data stru
tures. These 
onditions are implemented bynearly all todays theorem provers. The semanti
 
he
k requires appropriate data stru
tures for an ef�
ientimplementation. It is 
ontained in the provers E, Saturate and SPASS.Tautology deletion is a
tivated by the -RTaut option. If the option is set to 1 only synta
ti
 tautologiesare deleted and if the option is set to 2 also the semanti
 test is performed.De�nition 2.3.19 (Con�i
t)The redu
tion R �1 k�1 ! �1 : : : �n k�n ! �n2where �1 k�1 ! �1; : : : ;�n k�n ! �n j= 2 is 
alled 
on�i
t.Even if n is �xed, the rule 
on�i
t is not effe
tive, in general. It basi
ally solves the general unsatis-�ability problem of �rst-order logi
. The rule sort simpli�
ation is an effe
tive instan
e of this rule. Twofurther effe
tive instantiations of this rule that are not related to spe
i�
 theories are implemented in todaysprovers: unit 
on�i
t and the terminator [1℄. 7 The former is the ruleR k ! E1 kE2 !2su
h that E1 and E2 are uni�able. It seems that this rule is super�uous sin
e it only dete
ts a 
ontra-di
tion between two unit 
lauses. However, sin
e we 
onsider uni�
ation between E1 and E2, this rule
annot be simulated by, for example, mat
hing repla
ement resolution (see De�nition 2.3.20), but only bya resolution step. In the 
ontext of problems where the majority of generated 
lauses are units (e.g., unitequational problems or 
ondensed deta
hment problems [31℄) the probability that both 
lauses are sele
tedfor inferen
es 
an be
ome arbitrarily low. Then it 
an pay off to add this redu
tion rule that implements a(global) one step sear
h for the empty 
lause.The terminator is a generalization of unit 
on�i
t and a restri
tion of the general 
on�i
t rule to at mostk non-unit 
lauses out of the n 
lauses, k �xed. For some given, �nite set of 
lauses it is de
idable whetherwe 
an derive the empty 
lause by resolution, if any derivation is restri
ted to 
ontain at most k non-unit
lauses. This is easy to see, sin
e there are only �nitely many different derivations using k non-unit 
lausesand resolving with a unit 
lause stri
tly redu
es the length of the resolvent 
ompared to the maximal lengthof one of its parent 
lauses. That's the terminator. In pra
ti
e the terminator 
an be useful with valuesk � 3. Larger values rarely make sense, sin
e the number of 
lauses that have to be 
onsidered for this rulegrows exponentially in k times the length of the non-unit 
lauses. Note that if the terminator is applied toa Horn 
lause store without equality, it 
an be turned into a 
omplete refutation pro
edure by subsequentlyin
reasing n.7Hasta la vista baby!



28 CHAPTER 2. SPASSAs an ex
eption from all other redu
tion rules, in pra
ti
e the terminator is integrated in the sear
hpro
edure like an inferen
e rule, not like a redu
tion rule. It is too expensive to apply the terminator to allnewly generated 
lauses and often it does not pay off. So the terminator is solely applied to the sele
tedGiven 
lauses, if it is a
tivated.Unit 
on�i
t is a
tivated by the -RUnC option. The terminator is a
tivated by the -RTer=<n> option,where n spe
i�es the number of 
onsidered non-unit 
lauses.De�nition 2.3.20 (Mat
hing Repla
ement Resolution)The redu
tions R �1 k�1 ! �1; E1 �2 k�2; E2 ! �2�1 k�1 ! �1; E1�2 k�2 ! �2and R �1 k�1; E1 ! �1 �2 k�2 ! �2; E2�1 k�1; E1 ! �1�2 k�2 ! �2and R �1 k�1 ! �1; A1 �2; A2 k�2 ! �2�1 k�1 ! �1; A1�2 k�2 ! �2where (i) E1� = E2 (A1� = A2 for the third variant), (ii) �1� � �2, �1� � �2, �1� � �2 are 
alledmat
hing repla
ement resolutions.Mat
hing repla
ement resolution is a
tivated by the -RFMRR and -RBMRR option, for the forward andba
kward dire
tion, respe
tively.Mat
hing repla
ement resolution is a restri
ted variant of repla
ement resolution, itself a restri
tedform of resolution where the 
on
lusion must subsume one of its parent 
lauses. For mat
hing repla
ementresolution we restri
t the uni�er of the 
omplementary literals 
omputed for repla
ement resolution to bea mat
her. This speeds up the appli
ability test signi�
antly.The third variant of the rule that applies to the sort 
onstraint 
annot be simulated by sort simpli�
ation(De�nition 2.3.5), be
ause it also 
onsiders 
lauses that are not de
larations. On the other hand, mat
hingrepla
ement resolution 
an also not simulate sort simpli�
ation. Consider the 
lausesT (x); S(f(x));�1 k�1!�1R(x) k !S(f(x))T (x) k !R(x)The negative o

urren
e of S(f(x)) in the �rst 
lause 
annot be eliminated by mat
hing repla
ementresolution but by sort simpli�
ation.De�nition 2.3.21 (Non-Unit Rewriting)The redu
tions R �1 k�1 ! �1; s � t �2 k�2; E[s0℄p ! �2�1 k�1 ! �1; s � t�2 k�2; E[p=t�℄! �2and R �1 k�1 ! �1; s � t �2 k�2 ! �2; E[s0℄p�1 k�1 ! �1; s � t�2 k�2 ! �2; E[p=t�℄where (i) s� = s0, (ii) s � t, (iii) �1� � �2, �1� � �2,�1� � �2 are 
alled non-unit rewriting.



2.3. INFERENCE AND REDUCTION RULES 29Non-unit rewriting and unit rewritung (see below) are a
tivated by the -RFRew and -RBRew option,for the forward and ba
kward dire
tion, respe
tively.The ordering restri
tions for non-unit rewriting are a priori ordering restri
tions, i.e., we do not 
omparethe terms s and t with respe
t to the found mat
her �. The ordering test with respe
t to � is sharper, butan ef�
ient implementation of this 
he
k is non-trivial be
ause it requires a tight 
onne
tion betweenindexing, ordering 
omputation and subsumption. Therefore, SPASS uses the a priori ordering 
he
k, i.e.,SPASS veri�es s � t. See also the dis
ussion on page 23.De�nition 2.3.22 (Unit Rewriting)The redu
tions R k ! s � t kE[s0℄p !k ! s � tkE[p=t�℄!and R k ! s � t k ! E[s0℄pk ! s � tk ! E[p=t�℄where (i) s� = s0, (ii) s� � t�, are 
alled unit rewriting.Unit rewriting is an instan
e of the se
ond version of non-unit rewriting where all�i, �i,�i are empty.We mention it here expli
itely, be
ause it is the style of rewriting used in purely equational 
ompletion,a theorem proving dis
ipline of its own. Furthermore, the a posteriori ordering 
he
k is mu
h easier toimplement, be
ause we need no subsumption 
he
k. A
tually, it is implemented in SPASS.In pra
ti
e the rewriting redu
tions are among the most expensive redu
tions. Note that any subtermof any 
lause has to be 
onsidered and that subsequent rewriting steps to the same 
lause are 
ommon.Therefore, many provers don't use the full power of non-unit rewriting, but restri
t the left 
lause to be apositive unit equation. They redu
e non-unit 
lauses by positive unit equations.Even the a posteriori 
he
k, 
ondition (ii), 
an be further re�ned. Consider an equation where theleft and right hand side don't share any variables. Then the a posteriori 
he
k will typi
ally fail but maysu

eed by appropriate further instantiations. For example the equation f(x; y) � g(z) 
annot be orientedand hen
e the equation f(a; b) � a 
annot be rewritten by unit rewriting using the �rst equation. Nowassume a RPOS with pre
eden
e f > g > a > b. Then the equation f(a; b) � g(z) (the result of mat
hingf(x; y) with f(a; b)) 
an be turned into an oriented equation by instantiating z with a or b. This enablesrewriting of f(a; b) to g(a) or g(b). In general it is suf�
ient to 
onsider the minimal 
onstant and the
ru
ial extra variables for further instantiation. Note also that the equation f(x; y) � g(z) subsumes anequation like f(x; y) � g(y) that is oriented and 
an therefore be used for rewriting in a straightforwardway. This re�nement is not implemented in SPASS Version 2.0 but remains an option for further releases.Another way to solve the problem of unorientable equations be
ause of extra variables is to split equa-tions. Given some equation s � t where vars(s) 6� vars(t) and vars(t) 6� vars(s), we introdu
e a newfun
tion symbol h where the arity of h is exa
tly jvars(s)\vars(t)j. If fx1; : : : ; xng = vars(s)\vars(t)then the equation s � t is repla
ed by the equations s � h(x1; : : : ; xn) and t � h(x1; : : : ; xn). Givena KBO or RPOS and a pre
eden
e where the new symbol h is smaller than the top symbols of s and t,both introdu
ed equations are oriented from left to right. In order to obtain a 
omplete 
al
ulus that in-
ludes splitting of equations splitting must not be applied in�nitely many times. Splitting equations is notimplemented in SPASS Version 2.0.De�nition 2.3.23 (Contextual Rewriting)The redu
tions R �1 k�1 ! �1; s � t �2 k�2; E[s0℄p ! �2�1 k�1 ! �1; s � t�2 k�2; E[p=t�℄! �2



30 CHAPTER 2. SPASSand R �1 k�1 ! �1; s � t �2 k�2 ! �2; E[s0℄p�1 k�1 ! �1; s � t�2 k�2 ! �2; E[p=t�℄where (i) s� = s0, (ii) s � t, (iii) s � t is stri
tly maximal in �1 k�1 ! �1; s � t, (iv) for anyterm t0 in �1 k�1 ! �1; s � t, s � t0, (v) if E[s0℄p does not o

ur negatively, s� � t� � E[s0℄p,(vi) j= fred(�2 ! S(t0)) for all sort atoms S(t0) 2 sortsimp(�1�), (vii) j= fred(�2 ! E) for all atomsE 2 �1�, (viii) j= fred(E ! �2) for all atoms E 2 �1� are 
alled 
ontextual rewriting.The expression sortsimp(�1�) denotes the sort 
onstraint �1� after exhaustive appli
ation of therule sort simpli�
ation. The fun
tion fred , see Table 2.5, (re
ursively) applies the redu
tion rules to the
onstru
ted sub
lauses before they are 
he
ked as tautologies. The performan
e of fred , i.e. whi
h rulesare a
tually tested/applied, determines the strength as well as the 
ost for testing and applying 
onte
tualrewriting. Our 
urrent idea is to use all redu
tion rules ex
ept 
ontextual rewriting. We do not test/apply
ontextual rewriting re
ursively. Contextual rewriting is not implemented in SPASS Version 2.0 but will bein
luded in the next release. We already have a prototype implementation of the rule.The �nal redu
tion rule exploits parti
ular equations of the form x � t (
alled assignment equations),where x does not o

ur in t nor in the rest of the 
lause. Negative equations of this form 
an simply beremoved from a 
lause. In order to remove positive assignment equations the domain stru
ture shared byany model of the 
urrent 
lause store has to be examined. In parti
ular, we exploit the 
ase that the domainis non-trivial. Therefore, before this rule 
an be applied, 
ertain properties of any 
lause store model mustbe 
he
ked. This 
an, e.g., be done by a suf�
ient 
riterion that 
an be tested synta
ti
ally.De�nition 2.3.24 (Assignment Equation Deletion)LetN be the 
urrent 
lause store. The redu
tionsR � kx � t;�! �� k�! �and R � k�! x � t;�� k�! �where for both variations of the rule we assume (i) x 62 vars(t), (ii) x 62 vars(� k� ! �) and forthe se
ond variant, where we remove a positive equation, we assume in addition that jDj > 1 for anyinterpretationM withM j= N , are 
alled assignment equation deletion.Assignment equation deletion is a
tivated by the -RAED option. If -RAED is set to 1 only the �rstvariant is applied, if set to 2 both variants are used.For the elimination of the positive equation to be sound it is ne
essary to guarantee a non-trivial domainfor any model of the 
urrent 
lause store. A synta
ti
 
ondition is the existen
e of a 
lause k s � t !where s and t are arbitrary. If su
h a 
lause is 
ontained in the 
lause store, the domain of any model isnon-trivial and we 
an apply the se
ond variant of the rule.2.3.5 SplittingThe effe
t of a splitting rule appli
ation is not only to extend the 
urrent 
lause store but also to modifyand extend the 
urrent 
lause store 
olle
tion.De�nition 2.3.25 (Splitting)The inferen
e S �1;�2 k�1;�2 ! �1;�2�1 k�1 ! �1 j �2 k�2 ! �2where vars(�1 k�1 ! �1) \ vars(�2 k�2 ! �2) = ; and�1 6= ;,�2 6= ; is 
alled splitting.
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tivated by the -Splits=<n> option, where n spe
i�es the overall number of splittingappli
ations in a SPASS run. Unlimited appli
ation of the rule 
an be a
hieved by 
hoosing�1 for n.Without the 
ondition that the two split 
lauses must not share variables, Splitting is very mu
h likethe �-rule of free variable tableau. Sin
e the 
lauses don't share variables, the two 
ases are 
ompletelyindependent and the derived 
lauses 
an be used for simpli�
ation/redu
tion without any restri
tion. Forexample, both 
lauses subsume the parent 
lause.In 
ase the �rst split part is ground, i.e., vars(S(t) kE ! E0) = ;, where S(t) = S1(t1); : : : ; Sn(tn),E = E1; : : : ; Em and E0 = E01; : : : ; E0l and 1 � i � n, 1 � j � m, 1 � k � l, it is very useful to add thenegation of the �rst split 
lause to the se
ond partS S(t);�2 kE;�2 ! E0;�2S(t) kE ! E0 �2 k �2!�2k !Si(ti)k !EjkE0k!All these additional unit 
lauses 
an help a lot in redu
ing the 
lause set of the se
ond part (see mat
h-ing repla
ement resolution, De�nition 2.3.20 or non-unit rewriting, De�nition 2.3.21). In a purely propo-sitional setting, a 
al
ulus solely based on unit 
on�i
t (see De�nition 2.3.19) and extended splitting 
anpolynomially simulate truth tables, whereas a 
al
ulus based on unit 
on�i
t and the simple splitting rule
annot [9℄.Of 
ourse, for any �rst part split 
lause we 
ould add its negation to the se
ond part. However, ingeneral this leads to the introdu
tion of new Skolem 
onstants, and in pra
ti
e this tends to extend thesear
h spa
e for the se
ond part. Note that in this 
ase the ground units resulting from the negated �rstpart 
annot be used for mat
hing repla
ement resolutions, be
ause the introdu
ed Skolem 
onstants arenew. As an alternative one 
ould also re
ord the ground instan
es of the variables in the �rst split 
lauseused in the refutation of the �rst part and then add their negation as a disjun
t to the se
ond part. But it isquestionable whether su
h an effort pays off in pra
ti
e.Splitting itself often tends to generate a huge sear
h tree, so additional re�nements are ne
essary. There-fore, we required that �1 and �2 are non-empty in De�nition 2.3.25. So we only split non-Horn 
lausesinto 
lauses having stri
tly less positive literals. The rationale behind this 
omes from the propositionallevel. For a set of propositional Horn 
lauses, satis�ability 
an be de
ided in linear time [13℄, whereassatis�ability for arbitrary 
lauses is an NP-
omplete problem. The redu
tion rule mat
hing repla
ementresolution (De�nition 2.3.20) is also a de
ision pro
edure for propositional Horn 
lauses (although it resultsin a quadrati
 time implementation). Hen
e, non-Horn splitting and mat
hing repla
ement resolution are areasonable de
ision pro
edure for propositional 
lauses. In 
ase a 
lause 
an be split into a propositionalpart (no variables) and a non-propositional one, it is very useful to split the 
lause that way and to add thenegation of the propositional part to the se
ond as indi
ated before.An alternative to an expli
it 
ase analysis is to split 
lauses by the introdu
tion of new propositionalsymbols. For example, the 
lause S(x) k f(x) � y ! Q(x; x); Q(a; z)
an be repla
ed by the 
lauses S(x) jj f(x) � y, A!Q(x; x)jj B!Q(a; z)jj !A;Bwhere A, B are new propositional symbols. The repla
ement preserves satis�ability of the 
urrent 
lausestore and if it is only applied �nitely many often during a proof attempt it also preserves 
ompleteness.If A, B are minimal in the ordering, no inferen
e on A, B will be performed as long as other literals are
ontained in the respe
tive 
lauses. So the different parts of the original 
lause don't interfere as long asthey are 
ompletely resolved. This simulates splitting without the need to extend the notion of a 
lausestore to a 
olle
tion of 
lause stores and hen
e a less 
ompli
ated implementation. The se
ond advantageof this approa
h is that it does not introdu
e the inherent redundan
y of an expli
it splitting approa
h.The main disadvantage of this splitting style is that none of the generated 
lauses 
an be dire
tly used for



32 CHAPTER 2. SPASS1 PROVER(N)2 Wo := ;;3 Us := ired(N;N);4 While (Us 6= ; and 2 62 Us) f5 (Given ;Us) := 
hoose(Us);6 Wo := Wo [ fGiveng;7 New := inf (Given ;Wo);8 (New ;Wo;Us) := ired(New ;Wo;Us);9 g10 If (Us = ;) then print �Completion Found�;11 If (2 2 Us) then print �Proof Found�;Table 2.4: The Overall Loop without Splittingredu
tions, be
ause the propositional variables A, B must be new. This splitting style is available in theprovers Saturate and Vampire, expli
it splitting (De�nition 2.3.25) is available in SPASS.2.4 Global Design De
isions2.4.1 Main-LoopThe main-loop without splitting, Table 2.4, is a generalization of the main-loop introdu
ed in Se
tion 2.2,Table 2.1.Compared to the simple, resolution-based prover, all inferen
es are 
omputed in the extra fun
tion infand (inter)redu
tion takes pla
e in the fun
tion ired . In the automati
 mode of SPASS, the inferen
e rulesapplied in inf are 
hosen after an analysis of the input problem, su
h that the resultion 
al
ulus is soundand 
omplete. For example, if the input problem 
ontains no equality, the superposition/paramodulationrules are not a
tivated or if the input problem is Horn, fa
toring rules are not needed. In Appendix 2.5.1 wesum up all SPASS options needed to (de)a
tivate the inferen
e/redu
tion rules introdu
ed in Se
tion 2.3.Please note that a manual setting setting of inferen
e/redu
tion rules 
an result in an unsound or in
omplete
al
ulus. SPASS does not verify your manual settings.The 
ombination of the redu
tion rules gets more subtle 
ompared to the 
ombination of subsump-tion/tautology deletion presented in Se
tion 2.2. The fun
tion ired serves this purpose, Table 2.6. Pleasere
all that the terminator is integrated like an inferen
e rule and hen
e does not show up. First, line 4,any newly derived 
lause is forward redu
ed with respe
t to the sets Wo and Us . The fun
tion fred ispresented in detail in Table 2.5. The ordering of the tested forward redu
tions is determined by potentialdependen
ies between the rules and by their respe
tive implementation 
osts.We don't 
onsider the lazy redu
tion approa
h introdu
ed in Se
tion 2.2, Table 2.3. It is a bit tri
kybut not too dif�
ult to develop it out of the presented full redu
tion algorithms. Inside the algorithms aredundant 
lause is not always dire
tly deleted, but represented by the 
onstant>.In pra
ti
e, tautology deletion (Table 2.5, line 2), elimination of trivial literals (line 4), 
ondensation(line 5) and assignment equation deletion (line 6) are 
heap operations, be
ause only the derived 
lausehas to be 
onsidered for testing their appli
ability. This is not 
ompletely true for the assignment equationdeletion (see De�nition 2.3.24), but the suggested synta
ti
 domain size 
riterion 
an be tested on
e at thebeginning of the sear
h pro
ess, so no extra effort is ne
essary. Clauses that pass these tests, are 
he
ked forforward subsumption with respe
t toWo andUs (line 7) and for forward rewriting (line 8) whereHit is setto true, if a rewriting step a
tually took pla
e. If a rewriting step is performed, the rules tautology deletion,
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1 fred(Given ;Wo;Us)2 Given := taut(Given);3 If (Given = >) then return(>);4 Given := obv(Given);5 Given := 
ond(Given);6 Given := aed(Given ;Wo;Us);7 If (fsub(Given ;Wo;Us)) then return(>);8 (Hit ;Given) := frew (Given ;Wo;Us);9 If (Hit) then f10 Given := taut(Given)11 If (Given = >) then return(>);12 Given := obv(Given);13 Given := 
ond(Given);14 If (fsub(Given ;Wo;Us)) then return(>);15 g16 Given := ssi(Given ;Wo;Us);17 Given := fmrr(Given ;Wo;Us);18 Given := un
(Given ;Wo;Us);19 Given := sst(Given ;Wo;Us);20 return(Given);Table 2.5: Forward Redu
tion



34 CHAPTER 2. SPASS1 ired(New ;Wo;Us)2 While (New 6= ;) f3 (Given ;New) := 
hoose(New);4 Given := fred(Given ;Wo;Us);5 If (Given 6= >) then f6 (New ;Wo;Us) := bsub(Given ;New ;Wo;Us);7 (New ;Wo;Us) := bmrr(Given ;New ;Wo;Us);8 (New ;Wo;Us) := brew(Given ;New ;Wo;Us);9 Us := Us [ fGiveng;10 g11 g12 return(;;Wo;Us);Table 2.6: Interredu
tionelimination of dupli
ate/trivial literals, 
ondensation and forward subsumption are 
he
ked a se
ond time(lines 10�14). Below is a simple example that demonstrates dependen
ies between the different redu
tionrules. 1: ! f(x) � x2: ! a � b3: P (f(x))!P (x)4: P (f(x)); P (b)!5: P (a); P (
)!6: P (g(f(x))); P (g(x))!The 
lauses 3�6 are 
ompletely interredu
ed with respe
t to the redu
tions presented in Se
tion 2.3.Rewriting with 
lause 1 into 
lause 3 generates a synta
ti
 tautology, rewriting with 
lause 1 into 
lause 4enables a further 
ondensation step on 
lause 4 resulting in 40:P (b)! and rewriting 
lause 5 with 
lause 2produ
es 50:P (b); P (
) ! (assuming a � b) that is forward subsumed by 
lause 40. After rewriting with
lause 1, dupli
ate literal elimination 
an be applied to 
lause 6.Finally the redu
tions sort simpli�
ation (line 16), forward 
lause redu
tion (line 17), unit 
on�i
t(line 18) and stati
 soft typing are tested. These redu
tion rules don't enable further appli
ations of otherrules, be
ause they either stri
tly redu
e the number of literals or redu
e the 
lause to> (stati
 soft typing).In order to test the appli
ability of these rules the overall 
lause storesWo and Us must be 
onsidered.All 
lauses that pass forward redu
tion (Table 2.6, line 4) are used for ba
k redu
tion (lines 6�8) andare �nally added to theUs set (line 9). Ba
kward subsumption (line 6) deletes all 
lauses fromWo andUsthat are subsumed by Given . Ba
kward mat
hing repla
ement resolution (line 7) tests all 
lauses in Woand Us for mat
hing repla
ement resolution with Given . Redu
ed 
lauses are always deleted from theirrespe
tive sour
e set and added to New . Ba
k rewriting (line 8) behaves the same, but tests rewriting. The
lauses in New are not dire
tly tested for all these redu
tion rules. They are tested after having entered theUs set. This is motivated by ef�
ien
y issues whi
h we will dis
uss below.The fun
tion 
hoose (Table 2.6, line 3) sele
ts a 
lause with the smallest number of symbols. Small
lauses have a higher probability to redu
e other 
lauses. For example, a subsuming 
lause must havefewer symbols (
onsider the dis
ussion after De�nition 2.3.16) than the 
lause it subsumes. For manyother redu
tions like rewriting, sele
ting small 
lauses is still a good heuristi
 be
ause the size ordering ofterms is often in
luded in the redu
tion ordering.Note that a 
lause 
an be sele
ted several times as Given 
lause in the while-loop of the interredu
tion



2.4. GLOBAL DESIGN DECISIONS 351 PROVER(N)2 Wo := ;;3 Us := ired(N;N);4 Sta
k := emptysta
k();5 While (Us 6= ; and (2 62 Us or not sta
kempty(Sta
k))) f6 If (2 2 Us) then7 (Sta
k ;Wo;Us) := ba
ktra
k (Sta
k ;Wo;Us);8 else f9 (Given ;Us) := 
hoose(Us);10 If (splittable(Given)) then f11 New := �rstsplit
ase(Given);12 Sta
k := push(Sta
k ; se
ondsplit
ase(Given));13 g14 else f15 Wo := Wo [ fGiveng;16 New := inf (Given ;Wo);17 g18 (New ;Wo;Us) := ired(New ;Wo;Us);19 g20 g21 If (Us = ;) then print �Completion Found�;22 If (2 2 Us) then print �Proof Found�;Table 2.7: The Overall Loop with Splittingalgorithm, if it is su

essfully redu
ed several times. Sele
ting small Given 
lauses tries to minimize thenumber of su
h situations.The main-loop presented in Table 2.7 extends the already dis
ussed main-loop of Table 2.4 with splitting.Whether SPASS applies splitting or not depends on the input problem8 and 
an be 
ontrolled by the splittingoption (see Appendix 2.5.2). In 
ase splitting is not applied, exe
uting the main-loop in Table 2.7 orTable 2.4 results in exa
tly the same behavior.If splitting is possible (Table 2.7, line 10) it is preferred over all other inferen
es. The rationale behindthis de
ision is that a splitting appli
ation results in a stri
tly smaller 
lause store 
olle
tion. The explo-ration of the binary tree generated by the splitting rule is performed by a standard depth-�rst, ba
ktra
kingsear
h (lines 7, 11, 12). Compared to the SPASS Versions 1.0.x, Version 2.0 has a more sophisti
atedsplitting 
lause sele
tion. It sele
ts the 
lause with the highest unit redu
tion potential after the split.All fun
tions implementing inferen
e/redu
tion operations have to be re�ned and must also 
onsiderthe split level of a 
lause. Initially, all 
lauses have split level zero and the 
urrent split level is zero. Thenany 
lause generated by a splitting inferen
e gets the 
urrent split level plus one as its split level and the
urrent split level is in
remented. Clauses generated by all other inferen
e/redu
tion rules get the maximalsplit level of their parent 
lauses as their new split level. Ba
ktra
king resets the 
urrent split level to thesplit level of the a
tivated bran
h. But what happens if a 
lause C is now subsumed by a 
lause D with a8SPASS only splits non-Horn 
lauses, see De�nition 2.3.25.



36 CHAPTER 2. SPASSgreater split level? We must not delete C, but only remove it from the 
urrent 
lause store, store it at D'ssplit level on the split sta
k and reinsert it if ba
ktra
king 
onsiders that level. Clauses that are rewritten orredu
ed by 
lauses with a higher split level must be 
opied and also kept appropriately on the split sta
k.Basi
ally that is all to integrate splitting into a saturation based prover. Nevertheless, some re�nementsare possible. First, sin
e all 
lauses have a split level, also the empty 
lause has a split level. This levelindi
ates where ba
ktra
king should start to 
onsider open bran
hes and all bran
hes at a higher split level
an be dis
arded. For example, if we derive the empty 
lause at split level zero, then we 
an immediatelystop and don't have to 
onsider any further possibly open bran
hes. Se
ond, if we don't only store thesplit level with ea
h 
lause but also a bit array with length of the split level, the following improvementis possible. The bit array is updated together with the split level and indi
ates every level that 
ontributedto the 
lause. If we now derive an empty 
lause at some split level and dete
t that it does not depend onsome earlier levels above the previous ba
ktra
king level that have open bran
hes left, we 
an erase theselevels, their split 
lauses and all 
lauses depending on these. We 
all this operation bran
h 
ondensationand it is indispensable to make splitting feasible in pra
ti
e. In the AI literature bran
h 
ondensation itoften referred to as dependen
y dire
ted ba
ktra
king.In Se
tion 2.2 we also introdu
ed a main-loop with lazy redu
tion, Table 2.3. Although we did not presentit here, lazy redu
tion is also possible with the extended inferen
e rule set and it is not too dif�
ult to thinkof lazy extensions of the main-loops a

ording to Table 2.3. Therefore, we omitted an extra presentationhere.2.4.2 Proof Do
umentation/Che
kingBy default, SPASS does not output a proof in 
ase it derives the (�nal) empty 
lause nor does SPASS providea �nal saturated set of 
lauses, in 
ase all possible inferen
es have been performedwithout �nding an empty
lause. This 
an be 
hanged by a
tivating the proof do
umentation option (see Appendix 2.5.1).Proof do
umentation is possible by impli
itly or expli
itly storing all 
lauses during the overall sear
hpro
ess that might 
ontribute to a proof. As a 
onsequen
e, a run with proof do
umentation has a highermemory 
onsumption and thus 
auses the prover to slow down. This effe
t is further supported by splittingappli
ations, where all 
lauses from all signi�
ant bran
hes must be kept as well. Therefore, in favor ofexe
ution speed, by default SPASS does not output proofs (saturated 
lause stores). Nevertheless, SPASS
an handle proofs of several hundred thousand steps in reasonable time.Automated proof 
he
king is a very important topi
 in any theorem proving proje
t. The inferen
e/redu
tionrules are non-trivial to (ef�
iently) implement, so there is a high potential for bugs. This is also shown byseveral a posteriori disquali�
ations at the CASC theorem proving 
ompetitions happened so far [49℄.Proofs of automated theorem provers 
annot be 
he
ked by hand in pra
ti
e. So there is a need for auto-mated proof 
he
king. Our solution is a separately implemented proof 
he
ker. The 
he
ker takes a proofand starts with an analysis of the splitting rule appli
ations. The 
he
ker generates the binary tree resultingfrom subsequent splitting inferen
e appli
ations and tests whether all bran
hes 
ontain an empty 
lause,whether the split level assignments are done 
orre
tly and whether the splitting inferen
e rule is applied ina sound way. Then the 
he
ker generates for every inferen
e/redu
tion rule appli
ation the 
orresponding�rst-order theorem proving problem and provides it for a separate prover. The single step proof problems
an typi
ally be easily solved if they are 
orre
t. This way, it is possible to validate proofs up to severalhundred thousand steps in reasonable time and that 
ompletely automati
ally. As su
h a proof 
he
kersolely relies on logi
al impli
ation, it supports most of today's saturation-based inferen
e systems and isrobust against modi�
ations to inferen
e/redu
tion rules.2.4.3 Data Stru
tures and AlgorithmsIn Se
tion 2.2 we dis
ussed a simple prover based on resolution. In Se
tion 2.4.1 we extended this proverto 
ope with the inferen
e/redu
tion rules of SPASS. For our simple resolution-based prover we alreadyargued that� the Us set grows very fast,
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tions are indispensable to redu
e the number of 
lauses in the Us set� most of the time is spent with redu
tions.The situation is getting even more dramati
 if we 
onsider the inferen
e rules for equality introdu
ed inSe
tion 2.3 and the suggested main-loops (Table 2.4, Table 2.7). For example, if the sele
tedGiven 
lauseC in the main-loop 
ontains a positive equation, then any non-variable subterm of any literal of a 
lause inWo that uni�es with the left or right hand side of the equation generates a new 
lause by paramodulation. Ifthe 
onsidered left hand side is a variable then any subterm of any different 
lause uni�es with the variableand produ
es a new 
lause via paramodulation. An example for su
h a 
lause is one that for
es a �nite,two element domain: ! x � a; x � b. Ordering restri
tions improve the situation (not for the �nitedomain 
lause), but we nevertheless have to �nd reasonable ways to store large Us sets and to ef�
iently�nd redu
tion/inferen
e partners.There are several solutions to these problems. We now fo
us on one solution and dis
uss alternativesat the end of this se
tion. The �rst design de
ision in SPASS is to store all atoms in Wo, Us in a sharedway, respe
tively. That means every o

urren
e of any subterm of an atom in Us (Wo) exists exa
tly on
eand is shared by all superterms 
ontaining this subterm. The idea is to save spa
e and to keep indexingstru
tures small. As all terms are shared, any subterm is only submitted on
e to the indexing stru
turethat provides retrieval for inferen
es/redu
tions. This works �ne for ground terms, but in general 
lauses
ontain variables that are 
onsidered different if they o

ur in different 
lauses. Therefore, almost nothing
an be shared between two different non-ground 
lauses. The solution to this problem is our se
ond designde
ision that is to normalize variables of 
lauses. For any 
lause, if the 
lause is 
onsidered from left toright as a sequen
e of its literals, the variables are named with respe
t to their o

urren
e a

ording to a�xed variable sequen
e. After normalization there is a high probability that 
lauses with variables sharenon-ground subterms. This is 
on�rmed by experiments.A 
onsequen
e of this de
ision is that algorithms for uni�
ation/mat
hing/generalization have to keeptra
k of this fa
t. For example, we have variants of the uni�
ation algorithm that use two substitutions(whi
h are 
alled 
ontexts inside the uni�
ation algorithm) in order to store bindings between variables fortwo terms stemming from two different 
lauses in an appropriate way.9Putting newly generated 
lauses into a sharing/indexing data stru
ture is extra effort. Sin
e newlygenerated 
lauses have a high probability of being subsumed or redu
ed by already existing 
lauses, theNew set (Table 2.4, 2.7, 2.6) is kept unshared. Furthermore, redu
tions are (by de�nition) destru
tive, sothey 
an only be ef�
iently applied to unshared 
lauses. Shared 
lauses have to be extra
ted/
opied fromthe sharing stru
ture before modi�
ation, be
ause destru
tive manipulation of shared terms may also effe
tother 
lauses where the 
onsidered redu
tion is not permitted. So any forward redu
tion to the Given
lause inside the interredu
tion algorithm (Table 2.6) is done destru
tively, but before a ba
k redu
tionoperation 
an a
tually be performed (lines 6�8) the 
lause has to be extra
ted/
opied from the Wo, Ussharing stru
ture �rst. As it is unshared afterwards, it 
an be moved to the New set. At line 9 of the iredfun
tion (Table 2.6), the Given 
lause is inserted into the sharing/indexing stru
tures of the Us set.An alternative solution not implemented in SPASS is to 
ompletely abstra
t from variable positions,e.g., by introdu
ing one dummy variable for all o

urring variables. We build one or several atom/termtrees that represent all atoms/terms without 
onsidering variables to be different. These trees are then linkedto the real atoms/terms and ef�
ient algorithms 
an be devised to sear
h for 
andidate atoms/terms out ofsu
h skeleton trees. Atoms/terms found this way are still 
andidates, be
ause of the variable abstra
tion.They have then to be veri�ed by the appropriate mat
hing/uni�
ation test. The so 
alled dis
riminationtrees support su
h an approa
h.If we resign from 
omplete interredu
tion and fo
us on lazy redu
tion (see Table 2.3), no redu
tion ruleneeds to be tested with respe
t to the Us set. So inserting the Us 
lauses into an indexing stru
ture fora

ess is not needed. The Us 
lauses are only needed to provide a pool from whi
h the nextGiven 
lauseis sele
ted. To this end, we only need the ne
essary information for the 
hoose fun
tion and the 
lauseitself. If the 
hoose fun
tion relies on size, the ne
essary information is simply a number. Sin
e all Us
lauses are 
hildren of two Wo 
lauses, instead of storing the 
lause, we store the numbers of the parents9See the dis
ussion in Se
tion 2.2.



38 CHAPTER 2. SPASSand the way it was generated represented by, say, one extra number. So, every 
lause in the Us set 
anbe represented by four numbers, in pra
ti
e in 
onstant spa
e. This results in a huge redu
tion of memory
onsumption and hen
e in an in
rease of exe
ution speed. The Waldmeister system (see Appendix 2.7) 
antreat the Us set this way. Note that the extra time needed to generate theGiven 
lause 
an be negle
ted. In
ase a parent of a sele
ted Given 
lause is no longer in theWo set, it must have be
ome redundant, hen
ethe Given 
lause is redundant as well and needs not to be 
onsidered.A further possibility to restri
t the number of 
lauses in theUs set is to simply throw away 
lauses. Thismay 
ause in
ompleteness of the theorem prover. Su
h te
hniques are available in Fiesta, Otter, SPASSand Vampire, see Appendix 2.7 and the dis
ussion in Se
tion 2.2.2.5 SPASS Version 2.0 OptionsFrom a (unix) shell, SPASS is 
alledSPASS [options℄ [<input-file>℄where options in�uen
e the behavior of the prover. Here, we only introdu
e SPASS options that relateto the 
ontent of this 
hapter. Further options, e.g., options 
ontrolling the output, are do
umented inthe SPASS man-pages. The options dis
ussed here apply to SPASS Versions 2.0. Options 
an be set tointeger values. For boolean options 0 means falsity and 1 means truth. For example, the option -IMPm=1enables the inferen
e rule merging paramodulationwhi
h 
an be abbreviated by-IMPmwhereas-IMPm=0disables the inferen
e rule.2.5.1 ControlAuto Automati
 Mode, after a problem analysis, all options are set automati-
ally.FullRed Full Redu
tion, Se
tion 2.2. If full redu
tion is enabled, the overallSPASS loop 
orresponds to the loop presented in Table 2.1, if the op-tion is disabled, it 
orresponds to the lazy redu
tion loop presented inTable 2.3.BoundMode Bound Mode sele
ts the mode for resour
e 
ontrolled generation of thesear
h spa
e, Se
tion 2.2. If set to 1 
lauses are weight restri
ted, if setto 2 
lauses are depth restri
ted.BoundStart Bound Start determines the start value for resour
e restri
tion, Se
-tion 2.2.BoundLoops Bound Loops determines the number of resour
e restri
ted main-loopiterations.Do
Proof a
tivates proof do
umentation.2.5.2 Inferen
e RulesISoR Sort Constraint Resolution, De�nition 2.3.3.IEmS Empty Sort, De�nition 2.3.4.IEqR Equality Resolution, De�nition 2.3.7.IERR Re�exivity Resolution, De�nition 2.3.7.ISpL Superposition Left, De�nition 2.3.8.IOPm Ordered Paramodulation, De�nition 2.3.8 and De�nition 2.3.9.ISPm (Standard) Paramodulation, De�nition 2.3.8 and De�nition 2.3.9.ISpR Superposition Right, De�nition 2.3.9.IOF
 Ordered Fa
toring, De�nition 2.3.10.ISF
 (Standard) Fa
toring, De�nition 2.3.10.IEqF Equality Fa
toring, De�nition 2.3.11.



2.6. POINTERS INTO THE SPASS SOURCE CODE 39IMPm Merging Paramodulation, De�nition 2.3.12.IORe Ordered Resolution, De�nition 2.3.13.ISRe (Standard) Resolution, De�nition 2.3.13.IOHy Ordered Hyper Resolution, De�nition 2.3.14.ISHy (Standard) Hyper Resolution, De�nition 2.3.14.Splits Splitting, De�nition 2.3.25. The option determines the number of split-ting appli
ations where any negative number means that splitting is notrestri
ted.2.5.3 Redu
tion RulesRSSi Sort Simpli�
ation, De�nition 2.3.5.RSST Stati
 Soft Typing, De�nition 2.3.6.RObv Trivial Literal Elimination, De�nition 2.3.15.RFSub Forward Subsumption Deletion, De�nition 2.3.16, Table 2.5.RBSub Ba
kward Subsumption Deletion, De�nition 2.3.16, Table 2.6.RCon Condensation, De�nition 2.3.17.RTaut Tautology Deletion, De�nition 2.3.18. If the option is set to 1 onlysynta
ti
 tautologies are eliminated. If it is set to2, semanti
 tautologiesare deleted as well.RUnC Unit Con�i
t, De�nition 2.3.19.RTer Terminator, De�nition 2.3.19, where the value of the option determinesthe number of non-unit 
lause o

urren
es in the sear
hed refutation.RFMMR Forward Mat
hing Repla
ement Resolution, De�nition 2.3.20, Ta-ble 2.5.RBMMR Ba
kward Mat
hing Repla
ement Resolution, De�nition 2.3.20, Ta-ble 2.6.RFRew Forward Rewriting, De�nition 2.3.21 and De�nition 2.3.22, Table 2.5.RBRew Ba
kward Rewriting, De�nition 2.3.21, Table 2.6.RAED Assignment Equation Deletion, De�nition 2.3.24. If set to 2, it is as-sumed that any model has a non-trivial domain and the 
orrespondingeliminations are performed.2.6 Pointers into the SPASS Sour
e CodeThe below tabular relates algorithms presented in this 
hapter to the a
tual sour
e 
ode. It is meant toprovide a starting point to explore further details or to adapt the 
ode to personal desires. For every topi
,we point to the SPASS sour
e �le and the name of the 
orresponding fun
tion.Main-Loop, Table 2.7 �! top.
�! top_ProofSear
hfred , Table 2.5 �! rules-red.
�! red_CompleteRedu
tionOnDerivedClauseired , Table 2.6 �! rules-red.
�! red_CompleteRedu
tionOnDerivedClausesinf , Table 2.7 �! rules-inf.
�! inf_DerivableClauses2.7 Links to Saturation Based ProversBliksem by Hans de Nivellehttp://www.mpi-sb.mpg.de/�nivelle/
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ount by Jörg Denzingerhttp://agent.informatik.uni-kl.de/denzinge/denzinger.htmlE by Stephan S
hulz [44℄http://wwwjessen.informatik.tu-muen
hen.de/personen/s
hulz.htmlFiesta by Robert Nieuwenhuis, Pilar Nivela and Guillem Godoyhttp://www.lsi.up
.es/�roberto/Gandalf by Tanel Tammethttp://www.
s.
halmers.se/�tammet/gandalf/Otter by William M
Cune [32℄http://www-unix.m
s.anl.gov/AR/otter/Saturate by Harald Ganzinger, Robert Nieuwenhuis and Pilar Nivela [36℄http://www.mpi-sb.mpg.de/SATURATE/SPASS by Christoph Weidenba
h, Bijan Afshordel, Enno Keen, Chris-tian Theobalt, Dalinor Topi
́ [54℄http://spass.mpi-sb.mpg.de/Vampire by Alexandre Riazanov and Andrei Voronkov [40℄http://www.
s.man.a
.uk/fmethods/vampire/Waldmeister by Arnim Bu
h, Thomas Hillenbrand, Roland Vogt, BerndLö
hner and Andreas Jaeger [25℄http://agent.informatik.uni-kl.de/waldmeister/A
knowledgmentsKnowledge about the design of automated theorem provers is mostly distributed by dis
ussions among theauthors of su
h systems. I want to thank Bill M
Cune the author of Otter that is the father system of alltoday's �modern� automated saturation based theorem provers. We learned a lot about the implementationof theorem provers by inspe
ting Otter. My 
olleagues Arnim Bu
h, Thomas Hillenbrand, Bernd Lö
hner,authors of Waldmeister, Jörg Denzinger, author of Dis
ount, Hans de Nivelle, author of Bliksem, TanelTammet, author of Gandalf, Stephan S
hulz, author of E, Harald Ganzinger, author of Saturate, AndreiVoronkov, 
o-author of Vampire, Robert Nieuwenhuis, author of Fiesta (and Saturate) 
ontributed a lot tothis 
hapter.As mentioned in the introdu
tion the development of a 
ompetative theorem prover is a 
hallengingsoftware proje
t, exempli�ed in the following for the SPASS theorem prover: Although there existed somepreliminary versions of SPASS before 1994, the �rst version 
alled SPASS was started in that year and was�nished in 1995 by BerndGaede in the 
ontext of his diploma thesis. This version already relied on a libraryof data stru
tures we 
alled EARL.10 The library already 
ontained indexing support and was developed byPeter Graf and ChristophMeyer and myself. Clause normal form translation was added to SPASS by GeorgRo
k as a diploma proje
t. Further development of SPASS took pla
e in paid student proje
ts that typi
allylasted for several months ea
h. Christian Cohrs introdu
ed splitting to SPASS, Enno Keen was responsiblefor inferen
e rules and parsing support, Thorsten Engel wrote our proof 
he
ker, Dalibor Topi
 signi�
antlyimproved our memory management module and 
ontributed to the implementation of redu
tion rules andChristian Theobalt wrote a whole bun
h of do
umentation support s
ripts and mastered the 
hallenge toport SPASS to the Windows world. As a prerequisite he developed a neat graphi
al user interfa
e. BijanAfshordel 
ontributed to redu
tions on the formula level and programmed the atom de�nition module,Uwe Brahm was indispensable for putting SPASS on the Web and Christof Brinker added the most re
entdevelopment, the dete
tion and deletion of non-synta
ti
 tautologies. Thanks to all of them.Finally, I'm indebted to Thomas Hillenbrand, Enno Keen, Andreas Nonnengart and Andrei Voronkovfor many 
omments on this 
hapter that lead to signi�
ant improvements.
10Ef�
ient Automated Reasoning Library
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Chapter 3dfg2dfg3.1 Introdu
tionThe tool dfg2dfg allows the user to 
al
ulate some approximation of a 
lause set. It is named dfg2dfgbe
ause it �rst reads 
lauses from an input �le in DFG syntax [1℄. It then 
al
ulates some approximationof the 
lause set depending on 
ommand line options. Finally it writes the approximated 
lause set in DFGsyntax to a �le.3.2 Synopsisdfg2dfg [-horn℄ [-monadi
℄ [-linear℄ [-shallow℄ infile [outfile℄If neither infile nor outfile are given, dfg2dfg reads from standard input and writes to standard output. Ifone �le name is given, it reads from that �le and writes the output to standard output. If more than one �le name isgiven, dfg2dfg reads from the �rst �le and writes to the se
ond.The following se
tions des
ribe the effe
ts of the 
ommand line options. We are using a notation similar to thenotation of redu
tion rules [2℄: � k �! �	1 k �1 ! �1...	n k �n ! �nSu
h a rule is applied to a 
lause set P by sele
ting a 
lause � k � ! � from P and repla
ing it by the 
lauses	i k �i ! �i. A transformation is 
al
ulated by re
ursively applying the 
orresponding rule. The 
al
ulation stopswhen the rule isn't appli
able to any 
lause from the 
lause set.3.3 Transforming a 
lause to a Horn 
lauseThis transformation is enabled with the -horn 
ommand line option. The rule is� k �! E1; : : : ; En� k �! E1...� k �! Enwhere n � 2 and E1; : : : ; En are equality or non-equality literals.3.4 Transformation to monadi
 literalsThe following two transformations are enabled with the -monadi
 
ommand line option. They transform non-monadi
 non-equality literals into monadi
 literals. Note that equality literals are not transformed.45



46 CHAPTER 3. DFG2DFG3.4.1 Transformation by term en
odingThis transformation is enabled with the option -monadi
, whi
h is equivalent to -monadi
=1. It is des
ribed bythe rule � k �! P (t1; : : : ; tn); �� k �! T (p(t1; : : : ; tn)); �where p is a new fun
tion 
orresponding to the predi
ate P and T is a spe
ial predi
ate. All o

urren
es of P in the
lause set are transformed into the same fun
tion p. Constraint and ante
edent literals are transformed in a similar way.This approximation is equivalen
e preserving.3.4.2 Transformation by proje
tionThis transformation is enabled with the option -monadi
=2. It is des
ribed by the two rules� k P (t1; : : : ; tn); �! �� k P1(t1); : : : ; Pn(tn); �! � � k �! P (t1; : : : ; tn); �� k �! P1(t1); �...� k �! Pn(tn); �where P1; : : : ; Pn are some new predi
ates. All o

urren
es of P in the 
lause set are transformed into the samepredi
ates P1; : : : ; Pn. Constraint literals are transformed similar to ante
edent literals.3.5 The linear approximation of a 
lauseA term is 
alled linear, if it 
ontains no repeated variables. This transformation generates the linear approximation ofa 
lause with monadi
 literals by repla
ing a variable x repeated within the su

edent by some new variable x0. Notethat the transformation isn't appli
able to 
lauses 
ontaining equality or non-monadi
 literals. This transformation isenabled with the -linear option. It is des
ribed by the rule� k �! A[x℄p; B[x℄q; ��0�; � k �0�; �! A; B[q=x0℄; �where (i) all literals are monadi
, (ii) A 6= B or p 6= q, (iii) x0 is a new variable, (iv) � = fx ! x0g, (v) �0 = fL 2� j x 2 vars(L)g and (vi) �0 = fL 2 � j x 2 vars(L)g.3.6 The shallow approximation of a 
lauseWe implemented three kinds of transformations with different requirements for the input 
lause and different output
lauses. The transformations are enabled with the -shallow option. Note that the rules aren't appli
able to non-horn
lauses.3.6.1 The stri
t versionThis transformation is enabled with the -shallow option, whi
h is equivalent to -shallow=1. It is des
ribed bythe rule � k �! P (t[s℄p1)S(x); �1 k �1 ! P (t[p1; : : : ; pn=x℄)�2 k �2 ! S(s)where (i) all literals are monadi
 and all terms in �, � are variables, (ii) s is a 
omplex term at non-top position p in t,(iii) vars(s)\ vars(P (t[p1; : : : ; pn=
℄)) = ;, where 
 is an arbitrary 
onstant and p1; : : : ; pn are all positions of s in t,(iv) x is a new variable and S is a new predi
ate, (v) �1 and �2 are a partition of �, with �2 = fL 2 � j vars(L) �vars(s)g and (vi) �1 and �2 are a partition of �, with �2 = fL 2 � j vars(L) � vars(s)g. Note that all o

urren
esof s in t are repla
ed simultaneously. This transformation is equivalen
e preserving with respe
t to the extension of Pin the minimal model.3.6.2 A more relaxed versionThis version uses the same rule as the stri
t version, but 
ondition (iii) is omitted. This results in an upper approximationof P . This transformation is enabled with the -shallow=2 option.



3.7. COMBINING SEVERAL TRANSFORMATIONS 473.6.3 The least restri
ted versionThis transformation is enabled with the -shallow=3 option. It uses the rule� k �! P (t[s℄p1)S(x); � k �! P (t[p1; : : : ; pn=x℄)� k �! S(s)where (i) all literals are monadi
, (ii) s is a 
omplex term at non-top position p1 in t and p1; : : : ; pn refer to all positionsof s in t and (iii) x is a new variable and S is a new predi
ate. Note that � and � may 
ontain non-variable terms andthat s and t[p1; : : : ; pn=
℄ (where 
 is an arbitrary 
onstant) may share variables. In 
ontrast to the other two versionsall negative literals are 
opied into all resulting 
lauses. This transformation is an upper approximation of P .3.7 Combining several transformationsIt is possible to 
ombine several of the transformations des
ribed above. However, transformations from the se
tions3.4 or 3.6 aren't 
ombinable with other transformations from the same se
tion, be
ause they have the same goal. Butfor the other transformations the order of their appli
ation be
omes important if several transformations are 
ombined.For example a transformation to monadi
 literals should be applied before the linear transformation be
ause the latterrequires monadi
 literals. If the transformations are applied in this order it might be possible to apply the se
ondtransformation more often. dfg2dfg therefore applies the transformations in the same order as the order of theirdes
ription in this paper. That means transformations are applied in the following order:1. transformation to horn 
lauses2. transformation to monadi
 literals3. linear transformation4. shallow transformation.The shallow transformation is applied last be
ause it has the most pre
onditions.
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Chapter 4EML Logi
 Features4.1 Introdu
tionThis 
hapter des
ribes the features and fa
ilities for supporting automated reasoning in a large 
lass ofrelated logi
s whi
h we refer to as EML logi
s (short for extended modal logi
s). Support for EML logi
swas implemented from 1998 onwards in the MSPASS theorem prover [11, 13, 20℄ as an extension ofSPASS 1.0. This 
ode has been integrated and upgraded with respe
t to SPASS 3.0 (and FLOTTER 3.0) sothat support for modal, relational and des
ription logi
 reasoning is now immediately available to SPASSusers (as had been planned from the outset) and the latest SPASS te
hnology is immediately available toMSPASS users.EML logi
s in
lude (traditional) propositional modal logi
s su
h as K(m), KD(m), KT4(m) et
., whi
hplay an important role e.g. in the spe
i�
ation of multi-agent systems. EML logi
s also in
lude dynami
modal logi
s [22℄ whi
h are PDL-like modal logi
s in whi
h the modal operators are parameterized byrelational formulas. These 
an be used to formalize dynami
 notions su
h as a
tions or programs and areuseful in linguisti
 or AI appli
ations. Examples of dynami
 modal logi
s are Boolean modal logi
, tenselogi
, information logi
s, logi
s expressing ina

essibility and suf�
ien
y, Peir
e logi
, as well as a large
lass of des
ription logi
s. The EML 
lass further in
ludes relational logi
s, i.e. logi
al versions of Tarski'srelation algebras. The strongest dynami
 modal logi
 that the prover supports is Peir
e logi
 [22, 23℄ orequivalent logi
s. SPASS handles these logi
s by translation to �rst-order logi
.With the EML fa
ilities SPASS supports the following kind of reasoning for EML logi
s.1. For dynami
 modal logi
s and relational logi
s: non-logi
al axioms, modal operators 
hara
ter-ized by any �rst-order frame 
orresponden
e properties, relational symbols satisfying any �rst-orderproperties, spe
i�
ation of 
on
rete worlds as 
onstants, (�rst-order) relationships between 
on
reteworlds, spe
i�
ations of frames and models.2. For des
ription logi
s: the 
orresponding features, in
luding terminologi
al axioms, TBox and RBoxstatements, and ABox statements for 
on
ept and role expressions.Be
ause SPASS is a �rst-order resolution prover its 
apabilities as a modal, relational or des
riptionlogi
 prover are very different and more varied than those of other provers for these logi
s. It is possibleto use SPASS as a de
ision pro
edure for a large 
lass of EML logi
s. For instan
e, it de
ides extensionsof Boolean modal logi
 with 
onverse, domain/range restri
tion, and positive o

urren
es of 
omposition,and the 
orresponding des
ription logi
s, i.e. extensions ofALB with positive o

urren
es of 
omposition.SPASS is a de
ision pro
edure for many solvable �rst-order fragments in
luding the guarded fragment,Maslov's 
lass K, �rst-order logi
 in two variables, the 
lausal 
lass DL�, and many de
idable quanti�erpre�x 
lasses. No other (spe
ial-purpose) prover 
urrently de
ides these logi
s. Using the features ofSPASS it possible to approximate the behaviour of modal and des
ription logi
 tableau provers with SPASS.Additionally, SPASS 
an be used as a model �nder. For details and referen
es please 
onsult the surveypapers [12, 22℄ (see also [4, 8, 21℄). 51



52 CHAPTER 4. EML LOGIC FEATURESIn the following we assume terminology and notation of dynami
 modal logi
 and Peir
e logi
 asdes
ribed in [22℄. We do not dis
uss des
ription logi
s and relational logi
s separately be
ause1. des
ription logi
s and dynami
 modal logi
s 
an be viewed as synta
ti
 variants of ea
h other, and2. dynami
 modal logi
s 
an be viewed as two-sorted 
ombinations of relational logi
s and proposi-tional logi
 and therefore 
ater also for relational logi
s.4.2 Dynami
 modal logi
sThis se
tion de�nes the 
lass of dynami
 modal logi
s [22℄ in whi
h Peir
e logi
 is the strongest logi
 andthe basi
 multi-modal logi
K(m)is the weakest logi
. Peir
e logi
 is a logi
al formalisation of representablePeir
e algebras [14, 23℄ and is 
losely related to de Rijke's dynami
 modal logi
 [5℄.Formally, Peir
e logi
 is the modal logi
 de�ned over relations whi
h form a relation algebra. Thelanguage of Peir
e logi
 
onsists of two synta
ti
 types: dynami
 modal formulas and relational formulas.The logi
al 
onne
tives are1. the 
onne
tives of the modal logi
 K(m), with the differen
e that the modal operators are indexedwith relational formulas, instead of just numbers,2. the standard 
onne
tives of relational logi
s, namely: ; (
omposition), ` (
onverse), id (identity),and3. a left 
ylindri�
ation operator 
.Instead of the left 
ylindri�
ation operator one 
ould have 
hosen the test operator of PDL, domain restri
-tion, range restri
tion, or 
ross produ
t, 
f. [3℄; the symbol id is a logi
al 
onstant whi
h is interpreted asthe identity relation. Given 
ountably many propositional variables denoted by pj , and 
ountably many re-lational variables, denoted by ri, dynami
 modal formulas and relational formulas are generated a

ordingto the following produ
tion rules. � �! pj j :� j � ^ � j [�℄�Dynami
 modal formulas: � �! rj j :� j � ^ � j � ;� j �` j id j �
Relational formulas:are de�ned indu
tively as follows.We de�ne the set of formulas of Peir
e logi
 to be the set of dynami
 modal formulas. The de�nition in[23℄ allows also relational formulas as �rst-
lass 
itizens, but these 
an be expressed in terms of dynami
modal formulas (see below). This variation in the de�nition is thus in
onsequential.The semanti
s of Peir
e logi
 is de�ned in terms of frames, where a frame is a tuple (W;R) of a non-empty setW (of worlds) and a mapping R from relational formulas to binary relations overW satisfying:R:� =W 2nR�R�^� = R� \ R�R� ;� = R� ;R�R�` = R�̀Rid = IdWR�
 = f(x; y) 2W 2 jx 2 v(�)g:Here and in the rest of the paper we prefer to use the notationR� instead ofR(�). IdW denotes the identityrelation on the set W , while R` denotes the 
onverse (or inverse) of a relation R. A model is now givenby a tripleM = (W;R; v), where (W;R) is a frame and v is a mapping from propositional variables to



4.3. OVERVIEW OF EML INPUT SPECIFICATIONS 53subsets ofW satisfying:M; x j= p iff x 2 v(p)M; x j= :� iffM; x 6j= �M; x j= � ^  iff bothM; x j= � andM; x j=  M; x j= [�℄� iff (x; y) 2 R� impliesM; y j= �; for any y 2 WIfM; x j= ' holds then we say ' is true at x inM and thatM satis�es '. A modal formula' is satis�ableiff there exists a modelM and a world x inM su
h thatM; x j= '. A modal formula is valid in a frameiff it is valid in all models based on the frame.We 
an de�ne numerous other 
onne
tives in Peir
e logi
. For example:� y� =def :((:�) ; (:�))Relational sum: ��� =def � ^ �
Domain restri
tion: ��� =def (�`��)`Range restri
tion: �? =def id ^ �
Test: [>℄� =def [r _ :r℄� where r denotes some relational variableUniversal modality:Relational formulas as `independent' formulas are impli
it in all dynami
 modal logi
s with relationalnegation and relational 
onjun
tion or disjun
tion. For example, impli
ation between relational formulas
an be de�ned by (� � �) =def > � [� ^ :�℄?:Then it is also possible to spe
ify properties of the underlying a

essibility relations. Figure 4.1 gives someproperties of the a

essibility relation asso
iated with r whi
h 
an be spe
i�ed by relational formulas inPeir
e logi
. In the �gure the relational operators are assumed to have higher priority than �.Property of Rr Relational formula Property of Rr Relational formulare�exivity id � r transitivity r ; r � rsymmetry r � r` fun
tionality r` ; r � idseriality > � r ;> or > � hri> Eu
lideanness r ; r` � rFigure 4.1: Relational properties expressed as relational formulas.The basi
 multi-modal logi
 K(m)is the redu
t of Peir
e logi
 in whi
h relational formulas are limitedto m relational variables rj . Dynami
 modal logi
s are de�ned over the language of K(m)but in
lude inaddition to the operators of K(m)and relational variables also �nitely many relational operators ?1; : : : ; ?k.We assume that these relational operators are de�nable in terms of the operators of Peir
e logi
. A logi
K(m)(?1; : : : ; ?k) is then de�ned to be the multi-modal logi
 de�ned over relations 
losed under the set-theoreti
 operations 
orresponding to the relational operators ?1; : : : ; ?k. The 
lass of dynami
 modallogi
s forms therefore a latti
e in whi
h K(m)is the weakest logi
 and every other logi
 is obtained byenhan
ing the language with one or more relational operators ?i. Clearly some of the logi
s in this latti
eare expressively equivalent. Peir
e logi
 is equivalent to the top element in the latti
e. Tense logi
 
oin-
ides with the logi
 K(m)(`), Boolean modal logi
 
oin
ides with K(m)(:;^), and the des
ription logi
ALB [10℄ 
oin
ides with K(m)(:;^;`; �).4.3 Overview of EML input spe
i�
ationsThe dfg input language of SPASS was extended to support the input of EML problems without 
hangingthe syntax for formulas in �rst-order logi
 or 
lause form. EML problems are spe
i�ed with new, spe
ialtypes of formulas using list_of_spe
ial_formulas(axioms,EML)



54 CHAPTER 4. EML LOGIC FEATURESfor axioms and list_of_spe
ial_formulas(
onje
tures,EML)for 
onje
tures. Currently the only 
lass of spe
ial formulas are EML formulas. EML formulas in
lude �rst-order formulas, Boolean type formulas and relational type formulas. First-order formulas are spe
i�ed withformula using the familiar dfg syntax. Boolean type formulas are spe
i�ed with eitherprop_formula or 
on
ept_formula,and relational formulas with eitherrel_formula or role_formula.Boolean and relational type formulas 
an be 
onstru
ted using 
ommon modal, relational and des
rip-tion logi
 operators. The pre-de�ned logi
al operators in
lude the following.� The standard Boolean operators (for all three types of formulas): true, false, not, and, or,implies (subsumed by), implied (subsumes), and equiv. These operators have different se-manti
s depending on the type of formulas they 
ombine.� Multi-modal operators with atomi
 or 
omplex relational arguments: dia and box (synonyms aresome and all), as well as domain and range.� Additional relational operators: 
omp (
omposition), sum (relational sum), 
onv (
onverse), id(the identity relation), and div (the diversity relation).� test (test), domrestr (domain restri
tion) and ranrestr (range restri
tion).Apart from their usual interpretation in propositional logi
 and �rst-order logi
, the (nullary) operatorstrue and false may also be used as Boolean or relational formulas. true used as a Boolean type,resp. relational type, represents the universal set, the universal (binary) relation, or truth in �rst-order logi
.Similarly, false represents either, the empty set, the empty relation or falsum.We give three examples of EML formulas, two Boolean type formulas and one relational type formula.prop_formula( implies(box(bel1,p), box(know1,box(bel1,p))) ).(4.1) 
on
ept_formula( implies(expert_AR,(4.2) not(some(not(has_studied),proof_methods))) ).rel_formula( implies(
omp(r,r), r) ).(4.3)(4.1) is an example from modal logi
 and says that if agent 1 believes p then it knows that it believes p,i.e. it is aware that it believes p. The example (4.2) is a des
ription logi
 example; it says that an expertin automated reasoning is someone who has studied every proof method. This kind of example 
annot behandled by 
urrent tableau-based des
ription logi
 provers be
ause it requires negation of roles. (4.3) isthe way to express transitivity of a relation in relational logi
 (or in des
ription logi
s).Boolean- and relational-type atomi
 formulas must be de
lared as nullary predi
ates in the de
larationse
tion of the input �le (be
ause the supported EML logi
s are propositional non-
lassi
al logi
s de�nedover languages free of �rst-order variables).For EML problems it is sometimes useful to spe
ify the �rst-order predi
ate symbols to whi
h thenullary Boolean and relational predi
ate symbols are mapped. This 
an be done with a new kind of de
la-ration statement. For example, translpairs(p,Qp)
auses the nullary symbol p to be translated to a �rst-order predi
ate symbol with the name Qp. Qp shouldbe de
lared as a unary (resp. binary) predi
ate symbol if p is a Boolean (resp. relational) symbol.The new extended dfg is suf�
ient to support the following.



4.4. TRANSLATION MAPPINGS 55� For dynami
 modal logi
s and relational logi
s: non-logi
al axioms, modal operators 
hara
terisedby any �rst-order frame 
orresponden
e properties, relational symbols satisfying any �rst-orderproperties, spe
i�
ation of 
on
rete worlds as 
onstants, (�rst-order) relationships between 
on
reteworlds, spe
i�
ations of frames and models.� For des
ription logi
s: the 
orresponding features, in
luding terminologi
al axioms, TBox and RBoxstatements, ABox statements for 
on
ept and role expressions,A more detailed, formal spe
i�
ation of the input language with examples of input �les in the extendeddfg format 
an be found in [24℄.4.4 Translation mappingsBoolean and relational type formulas are translated into �rst-order formulas using one of numerous trans-lation methods. Table 4.1 summarizes the implemented translation methods.Translation method Optionsrelational translation -EMLTranslation=0 (default)(monadi
) fun
tional translation -EMLTranslation=1polyadi
 fun
tional translation -EMLTranslation=1 -EMLFun
Nary=1(monadi
) optimized fun
tional translation -EMLTranslation=2polyadi
 optimized fun
tional translation -EMLTranslation=2 -EMLFun
Nary=1semi-fun
tional translation -EMLTranslation=3relational-fun
tional translation -EMLTranslation=0 -EMLFun
Nary=1relational-relational translation -EML2Rel=1 [-EMLTranslation=0℄Table 4.1: Available translation methodsThe different translation methods are based on �rst-order en
odings of the different ways of de�n-ing the semanti
s of the logi
s. The basis for the relational translation, or standard translation, methodis the standard set-theoreti
 semanti
s of EML logi
s. It is implemented for all Boolean and relationalEML formulas. The basis for the different fun
tional translations is the fun
tional semanti
s of traditionalmodal logi
s. The optimized fun
tional translations are obtained from the fun
tional translations by a non-standard quanti�er ex
hange operation, whi
h is implemented by repla
ing non-
onstant Skolem termsby Skolem 
onstants. The polyadi
 fun
tional translation methods are variations of fun
tional translationmethods and differ in the way they en
ode world paths (transition sequen
es). The polyadi
 translationsavoid the use of an extra fun
tion symbol by using n-ary predi
ates of different arities. The semi-fun
tionaltranslation approa
h is a mixture of the relational and fun
tional translation approa
hes. It translatesbox modalities in the standard relational way, while diamond modalities are translated fun
tionally. Therelational-fun
tional translation method, or tree-layered relational translation, is a variation of the rela-tional translation spe
ialized for the basi
 modal logi
 K(m). The relational-relational translation 
onvertsBoolean EML formulas into the relational formulas via a 
ylindri�
ation operation. All translation methodsare sound and 
omplete for the logi
s they are implemented for and have linear time 
omplexity.The transformation of non-�rst-order EML formulas into �rst-order logi
 
an be spe
i�ed with the-EMLTranslation option. Unless output is disabled, the prover outputs the translated formulas usingthe indi
ators as spe
i�ed in Table 4.2.The different transformation mappings are des
ribed in more detail in the following se
tions. Therelational translation, the relational-fun
tional translation and the relational-relational translation are 
ol-le
tively referred to as relational translation mappings and are dis
ussed in Se
tions 4.4.1, 4.4.7, and4.4.8. The monadi
 and polyadi
, optimised and non-optimised fun
tional translations and the semi-fun
tional translation are 
olle
tively referred to as fun
tional translation mappings and are dis
ussedin Se
tions 4.4.2�4.4.6.



56 CHAPTER 4. EML LOGIC FEATURESTranslation method Output indi
atorrelational translation RelTr(monadi
) fun
tional translation Fun
Trpolyadi
 fun
tional translation Fun
FTr(monadi
) optimised fun
tional translation (Fun
Tr)polyadi
 optimised fun
tional translation (Fun
FTr)semi-fun
tional translation SemiFun
Trrelational-fun
tional translation RelFun
Trrelational-relational translation RelTable 4.2: Translation output indi
ators4.4.1 Standard relational translation methodThe standard relation translation is enabled by -EMLTranslation=0. This is the default setting for-EMLTranslation. It is implemented for all EML formulas. It maps formulas into fragments of �rst-order logi
 de�ned over unary and binary symbols [12, 22℄. These are uninterpreted unless properties havebeen spe
i�ed in the input �le.The relational translation is determined by the usual Kripke semanti
s. For instan
e, the standardrelational translation of Peir
e logi
 into �rst-order logi
 is spe
i�ed by the following.For dynami
 modal formulas: �r(p; x) = Qp(x)�r(:�; x) = :�r(�; x)�r(� ^  ; x) = �r(�; x) ^ �r( ; x)�r([�℄�; x) = 8y (�r(�; x; y) � �r(�; y))For relational formulas: �r(r; x; y) = Qr(x; y)�r(:�; x; y) = :�r(�; x; y)�r(� ^ �; x; y) = �r(�; x; y) ^ �r(�; x; y)�r(�`; x; y) = �r(�; y; x)�r(� ;�; x; y) = 9z (�r(�; x; z) ^ �r(�; z; y))�r(�
; x; y) = �r(�; x)�r(id; x; y) = x � yQp, respe
tively Qr, denote a unary, respe
tively binary, predi
ate symbol uniquely asso
iated with thepropositional symbol p, respe
tively the relational symbol r.Let L be a logi
 in the latti
e of dynami
 modal logi
s and let � be a (possibly empty) set of �rst-orderrelational frame properties. Then we have that, for any formula ',1. �r('; x) 
an be 
omputed in linear time, and2. ' is satis�able in L with respe
t to � iff � ^ 9x�r('; x) is �rst-order satis�able [22℄.4.4.2 (Monadi
) Fun
tional translation methodThe (monadi
) fun
tional translation method is enabled by -EMLTranslation=1. It is implemented forthe basi
 multi-modal logi
 K(m)possibly with serial (total) modalities (-EMLTheory=1), plus frames(atom stru
tures) and models, and non-logi
al axioms. The 
orresponding de
ription logi
s are ALCwith 
on
ept ABox statements (
on
ept and role assertions) and TBox statements (general in
lusion andequivalen
e axioms), and total roles.



4.4. TRANSLATION MAPPINGS 57The fun
tional translation transforms modal formulas into a fragment of monadi
 many-sorted �rst-order logi
. The sorts are: SW for the set of worldsW , Si for ea
h modality2i in the logi
. For ea
h i thereis a binary, left-asso
iative fun
tion [�; �℄i of sort SW � Si ! W . There are spe
ial unary predi
ates ndeiof sort SW representing subsets of W . Ea
h propositional variable p is uniquely asso
iated with a unarypredi
ate symbols Qp of sort SW . The (monadi
) optimised fun
tional translation �f is de�ned by:�f (p; s) = Qp(s)�f (:'; s) = :�f ('; s)�f (' ^  ; s) = �of ('; s) ^ �f ( ; s)�f (2i'; s) = 8y:Si(ndei(s) � �f ('; [s y:Si℄i))If 2i is a D modality then �f is given by the following.�f (2i'; s) = 8y:Si�f ('; [s y:Si℄i)The symbol s denotes a path and y:Si denotes a variable of sort Si. The intuition of the term [s y:Si℄i isthat it represents an i-su

essor world whi
h is rea
hed via the path s to its prede
essor world followed bya y transition of type Si. This means [s y:Si℄i represents both a world and the path via whi
h it is rea
hedfrom the initial world. The intuition of ndei(s) is that the world represented by s is not a dead-end.The following holds: A modal formula ' is satis�able in K(m) or KD(m) iff 9x�of ('; x:SW ) is �rst-order satis�able [2, 6, 16, 19℄.In the prover the [�; �℄i fun
tion is implemented by the appl fun
tion and the ndei predi
ates areimplemented as uninterpreted spe
ial unary nde predi
ates. There is 
urrently no support for spe
i�yingadditional properties for the nde predi
ates. Similarly for the other fun
tional translations.4.4.3 Polyadi
 fun
tional translation methodThe polyadi
 fun
tional translation method is enabled by -EMLTranslation=1 -EMLFun
Nary=1.The polyadi
 fun
tional translation methods are variations of fun
tional translation methods. Instead ofusing the [�; �℄i (or appl) fun
tions, and unary predi
ates, to en
ode truth in world paths, k-ary predi-
ates are used. The polyadi
 fun
tional translation method is implemented for the basi
 multi-modal logi
K(m)possibly with D modalities.The k-ary predi
ate symbols are Qp;� and ndei;� where p denotes a propositional symbol, and � is asequen
e of length k of natural numbers. We use x to denote a sequen
e of variables x1; : : : ; xk , and wedenote by `�' and `:' the empty sequen
e and the 
on
atenation operation on sequen
es, respe
tively. Thenthe polyadi
 fun
tional translation �0f is given by the following.�0f (p; x; k; �) = (Qp;� if � = � and k = 0Qp;�(x1; : : : ; xk) otherwise�0f (:'; x; k; �) = :�0f ('; x; k; �)�0f (' ^  ; x; k; �) = �0f ('; x; k; �) ^ �0f ( ; x; k; �)�0f (2i'; x; k; �) = 8xn+1 (ndei;�(x) � �0f ('; x:xk+1; k+1; �:i))In KD(m) the translation of 2i formulas is given by the following,�0f (2i'; x; k; �) = 8xn+1 �0f ('; x:xk+1; k+1; �:i)In this de�nition the variable sequen
e in the argument position two of �0f represents the world, and itspath from the initial world, where the formula in argument position one is true. The translation of a modalformula ' is given by �0f ('; �; 0; �).For any multi-modal logi
LwithK-modalities andD-modalities only, a modal formula' is satis�ablein L iff �0f ('; �; 0; �) is �rst-order satis�able [7℄. �0f embeds modal formulas into �uted logi
 [12, 18℄.



58 CHAPTER 4. EML LOGIC FEATURES4.4.4 (Monadi
) Optimised fun
tional translation methodThe (monadi
) optimised fun
tional translation method is enabled by -EMLTranslation=2. It is im-plemented for K(m), possibly with serial modalities.It is an optimisation of the fun
tional translation. A 
ru
ial differen
e is that it eliminates the depen-den
y of existentially quanti�ed �rst-order variables on universally quanti�ed �rst-order variables via anon-standard quanti�er ex
hange operator.The (monadi
) optimised fun
tional translationmaps the basi
 modal logi
K(m) to basi
 path logi
 [18℄.Basi
 path logi
 is a fragment of monadi
 many-sorted �rst-order logi
. Basi
 path logi
 has a sort SWfor the set of worlds W and a sort Si for ea
h modality 2i in the logi
. For ea
h i there is a binary,left-asso
iative fun
tion [�; �℄i of sort SW � Si ! W . There are spe
ial unary predi
ates ndei of sort SWrepresenting subsets of W . Ea
h propositional variable p is uniquely asso
iated with a unary predi
atesymbols Qp of sort SW . The (monadi
) optimised fun
tional translation �of is implemented as a two steppro
ess:1. The appli
ation of the fun
tional translation to a modal formula whi
h translates it to basi
 pathlogi
, followed by2. the appli
ation of a quanti�er ex
hange operation whi
h 
onverts the �rst-order formula obtainedfrom the fun
tional translation into prenex normal form andmoves all existential quanti�ers outwardsas far as possible (or inwards, depending on one's point of view).The following de�nes the optimised fun
tional translation obtained as a result of both steps.�of (p; s) = Qp(s)�of (:'; s) = :�of ('; s)�of (' ^  ; s) = �of ('; s) ^ �f ( ; s)�of (2i'; s) = 8y:Si(ndei(s) � �of ('; [s y:Si℄i))�of (3i'; s) = ndei(s) ^ �of ('; [s y:Si℄i)The symbol s denotes a path and y:Si denotes a variable of sort Si. The intuition of the term [s y:Si℄i isthat it represents an i-su

essor world whi
h is rea
hed via the path s to its prede
essor world followed bya y transition of type Si. This means [s y:Si℄i represents both a world and the path via whi
h it is rea
hedfrom the initial world. The in
lusion of a spe
i�
ation for diamond formulas in the above de�nition isintentional and so is the omission of the quanti�ers. The optimised fun
tional translation of a modalformula ' is given by �of ('; x:SW ), where x:SW is an arbitrary variable of sort SW , and x:SW as well asthe y:Si from �of (3i'; s), are free variables whi
h are impli
itly existentially quanti�ed.In KD(m) the translation of 2i and3i formulas is given by:�of (2i'; s) = 8y:Si�of ('; [s y:Si℄i)�of (3i'; s) = �of ('; [s y:Si℄i):The following holds: A modal formula ' is satis�able in K(m) or KD(m) iff 9xy �of ('; x:SW ) is�rst-order satis�able [17, 18℄.4.4.5 Polyadi
 optimised fun
tional translation methodThe setting -EMLTranslation=2 -EMLFun
Nary=1 uses the optimised version of the polyadi
fun
tional translation.



4.4. TRANSLATION MAPPINGS 59The following spe
i�es the polyadi
 optimised fun
tional translation �0of .�0of (p; x; k; �) = (Qp;� if � = � and k = 0Qp;�(x1; : : : ; xk) otherwise�0of (:'; x; k; �) = :�0of ('; x; k; �)�0of (' ^  ; x; k; �) = �0of ('; x; k; �) ^ �0of ( ; x; k; �)�0of (2i'; x; k; �) = 8xn+1 (ndei;�(x) � �0of ('; x:xk+1; k+1; �:i))�0of (3i'; x; k; �) = ndei;�(x) ^ �0of ('; x:xk+1; k+1; �:i)In KD(m) the translation of 2i and3i formulas is given by:�0of (2i'; x; k; �) = 8xn+1 �0of ('; x:xk+1; k+1; �:i)�0of (3i'; x; k; �) = �0of ('; x:xk+1; k+1; �:i):The translation of a modal formula ' is given by �0of ('; �; 0; �).For any multi-modal logi
LwithK-modalities andD-modalities only, a modal formula' is satis�ablein L iff 9x�0of ('; �; 0; �) is �rst-order satis�able [9, 17℄. �0of embeds modal formulas into the Bernays-S
hön�nkel 
lass, the 
lass of 9�8� pre�x quanti�er formulas [9℄.4.4.6 Semi-fun
tional translation methodThe semi-fun
tional translation method is enabled by -EMLTranslation=3. It is de�ned for numer-ous traditional-style modal logi
s [15℄, but is implemented only for the basi
 multi-modal logi
 K(m)andKD(m) (-EMLTheory=1), plus frames (atom stru
tures) and models, and non-logi
al axioms. The 
orre-sponding de
ription logi
s areALC with 
on
ept ABox statements (
on
ept and role assertions) and TBoxstatements (general in
lusion and equivalen
e axioms), and total roles.The semi-fun
tional translation maps modal formulas to many-sorted �rst-order formulas. We distin-guish between the sortsW and AF for worlds and a

essibility fun
tions. Unary predi
ate symbols havesortW , the binary predi
ate symbol R asso
iated with the a

essibility relation has sortW �W , the 
on-stant symbol � has sort W , and the binary (left-asso
iative) fun
tion [�; �℄ has sort W � AF ! W . Thenthe semi-fun
tional translation �sf is de�ned as follows.�sf (p; s) = Qp(s)�sf (: ; s) = :�sf ( ; s)�sf (� ^  ; s) = �sf (�; s) ^ �sf ( ; s)�sf (2 ; s) = 8y(R(s; y) � �sf ( ; y))�sf (3 ; s) = nde(s) ^ 9��sf ( ; [s�℄)[15℄ proves the following: A modal formula ' in negation normal form is satis�able in K(m)iff �sf ('; �)is satis�able. And, a modal formula ' in negation normal form is satis�able in KD(m) iff �sf ('; �) ^8x8�(nde(x) ^ R(x; [x�℄)) is satis�able.4.4.7 Relational-fun
tional translation methodThe settings -EMLTranslation=0 -EMLFun
Nary=1 enable the relational-fun
tional translationmethod. This translation is implemented for multi-modal K(m).The relational-fun
tional translation method was introdu
ed as the tree-layered relational translationmethod in [1℄. It is a variation of the relational translation spe
ialised for the basi
 modal logi
 K(m)butthere is also a 
lose 
onne
tion to the (optimised) fun
tional translation [22℄.



60 CHAPTER 4. EML LOGIC FEATURESThe relational-fun
tional translation �rf is spe
i�ed by the following.�rf (p; x; �) = Qp;�(x)�rf (:'; x; �) = :�rf ('; x; �)�rf (' ^  ; x; �) = �rf ('; x; �) ^ �rf ( ; x; �)�rf (2i'; x; �) = 8y (R�;i(x; y) � �rf ('; y; �:i))� denotes a sequen
e of natural numbers of length k, � denotes the empty sequen
e, and `:' is the 
on
ate-nation operation on sequen
es.We have that a modal formula ' is satis�able in K(m) iff �rf ('; x; �) is �rst-order satis�able [1℄.4.4.8 Relational-relational translation methodIf the option -EML2Rel=1 is used, dynami
 modal formulas are embedded into the relational 
al
ulus.The option is disabled by default. It 
an be 
ombined only with the relational translation to �rst-orderlogi
, option -EMLTranslation=0, whi
h is the default. The translation is spe
i�ed by the followingand the obvious extension to all other operators of the language.For dynami
 modal formulas: �rr(p) = p ;>�rr(:�) = :�rr(�)�rr(� ^  ) = �rr(�) ^ �rr( )�rr([�℄�) = :(�rr(�) ;:�rr(�))�rr(h�i�) = �rr(�) ; �rr(�)For relational formulas with relational operators �rr is a homomorphism, and:�rr(�?) = �rr(�) ^ id�rr(���) = �rr(�) ^ �rr(�)�rr(���) = �rr(�) ^ �rr(�)`The de�nition amounts to a redu
tion of Boolean type formulas via a 
ylindri�
ation operation (whi
hmaps Boolean type formulas to right-ideal relations). There are other ways of embedding dynami
 modallogi
 into the relational 
al
ulus, 
f. [3℄.4.5 Ba
kground theoriesThe -EMLTheory option 
an be used to add 
ertain relational properties to the ba
kground theory, and
an in parti
ular be used to add the frame 
orresponden
e properties for all modalities.1. -EMLTheory=1 for D = 2ip � 3ip.When the relational translation is used, it adds the seriality 
ondition for every non-equality binarypredi
ate symbol. For the fun
tional, optimised fun
tional and semi-fun
tional translation methods,it simpli�es the translation of 2 and3 subformulas.2. -EMLTheory=2 for T = 2ip � p.When the relational translation is used, it adds the re�exivity 
ondition for every non-equality binarypredi
ate symbol. Not implemented for any of the fun
tional translations.3. -EMLTheory=3 for B = 3i2ip � p.When the relational translation is used, it adds the symmetry 
ondition for every non-equality binarypredi
ate symbol. Not implemented for any of the fun
tional translations.4. -EMLTheory=4 for 4 = 2ip � 2i2ip.When the relational translation is used, it adds the transitivity 
ondition for every non-equality binarypredi
ate symbol. Not implemented for any of the fun
tional translations.



4.6. ADDITIONAL OPTIONS 615. -EMLTheory=5 for 5 = 3i2ip � 2ip.When the relational translation is used, it adds the Eu
lideanness 
ondition for every non-equalitybinary predi
ate symbol. Not implemented for any of the fun
tional translations.6. -EMLTheory=6 for S4 axioms, i.e. T and 4.When the relational translation is used, it adds re�exivity and transitivity for every non-equalitybinary predi
ate symbol. Not implemented for any of the fun
tional translations.7. -EMLTheory=7 for S5 axioms, in parti
ular, T, B and 4.When the relational translation is used, it adds re�exivity, transitivity and symmetry for every non-equality binary predi
ate symbol. Not implemented for any of the fun
tional translations.4.6 Additional optionsThere are various additional EML options.4.6.1 Path representationsThe main purpose of the option -EMLFun
Nary is to vary the way paths are en
odedwhen the fun
tionaltranslations are used. With -EMLFun
Nary=1 enabled the polyadi
 versions of the fun
tional transla-tions is used. The option 
an be 
ombined with the fun
tional translation and the optimised fun
tionaltranslation, but also the relational translation, see Se
tions 4.4.3, 4.4.5 and 4.4.7 above. This option isswit
hed off by default.4.6.2 Dead-end predi
atesWhen a fun
tional translation is used, the option -EMLFun
NdeQ=1 pla
es the ndei literals outside thes
ope of the quanti�ers. For example, for the fun
tional translation2i formulas are translated a

ording to�f (2i'; s) = ndei(s) � 8y:Si �f ('; [s y:Si℄i)rather than �f (2i'; s) = 8y:Si(ndei(s) � �f ('; [s y:Si℄i)):The pattern used is `ndei literal followed by quanti�er' rather than `quanti�er followed by ndei literal'.The translation for 3i formulas and the other fun
tional translations is de�ned similarly. Enabling thisoption is only meaningful together with a fun
tional translation method. The default is enabled.4.6.3 SortsWhen enabled the option -EMLFFSorts=1 uses expli
it sorts in the translation rather than en
odingthe information into predi
ate names. Enabling this option is only meaningful together with a fun
tionaltranslation method. By default this option is disabled.4.6.4 Eliminating 
ompositionWhen enabled the option -EMLElimComp=1 attempts to eliminate 
omposition using these repla
ementrules. h� ;�i�h�ih�i� [� ;�℄�[�℄[�℄�By default this option is disabled.
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hanging quanti�ersWhen enabled, the option -QuantEx
h=1 repla
es non-
onstant Skolem terms in the 
lausal form ofthe 
onje
ture are repla
ed by 
onstants. The option is automati
ally set for the optimised fun
tionaltranslation methods (-EMLTranslation=2). The option is not limited to EML logi
s. It 
an also beused for 
lassi
al formulas and 
lauses. By default this option is disabled.4.7 Combinations of optionsTable 4.3 summarises the 
ombinations of options whi
h are meaningful.Relational translations Fun
tional translationsEMLTranslation 0 EMLTranslation 1, 2, 3EMLTheory 0, 1, 2, 3, 4, 5, 6, 7 EMLTheory 0, 1, 2, 3, 4, 5, 6, 7EMLFun
Nary 0, 1 EMLFun
Nary 0, 1EMLFun
NdeQ 0, 1EMLFFSorts 0, 1EMLElimComp 0, 1 EMLElimComp 0, 1EML2Rel 0, 1Table 4.3: Meaningful 
ombinations of options
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