The Spass Handbook

Contents

1 Foundations

2 SPASS
2.1 What This Chapter is (not) About
2.2 AFirstSimple Prover
2.3 Inference and ReductionRules oL
2.3.1 Reduction Orderings e
232 SOTS . . . e e
2.3.3 InferenceRules
2.3.4 ReductionRules
2.3.5 Splitting L
2.4 Global Design Decisions
241 Main-Loop e e
2.4.2 Proof Documentation/Checking
2.4.3 Data Structures and Algorithms L
2.5 SPASS Version 2.0 0ptions
2.5.1 Control e e
252 InferenceRules
2.5.3 ReductionRules
2.6 Pointers into the SPASS Source Code
2.7 Links to Saturation Based Provers o
3 dfg2dfg
3.1 Introduction e e e
3.2 SYNOPSIS e
3.3 TransformingaclausetoaHornclause
3.4 Transformation to monadic literals
3.4.1 Transformationby termencoding
3.4.2 Transformation by projection.
3.5 The linear approximationof aclause L oo
3.6 The shallow approximationofaclause
3.6.1 Thestrict version e e
3,62 Amorerelaxedversion
3.6.3 Theleastrestricted version
3.7 Combining several transformations L oL

4 EML Logic Features

4.1
42
4.3
4.4

Introduction L
Dynamic modal logics
Overview of EML input specifications o
Translation mappings e
4.4.1 Standard relational translation method

10
17
17
19
21
25
30
32
32
36
36
38
38
38
39
39
39

45
45
45
45
45
46
46
46
46
46
46
47
47

4.5
4.6

CONTENTS

4.4.2 (Monadic) Functional translationmethod 56
4.4.3 Polyadic functional translation method L. 57
4.44 (Monadic) Optimised functional translation method 58
4.4.5 Polyadic optimised functional translation method 58
4.4.6 Semi-functional translation method 59
4.47 Relational-functional translation method 59
4.4.8 Relational-relational translation method 60
Background theories 60
Additional options L. L 61
4.6.1 Pathrepresentations e 61
4.6.2 Dead-endpredicates 61
4.6.3 SOTtS e e 61
4.6.4 Eliminating composition L 61
4.6.5 Exchanging quantifiers 62

47 Combinations of Options e e 62

Chapter 1

Foundations

A multiset over a set A is a function M from A to the natural numbers. Intuitively, M (a) specifies the
number of occurrences of a in M. We say that a is an element of M if M (a) > 0. The union, intersection,
and difference of multisets are defined by the identities (M, UMs)(z) = M, (x)+ Mz (z), (MiNMy)(z) =
min(M; (z), Ma(z)), and (M1 \ M>)(x) = max(0, M, (z)— M, (x)). We use a set-like notation to describe
multisets.

A first-order language is constructed over a signature ¥ = (F,R), where F and R are non-empty,
disjoint, in general infinite sets of function and predicate symbols, respectively. Every function or predicate
symbol has some fixed arity. Function and predicate symbols with arity one are called monadic. In addition
to these sets that are specific for a first-order language, we assume a further, infinite set X' of variable
symbols disjoint from the symbols in ¥. Then the set of all terms T (F,X) is recursively defined by:
(i) every function symbol ¢ € F with arity zero (a constant) is a term, (ii) every variable z € X is a term
and (iii) whenever ¢y, . .., t, are terms and f € F is a function symbol with arity n, then f(t1,...,t,) is
a term. A term not containing a variable is a ground term. If t1, ... t,, are terms and R € R is a predicate
symbol with arity n, then R(¢1,...,t,) is an atom. An atom or the negation of an atom is called a literal.
Disjunctions of literals are clauses where all variables are implicitly universally quantified. Clauses are
often denoted by their respective multisets of literals where we write multisets in usual set notation. A
clause consisting of exactly one literal is called a unit.

The set of free variables of an atom (term) ¢ denoted by vars(¢) is defined as follows: vars(P(ti,...,t,)) =
U;vars(t;) and vars(f(t1,...,t,)) = Ujvars(t;), vars(z) = {x}. The function naturally extends to lit-
erals, clauses and (multi)sets of terms (literals, clauses).

A substitution o is a mapping from the set of variables to the set of terms such that xo # x for
only finitely many x € X. We define the domain of o to be dom(oc) = {z | zo # =z} and the
co-domain of ¢ to be cdom(oc) = {zo | zo # z}. Hence, we can denote a substitution o by the
finite set {x; — t1,...,2, — tn} where ;0 = t; and dom(o) = {z;,...,z,}. A ground substitu-
tion o has no variable occurrences in its co-domain, vars(cdom (o)) = (. An injective substitution o
where cdom(o) C X is called a variable renaming. The application of substitutions to terms is given

tutions to literals and clauses as usual: P(t1,...,t,)0 = P(ti0,...,t,0) (accordingly for literals) and
{Li,...,Ly}o ={Lyo,...,Lyo}.

Given two terms (atoms) s, , a substitution o is called a unifier for s and t if so = to. It is called
a most general unifier (mgu) if for any other unifier 7 of s, ¢ there exists a substitution A\ with g\ = 7.
A substitution o is called a matcher from s to t if so = ¢. The notion of a mgu is extended to atoms,
literals in the obvious way. We say that o is a unifier for a sequence of terms (atoms, literals) ¢1, ..., %, if
t;o =tjoforall 1 <i,j < nand o is amgu if in addition for any other unifier 7 of 1, ..., ,, there exists
a substitution A with o\ = 7.

A position is a word over the natural numbers. The set pos(f(t1,...,t,)) of positions of a given term
f(t1,...,t,) is defined as follows: (i) the empty word € is a position in any term ¢ and ¢|.= ¢, (ii) if
t|z= f(t1,...,tn), then 7.i is a position in ¢ forall i = 1,...,n, and |, ;= t;. We write t[s], for t|,= s.
With ¢[r/s], where m € pos(t), we denote the term (atom) obtained by replacing ¢|, by s at position 7 in

5

6 CHAPTER 1. FOUNDATIONS

t. The length of a position r is defined by length(e) = 0 and length(i.7) = 1 + length(7). The notion of
a position can be extended to atoms, literals and even formulae in the obvious way.

As an alternative to the already mentioned multiset notation of clauses, we also write clauses in the
form © | — A where © is a multiset of monadic atoms' and I', A are multisets containing arbitrary
atoms. Logically, the atoms in © and I" denote negative literals while the atoms in A denote the positive
literals in the clause. The empty clause O denotes L (falsity). The multiset © is called the sort constraint
of | = A. A sort constraint © is solved in a clause © ||’ — A if it does not contain non-variable
terms and vars(©) C wvars(I' U A). If the clause is determined by the context, we simply say that a
sort constraint is solved. In case we are not interested in a separation of the negative literals in a clause,
we write clauses in the form I' — A. We often abbreviate disjoint set union with sequencing, e.g., we
write O [| T — A, R(t1,...,t,) for O | T = AU {R(t1,...,t,)}. Equality atoms are written / ~ r and
are mostly distinguished from non-equality atoms. The latter are named A, B. In case we don’t want to
distinguish these two different kinds of atoms we use the letter E (possibly indexed) to denote an arbitrary
atom. Inferences and reductions where equations are involved are applied with respect to the symmetry of

~
~.

A clause @1 || Fl — Al subsumes a clause @2 || F2 — Az if @10’ C @2, Fl(T - FQ and Al(f C Az
for some matcher o. The relation “is subsumed by” between clauses is a quasi-ordering on clauses. Please
recall that we consider clauses to be multisets. Hence, e.g., the clause { P(z), P(y)} (also possibly written
— P(z), P(y)) does not subsume the clause { P(z)} (possibly written — P(x)).

The function size maps terms, atoms, literals to the number of symbols they are built from, e.g.,
size(t) = |pos(t)|. In case of a literal, we don’t consider the negation symbol for its size. The depth
of a term, literal is the maximal length of a position in the term, literal, e.g., depth(t) = maz({length(n) |
7 € pos(t)}). The depth of a clause is the maximal depth of its literals. The size of clause is the sum of its
literal sizes.

For the definition of our inference/reduction rules we shall often need the notion of an ordering to
compare terms. This notion is then lifted to tuples, sets, clauses and (multi)sets of clauses. A partial order
is a reflexive, transitive and antisymmetric relation. A strict order is a transitive and irreflexive relation.
Every partial order > induces a strict order > by ¢t > s iff £ > s and t # s. The lexicographic extension
>!¢ on tuples of some strict order > is defined by (t1,...,t,) ="* (s1,...,5,) if forsome1 <i < n
we have t; > s; and for all 1 < j < ¢ it is the case that #; = s;. The multiset extension >mul is defined
by M =™ N if N # M and foralln € N \ M there exists anm € M \ N with m = n. A reduction
ordering > is a well-founded, transitive relation satisfying for all terms ¢, s, [, positions p € pos(l) and
substitutions o that whenever s > ¢ then I[p/so] > [[p/to]. For the purpose of this article, we are mainly
interested in reduction orderings that are total on ground terms, possibly up to some congruence on the
ground terms. Any (reduction) ordering > on terms (atoms) can be extended to clauses in the following
way. We consider clauses as multisets of occurrences of equations and atoms. The occurrence of an
equation s & ¢ in the antecedent is identified with the multiset {{s,¢}}, the occurrence of an atom A in
the antecedent is identified with the multiset {{ A, T }}, the occurrence of an equation in the succedent is
identified with the multiset {{s}, {¢t}} and the occurrence of an atom in the succedent is identified with
the multiset {{A},{T}}. We always assume that T is the minimal constant with respect to >. Now we
overload > on literal occurrences to be the twofold multiset extension of > on terms (atoms) and > on
clauses to be the multiset extension of > on literal occurrences. If > is well-founded (total) on terms
(atoms), so are the multiset extensions on literals and clauses.

Observe that an occurrence of an equation s ~ t (an atom) in the antecedent is strictly bigger than
an occurrence of s & t in the succedent. The atoms in the sort constraint will not be subject to ordering
restrictions but will be processed by specific inference/reduction rules.

An antecedent or succedent occurrence of an equation s = t (an atom A) is maximal in a clause
© || A — TII if there is no occurrence of an equation or atom in A — II that is strictly greater than the
occurrence s & t (the atom A) with respect to . An antecedent or succedent occurrence of an equation
s & t is strictly maximal in a clause © || A — II if there is no occurrence of an equation in A — II that
is greater or equal than the occurrence s = ¢ with respect to >. A clause O ||A — II,s ~ ¢ (clause
© || A — II, A) is reductive for the equation s & t (the atom A), if s & ¢ (the atom A) is a strictly maximal

IThese are atoms with a monadic predicate as their top symbol that form the sort constraint.

occurrence of an equation (atom) and ¢ i s.

For the specific sort constraint approach introduced here, monadic Horn theories are of particular im-
portance. Such theories provide a natural representation of sort/type information (see Section 2.3.2). A
Horn clause is a clause with at most one positive literal. A monadic Horn theory is a set of Horn clauses
where all occurring predicates are monadic. A declaration is a clause Sy (z1),...,Sp(z,) — S(t) with

{z1,...,2,} C vars(t). It is called a term declaration if t is not a variable and a subsort declaration
otherwise. A subsort declaration is called trivial if n = 0. A term ¢ is called shallow if t is a variable
or is of the form f(x1,...,2,) where the z; are not necessarily different variables. A term ¢ is called
linear if every variable occurs at most once in £. It is called semi-linear if it is a variable or of the form
f(t1,...,t,) such that every ¢; is semi-linear and whenever vars(¢;) N vars(t;) # 0 we have t; = ¢; for
all 7, j. A term declaration is called shallow (linear, semi-linear) if t is shallow (linear, semi-linear). Note
that shallow term declarations don’t include arbitrary ground terms. However, any ground term declaration
can be equivalently represented, with respect to the minimal model semantics, by finitely many shallow
term declarations. For example, the ground term declaration — S(f(a)) can be represented by the shallow
declarations T'(z) — S(f(z)), = T'(a). A sort theory is a finite set of declarations. It is called shallow
(linear, semi-linear) if all term declarations are shallow (linear, semi-linear).

A clause store is a multiset of clauses. A clause store collection is a multiset of clause stores. The
inference and reduction rules discussed in this chapter operate on clauses occurring in a clause store of a
clause store collection. There are inference rules

Ul —A
reduction rules
‘I’l || H1 — A1
Wy || M — Ay
and splitting rules.
Ol = A

S

Uy, I M= A U9 I Iy —= Ao

‘I’n,l || Hn,l — An,l \I"m,Q || Hm,2 — Am,2

The clauses ©; || T; — A; are called the parent clauses or premises of the splitting (reduction, inference)
rule and the clauses W;(;) [| IT;(;) — A;(;) the conclusions. A rule is applied to a clause store collection
P by selecting a clause store NV out of P such that the premises of an inference (reduction, splitting) rule
are contained in N. In this case, N is called the current clause store. If an inference is performed, the
conclusion of the inference is added to N. If a reduction is performed, the premises are replaced in N
by the conclusions. As a special case, if no conclusion is present, the premises are deleted from N. If a
splitting rule is applied, the current store N is replaced in P by two stores

N\{O[|I' = Ay U{¥; || = Aj1 [1<j<n}
N\{O[|I' = Ay U{¥, s || j2 = Aja [1< j<m}

One can think of more general splitting rules but the above schema is sufficient for a general understand-
ing of the implementation consequences caused by such a rule and is actually implemented in SPASS (see
Section 2.3.5). Semantically, clause stores represent conjunctions of their clauses whilst clause store col-
lections represent disjunctions of their contained clause stores. So a clause store collection P represents a
disjunction (clause stores) of conjunctions (of universally quantified clauses) of disjunctions (of literals).
A clause store N is saturated with respect to a set of inference and reduction rules (no splitting rules),
if any conclusion of an inference rule application to IV yields a clause that can eventually be deleted by a
sequence of reduction rule applications. This definition of saturation provides an operational point of view.

CHAPTER 1. FOUNDATIONS

Chapter 2

SPASS

2.1 What This Chapter is (not) About

This article is about the design, the implementation and the use of SPASS Version 2.0 [54], a saturation-
based automated theorem prover for first-order logic with equality. SPASS is unique due to the combina-
tion of the superposition calculus with specific inference/reduction rules for sorts (types) and a splitting
rule for case analysis motivated by the §-rule of analytic tableau and the case analysis employed in the
Davis-Putnam procedure [10]. Furthermore, SPASS provides a sophisticated clause normal form transla-
tion [37, 38]. This chapter is not about completeness/soundness proofs for saturation-based first-order logic
calculi. For this we refer to [4], [35] and the corresponding references in this article. Nevertheless, this
documentation introduces a variety of inference/reduction rules that are implemented in SPASS and that
form a basis for various first-order calculi.

At the heart of SPASS is a first-order calculus. It consists of inference rules that generate new clauses
and reduction rules that reduce the number of clauses or transform clauses into simpler ones. In SPASS we
introduced a great variety of clause set' based inference and reduction rules that can be composed to various
sound and complete first-order calculi. The clause store data structure together with such a calculus are
the basis for most of today’s theorem proving systems, like Otter, E or Vampire(see Appendix 2.7). SPASS
goes one step further by introducing a splitting rule that supports explicit case analysis. This generalizes the
standard clause store based approach to a clause store collection? approach where different clause stores
represent the different cases. Therefore, the splitting rule introduces a second dimension in saturation-based
automated theorem proving.

The third dimension we consider in SPASS are constraints, extra information attached to a clause re-
stricting its semantics and/or usage with respect to the calculus. Well-known constraints are ordering
constraints, forcing substituted terms to satisfy the attached ordering restrictions, basicness constraints,
forbidding paramodulation inferences on certain terms in the clause, or type constraints guaranteeing that
instantiations for variables conform to the attached type of the variable. From an abstract implementation
point of view the handling of constraints is always the same. The information is attached to a clause, it is
maintained during the inference/reduction application process and it is exploited by constraint specific al-
gorithms/deduction mechanisms to restrict inferences/reductions or to even eventually delete a clause. We
implemented sort constraints, specific type constraints for variables where the type (sort) theory is itself
expressed by clauses.

A software project like SPASS is always a compromise between different goals like maintainability,
efficiency, flexibility, readability, short development time, modularity, etc. For SPASS, the most important
goals are maintainability, flexibility, readability and modularity of the design (code). This does not mean
that SPASS is inefficient, but whenever there is a conflict between efficiency and, e.g., a modular design,
we prefer the latter. Best evidence that SPASS really meets its design goals is the fact that its code is
used by several research groups as a basis for code development and that the project has at the time of this

'From an implementation point of view we consider clause multisets, called clause stores.
2 . . .
“A clause store collection is a multiset of clause stores.

10 CHAPTER 2. SPASS

writing run successfully for eight years. We also view this prover as a tool(box), so even for users that don’t
want to spend effort in implementation work it offers great flexibility, rich documentation and a number of
indispensable extra tools like syntax translators or a proof checker.

We believe that a sophisticated calculus, a “good theory”, has the highest impact on the performance
of a prover. Therefore, we won’t study the implementation of provers at the level of data structures, object
hierarchies or module design. Instead, we will discuss the needs for an efficient implementation of the
various inference/reduction rules and the impacts that the top-level search algorithms have on an actual
implementation. This together with a specific design goal decision can then lead to a design concept for a
real prover like SPASS.

Heuristics are also not in focus of SPASS, although they can play an important rdle in automated theo-
rem proving. For example, the heuristic that chooses the next clause for inferences inside a typical “main
loop” of a saturation based prover (see Table 2.1 on page 12) can have a great impact on the success/non-
success of a search attempt for a proof. However, it is the nature of heuristics that they are sometimes
useful and sometimes make things even worse. In the context of automated theorem proving, it is often not
predictable what will be the case as long as we don’t restrict our attention to specific problems (problem
classes). Therefore again, the main focus of SPASS is on inference/simplification/reduction techniques.
For these techniques we know, e.g., that they can be composed to decision procedures for a variety of
syntactically identifiable subclasses of first-order logic [5, 34, 27, 53]. Our level of abstraction is often
lower compared to papers that solely are concerned with theory, because we want to emphasize on the im-
plementation relevant aspects of inference/simplification/reduction techniques. Hence, we always refrain
from “more elegant” formulations in order to make the consequences for an (efficient) implementation
more explicit.

The design concepts introduced in SPASS and discussed here are not necessarily original contributions
of the author. For example, the combination of saturation and splitting is original, but the use of indexing
techniques [22] is a widely used method. Many of the design ideas introduced in SPASS are “common
knowledge” among the developers of first-order saturation based theorem provers and are regularly dis-
cussed among these. Thus it is hard to say where the origin of some idea comes from and I refer to my
colleagues listed in the acknowledgments.

In this chapter I frequently use the notion in practice to argue for design decisions. This refers to the
problem domains we have been interested in so far: Problems resulting from the analysis/verification of
software [16], from the area of automatic type inference [17, 8], from the analysis of security protocols [24,
53], planning problems [29], modal logic problems [26], and problems from the TPTP problem library [48].
If we say that some technique/design/calculus is preferred over some other technique/design/calculus in
practice, this is always meant with respect to the above mentioned problem domains.

SPASS is freely available from the SPASS homepage at
http://spass.mpi-sb.mpg.de/

After a section on notation and notions (Chapter 1), an introduction to major design aspects of saturation-
based provers (Section 2.2), we discuss the inference/reduction rules (Section 2.3) of SPASS. For each
rule we provide a formal definition and explain specific aspects of its pragmatics and implementation. In
Section 2.4 we evolve the global design of a prover from all these rules. Finally, the appendix establishes
links between all mentioned design concepts, inference/reduction rules and the user interface of SPASS as
well as its source code.

2.2 A First Simple Prover

In this section, we discuss the implementation of a simple resolution based calculus. Although the calculi
implemented by SPASS are much more sophisticated than the simple resolution calculus considered here,
some important design decisions can already be explained on the basis of such a simple example. The
resolution calculus consists of the inference rules resolution, factoring and the reduction rules subsumption
deletion and tautology deletion

2.2. A FIRST SIMPLE PROVER 11

Resolution Factoring Right
T F]7A—)A1 FQ—)A27B T F—)A‘/LB
(T, Ty = A1, As)o (' = A, A)o
Subsumption Deletion Factoring Left
R Fl—)Al F2—>A2 T F‘A7B—)A
I — A (T,A = Ao
Tautology Deletion
LA—-AA

where o is a most general unifier (mgu) of the atoms A and B for the rules resolution, factoring and in
order to apply subsumption, the clause I'y — A; must subsume the clause ['y — Ao,

For the resolution rule to be complete, it is required that the parent clauses I'y; A — Ay and 'y, —
Ay, B have no variables in common. Actual implementations of the rule satisfy this requirement in dif-
ferent ways. They all have in common that variables are represented by (natural) numbers, so this is our
assumption for the rest of this paragraph. The first solution explicitely renames the clauses such that they
have no variables in common. The second solution accepts clauses that share variables, but when running
the unification algorithm the variables are separated by adding an offset to the variables of one clause.’
A typical offset is the value of the maximal, with respect to number greater, variable of the other clause.
The third solution also accepts clauses that share variables and solves the problem by employing two sub-
stitutions, one for each clause. This requires some modifications to the standard unification algorithms,
because the terms of the different atoms need to be explicitely separated. This is the solution implemented
in SPASS. In order to test applicability of the resolution rule, it is sufficient to explicitely or implicitly
rename the variables of the considered atoms, not the overall clause.

For the factoring rule there is an extra variant for positive (Factoring Right) and negative literals (Factor-
ing Left). We could have presented both variants in one rule, by denoting clauses as disjunctions of literals.
However, our representation is closer to the implementation of the rule. All clause data structures used in
well-known provers explicitely separate positive from negative literals. The reason is efficiency and already
becomes obvious for factoring: Whenever we search for a partner literal for a positive literal it does not
make sense to consider negative literals at all. Similar situations arise for other inference/reduction rules.
Therefore, the decision in this article is always to distinguish positive and negative literals when presenting
inference/reduction rules.

Now let us compose the inference/reduction rules to an actual prover. The input of the prover is a clause
store containing clauses without equality and the output on termination is a proof or a saturated clause
store. The above resolution calculus is complete, so we also want our search procedure to be complete in
the sense that if resources don’t matter and our procedure is called with an unsatisfiable clause store then it
will eventually find a proof (the empty clause). In order to achieve this goal, we have to guarantee that the
considered clause set is saturated in the limit. This includes that all inferences between clauses have been
performed. An easy way to remember which inferences have already been performed is to split the input
clause store in a set Wo of clauses (Worked off clauses) where all inferences between clauses in this set
already took place and a set Us of clauses (Usable clauses) which still have to be considered for inferences.
Then a main loop iteration of the prover consists of selecting a clause from the Us set, moving it to the Wo
set and then adding all inferences between the selected clause and the clauses in Wo to the Us set. If the
selection is fair, i.e., no clause stays arbitrarily long in the Us set without being selected, this results in a
complete procedure. It remains to build reductions into this loop. The idea for this loop is due to the Otter
theorem prover and its predecessors [32].

The reduction rules tautology deletion and subsumption deletion decrease the number of clauses in the
clause store while the inference rules increase the number of clauses. Hence, exhaustive application of the
reduction rules terminates and produces smaller clause stores. In practice, small clause sets are preferred
over large ones, hence reductions are preferred over inferences. This consideration together with the idea of
the main-loop introduced above leads to ResolutionProverl depicted in Table 2.1. Note that subsumption

3Please recall that we assume variables to be represented by naturals.

12 CHAPTER 2. SPASS

1 ResolutionProverl (N)
2 Wo:=0;
3 Us := taut(sub(N));

4 While (Us #0and O ¢ Us) {

5 (Given, Us):= choose(Us);

6 Wo := Wo U {Given};

7 New = res(Given, Wo) U fac(Given);
8 New = taut(sub(New));

9 New := sub(sub(New, Wo), Us);

10 Wo = sub(Wo, New);

11 Us = sub(Us, New) U New;

12)

13 If (Us = 0) then print “Completion Found™;
14 If (O € Us) then print “Proof Found”;

Table 2.1: A First Resolution Based Prover

and tautology deletion are independent in the sense that once all tautologies have been removed, subsump-
tion does not generate new tautologies. Analyzing such dependencies between reductions is one key for an
efficient implementation.

For the description of theorem proving procedures we use the following abbreviations: fac(C) is the
set of all factoring inference conclusions (left and right) from the clause C, res(C, D) is the set of all
resolution inference conclusions between two clauses C' and D, taut(N) is the set N after exhaustive
application of tautology deletion and sub(N, M) is the set of all clauses from N that are not subsumed
by a clause in M. We overload sub for one argument, where sub(N) denotes the set N after exhaustive
application of subsumption deletion to the clauses in N. We overload res by defining res(C, N) to be
the set of all resolution inferences between the clause C' and a clause in N. The function choose selects
and removes a clause from its argument clause store and returns the selected clause as well as the updated
argument clause store.

As already motivated, the procedure ResolutionProverl operates on two clause stores: Wo and Us.
The store Wo holds all clauses that have already been selected for inferences, while the store Us contains
all candidate clauses to generate inferences. The prover ResolutionProver] is called with a finite clause
store N and tests those for unsatisfiability. Lines 2 and 3 initialize the sets Wo and Us. Note that Us is
not initialized with IV, but its completely inter-reduced equivalent. This step is called input reduction. The
search for the empty clause (a saturation) is implemented by the lines 4—12. The while-loop starting at
line 4 terminates if the empty clause is found or the set Us is empty. We will argue below that this implies
that the set Wo is saturated. If Us is not empty and the body of the while-loop is entered, the function
choose selects at line 5 a clause out of the usable set. The function is fair, if no clause stays in Us for
an infinite number of iterations through the while loop. A widely used, fair implementation (heuristic) of
choose is to select a lightest clause that is a clause of smallest size. This selection function is fair, because
there are only finitely many different clauses with respect to subsumption having less than k& symbols, for
any constant k.* Many refinements of the choose function are possible: using different weights for variable
and signature symbols, preferring clauses with more/fewer variables, preferring clauses that contain certain
atoms/term structures or considering in addition the depth of a clause in the search space. The depth of a
clause in the search space is zero for all input clauses and every conclusion of an inference has the maximal

4Note that since the input set IV is finite, the relevant signature is finite, too.

2.2. A FIRST SIMPLE PROVER 13

depth of their parent clauses plus one. Many provers use a combination of weight and depth selection, e.g.,
choosing four times clauses by minimal weight and every fifth time by minimal depth. This combination
again goes back to Otter where the ratio can be controlled by the pick-given ratio parameter. The parameter
is also available in SPASS.

Then the clause Given is selected, removed from Us and added to Wo (lines 5, 6). Next (line 7)
all resolution inference conclusions between Given and Wo and all factoring inference conclusions from
Given are stored in New. Note that since Given is already contained in Wo these inferences include self
resolution inferences. The clauses generated so far are called derived clauses. The lines 8—11 are devoted
to reduction. First, all tautologies and subsumed clauses are removed from New. Then all clauses that are
subsumed by a clause in Wo or Us are deleted from New. This operation is called forward subsumption.
Clauses remaining in New are then used for backward subsumption, the subsumption of clauses in the sets
Wo and Us by clauses from New. Finally, the clauses from New are added to Us. These clauses are
usually called kept clauses.

There are two invariants that hold each time line 4 is executed:

e Any resolution inference conclusion from two clauses in Wo (factoring inference conclusion from a
clause in Wo) is either contained in Wo, Us or is subsumed by a clause in Wo, Us or is a tautology.

e The sets Wo and Us are completely inter-reduced:
Wo U Us = taut(Wo U Us) and
Wo U Us = sub(Wo U Us).

A consequence of these invariants to hold is that if the procedure stops then the set Wo is saturated.
Furthermore, if the function choose is fair, then the ResolutionProverl is complete.

In case that for the set IV a satisfiable subset N' is known, e.g., if the clauses represent a proof attempt
of a conjecture with respect to some theory that is known to be satisfiable, we could also initialize the sets
by Wo := N'and Us := (N \ N'), obtaining the so called set of support (SOS) strategy [55]. The SOS
strategy preserves completeness.

Many other saturation based provers (e.g., Otter, SPASS, Waldmeister, see Appendix 2.7) have a search
algorithm based on two sets of clauses.’> SPASS implements ResolutionProver! on a Unix system by the
shell invocation

SPASS -Auto=0 -ISRe -ISFc -RTaut -RFSub -RBSub <file>

where the option —Auto=0 turns off the automatic mode of SPASS. In this mode SPASS decides on
the basis of the input problem the set of inference and reduction rules. If the automatic mode is turned
off, no inference/reduction rules are activated. All options starting with an I (de)activate inference rules,
options starting with an R (de)activate reduction rules. So the above call to SPASS activates the infer-
ence rules standard resolution (—ISRe), standard factoring (-ISFc) and the reduction rules tautology
deletion (-RTaut), forward subsumption(-RF Sub) and backward subsumption (-RBSub). An infer-
ence/reduction rule option is activated by setting it to 1 (the default) and deactivated by setting it to 0. For
further details consider Appendix 2.5.
For example, we simulate a run of ResolutionProverl on the clauses

1: — P(f(a))
2: P(f(z)) = P(z)
30 P(f(a),P(f(z))—

shown in Table 2.2. For each while-loop iteration, we show the content of the Wo and Us set at line 4,
the selected Given clause and the content of New before execution of line 8. Newly generated clauses are
printed in full detail while we refer to a clause in the sets Wo and Us only by its unique clause number.
The function choose selects lightest clauses.

Every box in Table 2.2 represents one while-loop iteration. For newly generated clauses we also show
the applied inference rule and parent clauses/literals. Here Res indicates a resolution inference, Fac a
factoring inference and the notion n.m refers to literal m of clause n. So, for example, clause 7 is generated

SHowever, they use different names for the sets. So don’t be confused.

14

Tteration 1

CHAPTER 2. SPASS

Wo =10 Us=1{1,2,3}
Given= 1. — P(f(a))
New=
Iteration 2 d
Wo ={1} Us={2,3}

Given= 2: P(f(z)) = P(x)
New = {4:[Res:1.1,2.1] — P(a),
5:[Res:2.1,2.2] P(f(f(x))) — P(z)}

Iteration 3 d

Wo ={1,2} Us=1{3,4,5}
Given= 4: — P(a)

New=

Iteration 4 d

Wo={1,2,4)} Us={3,5}
Given= 3: P(f(a)),P(f(x)) —

New= { 6:[Res:1.1,3.11 P(f(z)) —,
7:[Res:1.1,3.2] P(f(a)) —,
8:[Res:2.2,3.11 P(f(f(a))), P(f(z)) —,
9:[Res:2.2,3.2] P(f(a)),P(f(f(x))) —,

10:[Fac:3.1,3.2] P(f(a)) —}
Iteration 5 d
Wo ={1,4} Us={6}

Given= 6: P(f(x)) —
New= {11:[Res:1.1,6.1] 0O}

Table 2.2: A Run of ResolutionProverl

2.2. A FIRST SIMPLE PROVER 15

1 ResolutionProver2(N)

2 Wo = 0;

3 Us = taut(sub(N));
4 While (Us #0and O ¢ Us) {
5 (Given, Us):= choose(Us);

6 if (sub({Given}, Wo) #0) {

7 Wo = sub(Wo, { Given});

8 Wo = Wo U {Given};

9 New = res(Given, Wo) U fac(Given);
10 New = taut(sub(New));

11 New = sub(New, Wo);

12 Us := Us U New;

13}

14 1

15 1f (Us = 0) then print “Completion Found”;
16 If (O € Us) then print “Proof Found”;

Table 2.3: A Second Resolution Based Prover

by a resolution inference between the first literal of clause 1 and the second literal of clause 3 where
literals are counted from left to right. Iteration 4 shows already some common phenomena of saturation
based calculi. First, these calculi are typically redundant in the sense that the very same clause can be
generated in various, different ways. For example, clause 7 and clause 10 are logically identical, although
the former is generated by a resolution inference while the latter is the result of a factoring application. As
a consequence, subsumption is indispensable for saturation based calculi to cut down the number of kept
clauses. The situation gets even more dramatic in the context of equality, where a single loop iteration
can already cause an explosion in the number of newly generated clauses. This will be discussed in more
detail in Section 2.3. Coming back to our run, note that in the reduction part of while-loop iteration 4, the
clauses 2, 3, 5, 7-10 are all subsumed by clause 6. Second, even for this simple example, it happened that
the selection of the Given clause is not always unique when choosing lightest clauses. During iteration 4,
the clauses 3 and 5 have both size 6, but choosing clause 5 instead of clause 3 would have caused an
additional while loop iteration before the empty clause is derived. Of course, the function choose could be
refined and we will in fact discuss such refinements, but in practice it happens (and must happen) frequently
that several clauses have the same precedence with respect to choose. Then selecting the right clause (by
accident) can enable a prover to find a proof where it gets lost in the search space by selecting a different
one. This phenomenon is common to all theorem provers and can be observed at the yearly CADE CASC
system competitions (e.g., see [49]), where the performance of provers varies depending on the ordering of
the input problem clauses.

If ResolutionProverl is ran on non-trivial examples, the Us set rapidly gets much larger than the Wo
set. It easily happens that after some iterations the size increases by a factor of 1000. In particular, it is
common in the context of problems containing equality. Therefore, at least with respect to the number of
clauses that have to be considered, the subsumption tests with respect to the Us set are the most expensive
parts of the algorithm. Typical runs of ResolutionProverl show a behavior where more than 95% of the
overall time is spent for subsumption checks. This motivates the design of ResolutionProver2 shown in
Table 2.3.

16 CHAPTER 2. SPASS

ResolutionProver2(N) does not perform any subsumption tests with respect to the Us set and back
subsumption is only performed with respect to the actually selected given clause. The two invariants for
ResolutionProver2 are

e Any resolution inference conclusion from two clauses in Wo (factoring inference conclusion from a
clause in Wo) is either contained in Wo, Us or is subsumed by a clause in Wo or is a tautology.

e The set Wo is completely inter-reduced:
Wo = taut(Wo) and
Wo = sub(Wo).

These two invariants are still strong enough to guarantee that if the while loop terminates, the Wo set is
saturated. Note that although New is always reduced with respect to Wo at line 11, the set Us is in general
not reduced with respect to Wo, i.e., Us # sub(Us, Wo).

If we assume that choose selects light clauses there is a further motivation to leave out subsumption tests
with respect to the Us set. If a clause C' subsumes a clause D, then size(C) < size(D). So small clauses
have a higher probability to subsume other clauses than larger clauses. Therefore, because we always select
the lightest given clause, the hope is that not too many clauses that could have been subsumed stay in the
Us set. In practice, ResolutionProver2 saves about 10% of the time spent for reductions (subsumption)
compared to ResolutionProverl. For the simple resolution calculus we studied so far, ResolutionProver2
is mostly in favor of ResolutionProver] when run in practice. As soon as our reduction techniques include
rules that produce lighter clauses (see Section 2.3) the choice is no longer obvious in general. There are
examples where an overall interreduction easily yields the empty clause, but for a ResolutionProver2 style
algorithm sophisticated heuristics are needed to still find a proof.

Running ResolutionProver2 on the example clause store, the result is similar to the run of Resolution-
Proverl (Table 2.2). The first three iterations are identical, but at iteration 4, the clauses 2, 3, 5, 7-10 are
not subsumed but stay in their respective sets. Then, in iteration 5, where clause 6 is selected as given
clause, the clauses 2, 3 are removed from the Wo set (line 7 of ResolutionProver2, Table 2.3) and the
empty clause is derived.

SPASS implements ResolutionProver2 by the call

SPASS -Auto=0 -FullRed=0 -ISRe -ISFc -RTaut —-RFSub -RBSub <file>

where the option —-Ful 1Red=0 deactivates reduction with respect to the Us set and modifies the algorithm
accordingly. For further details consider Appendix 2.5.

There are many possible alternatives, variations, refinements for the two loops suggested here. Let us
discuss some aspects. First, concerning factoring, any clause store can be finitely saturated with respect
to factoring, since a factor has strictly fewer literals than its parent. So one could get the idea to keep the
Wo set always saturated with respect to factoring. The disadvantage of this approach is that the number
of factors that can be generated out of one clause grows worst case exponentially in the number of literals.
The prover Bliksem allows a user to prefer factors (see Appendix 2.7).

Second, concerning resolution and the selection of the given clause, we could also a priori built for each
loop iteration all one step resolvents between the clauses in the Us set and between one parent from the Us
set and one parent from the Wo set. Then instead of picking a Given clause, we pick one resolvent, use it
for (back and/or forward) reduction and finally add it to the Wo set. This approach results in a more fine
grained development of the search space. This design for a proof search is closely related to clause graph
resolution [15].

Third, on the implementation side, if we once decide to implement ResolutionProver2, the only in-
formation we need for the clauses in Us are their properties with respect to the choose function and how
these clauses can be generated. For all clauses except the input clauses it suffices to store references for the
parents and the used inference. This way it is possible to store all Us clauses in a compact way. In practice
constant space suffices for any clause. This dramatically decreases memory consumption and results in
an extra speed up. The necessary regeneration of clauses once they are selected, plays no role concerning
performance. The Waldmeister prover follows this approach. Fourth, another way to keep the Us set small
is to throw away clauses with respect to certain weight or complexity restrictions on the newly generated
clauses. Fither these clauses are just thrown away resulting in an incomplete procedure, this is supported

2.3. INFERENCE AND REDUCTION RULES 17

by Otter, SPASS and Vampire (see Appendix 2.7), or the restrictions can be set in a way such that only
finitely many clauses can pass the restriction test and once the search results in such a saturated set, the
restrictions are adjusted and the search is restarted. This design is supported by Bliksem, SPASS and Fiesta.
In SPASS the resource restriction strategy is controlled by the flags BoundMode specifying the resource
type where 0 means no resource restriction, 1 means clause size restriction and 2 means clause depth re-
striction, the flag BoundStart specifying the initial start value to restrict the selected resource type and
BoundLoops determines how often a saturation caused by resource restrictions is restarted with adjusted
restrictions. So the call

SPASS -BoundMode=1 -BoundStart=5 —-BoundLoops=3 <file>

causes SPASS to throw away all clauses that have a weight greater 5. If this leads to an empty Us set
without finding the empty clause, the bound is increased to the smallest size greater 5 that caused a clause
to be deleted. This process is repeated at most 3 times, then any weight restrictions are discarded. Such an
exploration of the search space can be particularly useful in the context of unit equational problems.

2.3 Inference and Reduction Rules

In this section we describe a variety of inference/reduction rules. For every rule, we start with a formal
definition of the rule and then, if necessary, discuss aspects of its pragmatics, complexity, interaction with
other rules or design concepts and its implementation and usage. Some rules are stated in a general,
possibly non-effective form (e.g., see the conflict rule, Definition 2.3.19). In this case we also discuss
effective instantiations. The rules don’t form a particular calculus, instead several well-known calculi can
be implemented by forming appropriate groups of rules. An example is the simple resolution calculus
considered in Section 2.2.

Many reduction rules can be simulated by one or several inference rule applications followed by a (triv-
ial) subsumption step. As long as the inference rule set is complete this observation is not too surprising,
since we require all our rules to be sound. So one might think that the sophisticated reduction machinery
introduced in this section is not really necessary but just a waste of resources when implemented. How-
ever, it is just the other way round. Reduction rules always lead to “simpler” clause stores by deleting
some clause or by replacing a clause by a “simpler” one. This often ensures the termination of exhaustive
application of (groups of) such rules and enables application of these rules to all clauses. Therefore, in
the context of an implementation, reduction rules cannot be simulated by inference rule applications since
those don’t terminate when applied exhaustively. Inference rules are only applied to some selected Given
clause. Reduction rules should be viewed as restricted inference rules that eventually lead to simpler clause
stores and help to explore the “easy” parts of the search space (problem). They replace search space explo-
ration by (efficient) calculation. In fact, some of the reduction rules introduced in this section are motivated
by decidability results for various first-order logic fragments.

2.3.1 Reduction Orderings

For many of the inference/reduction rules defined in the sequel, maximality restrictions on literals, terms
play an important role. The two most popular orderings are the Knuth-Bendix ordering (KBO) [30, 39]
and the recursive path ordering with status (RPOS) [11]. For a broad introduction to orderings, consider
the article by [12] and the more recent book by [2]. The definitions below differ in some details from other
definitions found in the literature, but reflect implementation experience.

Nearly all orderings used in todays provers are variations of the KBO and the RPOS. In particular,
weaker versions the orderings are often used. For example, purely weight based orderings or variants
of the RPOS without recursive consideration of subterms. These weaker versions have the advantage of
cheaper computation and when used to restrict inference rules (see Section 2.3.3) of a broader exploration
of the search space. This can be useful for the search of short proofs. We describe KBO and RPOS exactly
the way they are implemented in SPASS.

Let > be a strict order on the set of signature symbols (functions, predicates), called a precedence. Let
weight be a mapping from the set of signature symbols into the non-negative integers. We call a weight

18 CHAPTER 2. SPASS

function admissible for some precedence if for every unary function symbol f with weight(f) = 0, the
function f is maximal in the precedence, i.e., f > g for all other function symbols g. The function weight
is extended to a weight function for terms (atoms) as follows: (i) if ¢ is a variable, then weight(t) = k,
where k is the minimum weight of any constant and (i) if t = f(¢1,. .., t,), then weight (t) = weight(f)+
>, weight(t;). Let occ be a function returning the number of occurrences occ(s, t) of a term s in a term ¢,
defined by occ(s,t) = |{p € pos(t) | t|p,= s}| and let status be a mapping from the signature symbols to
the set {left, right, mul}.

Definition 2.3.1 (KBO)
If ¢, s are terms, then ¢ =y, s if occ(x,t) > occ(x, s) for every variable z € (vars(t) U vars(s)) and

(1) weight(t) > weight(s) or
(2) weight(t) = weight(s) andt = f(t1,...,t;) and s = g(s1,...,s;) and

(2a) f > g in the precedence or
(2b) f =gand
(2b1) status(f) = left and (t1,...,tk) =1 (s1,...,8) or

(2b2) status(f) = right and (tg, tr—1,...,t1) =5 (s1,81-1,...,51)

Note that in case (2b) the condition f = g implies £k = [. Multiset status for function symbols can
also be defined but does not pay off in practice for the KBO. If the weight function is admissible for the
precedence, then the KBO is a reduction ordering [2]. If the precedence > is total, then the KBO is total
on ground terms (atoms). For some finite set of signature symbols® and two terms s, t with s >, ¢, there
are finitely many terms s’ with s =4, 8" =kpo .

The motivation to consider unary function symbols with weight zero comes in particular from group
theory. The standard group axioms can be turned into a convergent system [2] using the KBO with prece-
dence i > f > e and weights weight (i) = 0, weight(f) = weight(e) = 1 where i is the inverse function,
f denotes group multiplication and e represents the neutral element. During the saturation (completion)
process it is crucial to orient the derived equation i(f(z,y)) & f(i(y),i(x)) from left to right, for oth-
erwise the saturation process won’t terminate. The only way to achieve i(f(x,y)) = f(i(y),i(z)) is to
assign weight 0 to the function symbol i.

Implementation of the KBO can be done straightforward from the definition. For the RPOS we also
assume > to be a strict order (precedence) on the set of signature symbols (functions, predicates).

Definition 2.3.2 (RPOS)
If ¢, s are terms, then ¢ >, s if

(1) s € vars(t) and t # s or
(2) t = f(t1,...,tr) and s = g(s1,...,s) and

(2a) t; > rpos sforsome 1l < ¢ < kor
(2b) f > gandt >, s; foralll < j <lor
(2c) f =gand
(2c1) status(f) = left and (t1,...,tx) >0 (s1,...,s) and

t > rpos sj forall 1 < j <lor
(2¢2) status(f) = right and (tg,tg_1,...,t1) >—lfpf,s (si,81-1,-..,81) and
t >rpos sj foralll < j <lor

(2¢3) status(f) = muland {t1,... tx} =7t {s1,..., 5}

SFor an infinite set the condition does obviously not hold.

2.3. INFERENCE AND REDUCTION RULES 19

The RPOS is a reduction ordering as well and if the precedence > is total RPOS is also total on ground
terms (atoms), up to the congruence relation =y, generated from the symbols with multiset status. If f
is a function symbol with status(f) = mul then f(t1,...,tn) =mut F(81,-.,8n) if {t1,...,t,} =mu
{s1,...,8n}, for example f(a, f(a,b)) =mu f(f(b,a),a). Even for some finite set of signature symbols
and two terms s, t with s 05 t, there are in general infinitely many terms s’ with s > 505 8’ > rpos t.

The RPOS can for example be used to orient distributivity the “right way”. If f > g, then the equation
flx,9(y,2)) = g(f(z,y), f(x,2)) is oriented by RPOS from left to right. Note that KBO cannot orient
the equation from left to right, because the right hand side has one more occurrence of the variable z.

Given a specific theorem proving problem, the relevant signature is finite and fixed. In this case it
can be useful to further refine an ordering by defining ¢ > s if to > so for all ground substitutions &
where (vars(t) U vars(s)) C dom(o). Following this idea, RPOS can be instantiated to an ordering that
totally orders all atoms by predicate symbols and only in second place considers possible argument terms,
independently from variable occurrences! This can be achieved by making all (some) predicate symbols
larger in the precedence than all function symbols. For example, with respect to the above suggested lifting
and a signature with predicate symbols P, () and function symbols f, a where P > @) > f > a it holds
that P(z) >,p0s Q(f(z,y)) because P is greater in the precedence than), f, a and hence any ground
term that can be substituted for = or y. Predicates can be declared to be superior over function symbols, by
a declaration

set_DomPred (< predicate sequence >) .
in the SPASS settings section of an input file [23]. Such an application of RPOS can, e.g., be useful to make
literals built from newly introduced formula renaming predicates minimal. This prevents the generation of
the standard CNF via ordered resolution [38].

Straightforward recursive implementation of RPOS following the definition results in an algorithm with
worst case exponential complexity. Using a dynamic programming idea, a polynomial algorithm can be
devised [45]. However, in practice, it turns out that the straightforward implementation is superior to the
dynamic programming approach, if the following filter is added. Whenever we test ¢ > 05 s for two terms
s, t, we first check vars(s) C vars(t).

2.3.2 Sorts

The motivation for sorts comes from programming languages, where one likes to catch as many errors at
compile time as possible. For example, if the addition function is only defined for number sorts (types) but
used in a program with a list type, the compiler can complain about such a statement by exploiting the sort
information. Of course, the sort checking must be tractable, i.e., it should at least be decidable and/or show
acceptable performance for real world programs. A prerequisite for the sort information to be checked at
compile time, is that the sort information is separated from the program and it is typically included in an
extra declaration part.

Here we generalize this situation. The sort information is not separated from the first-order problem as,
e.g., done in algebraic specification languages, but part of the problem itself. Therefore, we cannot check
sort information at compile time, after or while reading the problem. Instead the sort information is used at
run time, during proof search, to detect ill-sorted and therefore redundant clauses and to simplify the sort
information contained in the clauses by specific algorithms. These algorithms exploit the sort information
in a much more efficient way than their standard first-order reduction rule counterparts.

Sorts are activated in SPASS by the —Sorts option. If SPASS is called with option —Sorts=1 all
negative monadic literals with a variable argument are considered for the initial sort constraints, whereas
—Sorts=2 causes SPASS to consider all negative monadic literals for the initial sort constraints. The latter
choice can affect completeness, because of the basicness restriction on the sort constraint.

Definition 2.3.3 (Sort Constraint Resolution)
The inference

i) (1
(@1,...,®n,\1’||F1,...,Fn,r—)Al,...,An,A)(T

v

20 CHAPTER 2. SPASS

where (i) o is the simultaneous mgu of ¢, s1, ..., s,, (ii) ¢ is a non-variable term and there is no further
literal S(t) € W, (iii) all ©; are solved, (iv) all T;(s;)o are reductive for (0; ||T'; — A;, T;(s;))o is a sort
constraint resolution inference.

Sort constraint resolution is a hyper resolution (see Definition 2.3.14) like inference rule. It simulates
the rule weakening of sorted unification [52] on the relativization of sorted variables represented by the
sort constraint. Sort constraint resolution is activated by the —I SoR option.

Definition 2.3.4 (Empty Sort)
The inference

Ty(z),....T(2), Pl - A 0;||T; = A, Ti(s;) (1<i<n)
(617...7®n,\Il||F17...7Fn7F—)A17...7An,A)U

z

where (i) o is the simultaneous mgu of s1,. .., $p, (i) z & vars(I' U A U ¥) and no non-variable term

occurs in ¥, (iii) all ©; are solved, (iv) all T;(s;)o are reductive for (©; || T'; — A;,T;(s;))o is an empty
sort inference.

Empty sort is similar to sort resolution and, in fact, in some of our papers (e.g., [27]) we unified both
rules into one inference rule. For the purpose of the decidability results presented in these papers this is
appropriate. It makes sense to distinguish these rules, because the eventual success of empty sort, i.e., we
are able to show that some sort is non-empty, does not rely on the particular sort constraint, but only on the
set of monadic (sort) symbols that share their variable argument. We check emptiness of an intersection
of sort symbols. Since there are only finitely many different such sorts with respect to some finite clause
store, it may make sense to store constraints that resulted in successful non-emptiness proofs and to reuse
them. One application domain are the proofs required in the context of static soft typing (Definition 2.3.6).
Empty sort is activated by the —IEmS option.

Definition 2.3.5 (Sort Simplification)
Let N be the current clause store and N C N be exactly the set of all declarations in N. The reduction

S(t),0]I' - A
OIT = A

R

where N |= Vaq,...,2, [S1(21),...,Sn(zn) D S(#)] and {S1(z1),...,Sn(2s)} C O is the maximal
subset of © for which {z1,...,z,} C vars(t) is called sort simplification.

Given an arbitrary sort theory N', the relation
N EVzi,...,z,[S1(%1),...,Su(zn) D S(t)]

is always decidable in polynomial time. In terms of sorted unification the problem means deciding well-
sortedness [52]. A bottom-up algorithm based on dynamic programming yields the polynomial complexity
whereas a simple top down approach results in an exponential procedure. The latter procedure would
correspond to solve the problem with ordered resolution and an SOS strategy. The former algorithm is
implemented in SPASS. Sort simplification is activated by the -RSS1 option.

Sort simplification is one important reason why it makes sense to treat particular occurrences of mo-
nadic predicates in a special way. Sort simplification cannot be simulated via other standard reduction
techniques like matching replacement resolution (see Definition 2.3.20) and cannot be extended to non-
monadic predicates. For example, for binary relations, the undecidable problem whether two ground terms
are contained in a transitive binary relation generated by some positive unit clauses [43] can be reduced
to deciding applicability of an extended sort simplification rule for binary relations. So without further
restrictions, sort simplification cannot be effectively used for other n-ary relations.

2.3. INFERENCE AND REDUCTION RULES 21

Definition 2.3.6 (Static Soft Typing)
Let N be the current clause store over some fixed signature ¥ and M be a sort theory such that N |= S(#)
implies M |= S(t) for any ground monadic atom S(¢) over ¥ where S occurs in some sort constraint in

N. The reduction

= A
R@Ha

where M B x4, ..., x, © with vars(©) = {z1,...,z,} is called static soft typing.

The above definition of static soft typing is not effective. The problem M [~ Jzq,...,x, O is not
decidable for arbitrary sort theories M and sort constraints ©. It includes the general problem of sorted
unification [52] that is well-known to be undecidable, in general. Furthermore, it is not obvious how the
sort theory M can be constructed out of NV such that it meets the requirements of Definition 2.3.6. A
solution to all these problems is the following. First, all clauses that contain positive monadic atoms are
safely approximated and restricted to the sort information they contain:

O|T = A, Si(t1),...,Su(tn)

R
@1 || — S1(t])

On | = Su(tn)

where no monadic atom occurs in A, © is solved and ©; = {S(z) | S(z) € © and = € vars(S;(t;))} for
1 <4 < n. By construction all ©; are solved and the rule does not modify declarations. If the initial clause
set NV does not contain positive equations, then the sort theory N’ obtained by a fix-point computation of
the above reduction on N approximates V in the desired way (see Definition 2.3.6). Second, the sort theory
N’ is approximated to a sort theory N such that satisfiability of sort constraints in N gets decidable.

O = S(f(t1,..-,tn))
01, T(x)|| = S(f(s1,---,5n))
Oq | = T(t;)

R

where ¢; is not a variable and for all 1 < j < n we define s; = z if t; = t; and s; = t; otherwise.
Furthermore, ©1 = {S(y) | S(y) € ©® and y € vars(S(f(s1,...,5n)))} and O is the restriction of © to
atoms with argument = € vars(t;).

By construction, the derived clauses have a solved sort constraint and N’ approximates N’ as desired.
The sort theory N is shallow and satisfiability of sort constraints with respect to shallow sort theories is
decidable by the inference rules sort resolution, empty sort and the reduction rules sort simplification, sub-
sumption deletion (Definition 2.3.16) and condensation (Definition 2.3.17) [27, 53]. Hence, this instance
of static soft typing is effective.

So if we start with a clause store IV that does not contain positive equations, we construct once the
approximated sort theory N". If this theory is not trivial, i.e., there is at least one monadic predicate S
with N"' = Yz S(z), the sort theory N" is stored and static soft typing is applied to any input or derived
clause. Since N is only approximated once, typically at the beginning of the inference process, the rule is
called static soft typing. If in the input clause store all sort constraints are solved and there are no positive
equations, static soft typing preserves completeness [51, 18].

If equations occur in a clause store a dynamic soft typing approach seems to be more suitable. Consider
[18] and [33] for details. These techniques are not implemented in SPASS Version 2.0 but are an option for
later releases. Static soft typing is activated by the —-RRSST option.

2.3.3 Inference Rules

The introduced inference rules can be composed to a variety of (well-known) calculi. The calculi range
from the ordinary resolution calculus investigated in Section 2.2 to a superposition calculus with selection,
splitting and sort constraints that are subject to the basicness restriction. To cover all these cases, the
rules defined here are given in generic way such that each definition covers several variants of the rule.

22 CHAPTER 2. SPASS

In particular, all rules are available with a selection restriction of negative literals that does not destroy
completeness [3]. For any clause we can select some negative literals with the effect that all inference
rule applications taking this clause as a parent clause must involve the selected literals. For example, if
we select the literal R(x,y) in the clause || R(z,y), f(g9(z),y) = f(y,z) — then no equality resolution

inference (see below) is possible from this clause.

Definition 2.3.7 (Equality/Reflexivity Resolution)
The inference
Ofl~r, T - A

1 O|IT = A)o

where (i) o is the mgu of [and r, (i) © is solved, (iii) [& r is selected or (I & 7)o is maximal in (O || ~
r,I' = A)o and no literal is selected in T' is called an equality resolution inference. If condition (iii) is
replaced by | = r is selected or no literal is selected in I, the inference is called reflexivity resolution.

Equality resolution is activated by the —~IEgR option. Reflexivity resolution is activated by the ~IERR
option.

Definition 2.3.8 ((Ordered) Paramodulation/Superposition Left)
The inferences
@1||F1—)A1,l%7" @2||s[l']pzt,F2—)A2

T
(01,05 s[p/r] = t,T1,Ty = Ay, As)o

and
@1 ||F1 —)Al,lNT @2||A[l’]p,F2 —)AQ

A
(@17 0, || Abj/’r]:Fl:F? — Al: A2)(T

where (i) o is the mgu of I’ and I, (ii) I’ is not a variable, (iii) ©; and © are solved (iv) no literal in I';
is selected, (v) s & t (the atom A) is selected or no literal in I's is selected, is called a paramodulation
left inference. If, in addition, ro # lo the inference is an ordered paramodulation left inference. If, in
addition, lo & ro is reductive for (0, ||y — Ay,l & r)o, (v) is replaced by so = to (the atom Ao)
is selected or it is maximal in (O3 || s & t,T'2 = Ay)o (in (O3 || A,T2 — As)o) and no literal in [y is
selected and to ¥ so then the inference is called a superposition left inference.

Standard paramodulation is activated by the —ISPm option. Ordered paramodulation is activated by
the —TOPm option. Superposition left is activated by the —~I SpL option.

Note that no paramodulation/superposition inference is performed into the sort constraint. Hence, the
sort constraint is subject to the basicness restriction. In case all sort constraints of an initial clause store
were solved, the basicness restriction preserves completeness.

Definition 2.3.9 ((Ordered) Paramodulation/Superposition Right)
The inferences
@1||F1—)A1,l%7‘ @2||F2—)A2,S[ll]pzt

A
(@1,@2 ||F1,F2 — Al,AQ,S[p/T‘] ~l)o

and
0, ||F1—)A1,l%7“ 62||F2—)A27A[ll]p

T
(01,021, Ty = Ay, Ay, Alp/r])a

where (i) o is the mgu of I’ and I, (ii) I’ is not a variable, (iii) ©; and ©, are solved (iv) no literal in
Iy, Ty is selected is a paramodulation right inference. If, in addition, ro ¥ lo the inference is an ordered
paramodulation right inference. If, in addition, lo & ro is reductive for (04 || Ty = Ayl = r)o, so & to
(Ao) is reductive for (02 || Ty = Ag, s & t)o (O3 || T2 = Ag, A)o the inference is called a superposition
right inference.

2.3. INFERENCE AND REDUCTION RULES 23

Superposition right is activated by the —I SpR option.

In SPASS the parallel extensions of the above defined paramodulation/superposition left/right infer-
ences [6] are preferred. Whenever such an inference rule is applicable, we don’t only replace the initially
found occurrence of lo in the second clause by ra, but all occurrences. On the ground level the parallel re-
placement corresponds to an application of the inference rules exactly the way they are defined above plus
exhaustive application of non-unit rewriting with the left premise (Definition 2.3.21) on the conclusion.

Note that the ordering conditions of the above inference rules as well as the ordering conditions of the
inference rules defined below, are checked with respect to the found unifier. This is called the a posteriori
ordering check. For all inference rules that have ordering restrictions, SPASS first orders the clauses as they
are and only searches for inferences with respect to the found candidates (maximal literals, maximal sides
of equations). This is called the a priori ordering check. Then, after having found a second candidate clause
together with a unifier, the a posteriori check is evaluated. This second check is more expensive than the
first, because it has to be dynamically computed with respect to any found unifier. However, since most of
the time in a saturation prover is spent with reduction (see Section 2.2), the extra time for the a posteriori
check does not matter, but needs some effort for an (efficient) implementation.

The following example shows that the a posteriori check can in fact prevent the generation of extra
clauses. Consider the two clauses

= flz,y) = f(y,z)
— P(f(a,b))

The equation f(x,y) =~ f(y,z) cannot be oriented by any reduction ordering. So without an a pos-
teriori ordering check, we can derive the clause — P(f(b,a)) by a superposition right inference. Now
consider the very same example where we use an RPOS with precedence f > b > a and status(f) = left.
This implies f(b,a) >rpos f(a,b) and therefore the a posteriori ordering check for the potential super-
position right inference conclusion — P(f(b, a)) fails. No inference is possible between the above two
clauses.

Next we define three factoring rules, namely (ordered) factoring, equality factoring and merging paramod-
ulation. The different rules are needed to obtain completeness results with respect to different inference rule
sets. For the standard resolution/paramodulation calculus [42, 41, 7, 39] the factoring rule without ordering
restrictions suffices for completeness. For the ordered resolution/superposition calculus, ordered factoring
has to be combined with either equality factoring or merging paramodulation to obtain completeness [3].

Definition 2.3.10 ((Ordered) Factoring)
The inferences

@||F_)A7E1:E2
OT = A, Ei)o

z

and
6||F,E1,E2 — A

O[T, B — Ao

z

where (i) o is the mgu of E; and E», (ii) © is solved (iii) (£, E2 occur positively, E; is maximal and
no literal in I is selected) or (E7, E» occur negatively, F4 is maximal and no literal in I is selected or
E, is selected) are called ordered factoring right and ordered factoring left, respectively. If condition
(iii) is replaced by (E4, Eo occur positively and no literal in T is selected) or (E;, E» occur negatively,
E is selected or no literal in I is selected) the inferences are called factoring right and factoring left,
respectively.

Standard factoring is activated by the —ISFc option. Ordered factoring is activated by the —IOFc
option.

There is an overlap between Ordered Factoring defined above and Equality Factoring defined below,
because the rule ordered factoring also considers equations. We did so because for the ordered paramodu-
lation calculus with respect to our definitions Equality Factoring is not needed for completeness. The rule
Ordered Factoring suffices for completeness.

24 CHAPTER 2. SPASS

Definition 2.3.11 (Equality Factoring)
The inference

OIT > Ajl=~rl ~r
O, r~r = Al'=7r")o

z

where (i) o is the mgu of I and [, (ii) ro ¥ lo, (iii) © is solved, (iv) no literal in " is selected, (v) lo = ro
is a maximal occurrence in (O ||I' = Al ~ r,l' = r')o is called an equality factoring inference.

Equality factoring is activated by the ~IEQF option.

Definition 2.3.12 (Merging Paramodulation)
The inference

®1||F1—)A1,l%7‘ @2||F2—>A2,szt[l’]p,s'zt’

T
(01,02||T1, Ty = Ay, Ay, s & t[p/r], s = t')o

where (i) o is the composition of the mgu 7 of I and I’ and the mgu A of s and s'7, (ii) the clause
(01T = Ay,l = r)o is reductive for lo = ro, (iii) ©; and O, are solved, (iv) no literal in 'y, Ty is
selected, (v) the clause (O4 || T2 — Aqg, s & ¢, 8" = t')o is reductive for so = to, (vi) sT = t7, (vii) I is
not a variable is called a merging paramodulation inference.

Merging paramodulation is activated by the —IMPm option.

Definition 2.3.13 ((Ordered) Resolution)
The inference
@1 ||F1—)A1,E1 @2||E2,F2—)A2

A
(@17 (“)2 || F],FQ — Al, AQ)O’

where (i) o is the mgu of E; and Fj, (i) ©®; and © are solved, (iii) no literal in 'y is selected, (iv) E;o is
strictly maximal in (0, || Ty — Ay, Eq)o, (v) the atom Esyo is selected or it is maximal in (O, || Fy, Ty —
Ay)o and no literal in Iy is selected is called ordered resolution. If conditions (iv), (v) are replaced by E-
is selected or no literal is selected in ', the inference is called resolution.

Standard resolution is activated by the —I SRe option. Ordered resolution is activated by the —IORe
option. If any of the options is set to 2, equations are also considered for the inferences.

If, in Definition 2.3.13, one of the parent clauses of the inference is a unit, the inference is called
(ordered) unit resolution. The standard resolution rule is an instance of this rule if we omit the conditions
(i1)—(iv) and restrict our attention to non-equational atoms.

Definition 2.3.14 ((Ordered) Hyper Resolution)
The inference
(0,01,....0,] =2 AA,...,Ay)0

z

(i) o is the simultaneous mgu of E1, ..., E,,, E{, ..., E], (ii) © as well as all ©; are solved, (iii) all Eo are
strictly maximal in (0, || T'; — A, E})o is called an ordered hyper resolution inference. If condition (iii)
is dropped, the inference is called a hyper resolution inference.

Standard hyper resolution is activated by the —I SHy option. Ordered hyper resolution is activated by
the —TOHy option.

In the application of the inference rule hyper resolution as well as the inference rules sort resolution
(Definition 2.3.3) and empty sort (Definition 2.3.4) more than two parent clauses are involved, in general.
So the search for candidate clauses gets more complicated. In particular, an appropriate ordering of the
literals E4, .. ., E, for searching partner clauses can be indispensable for efficiency reasons. For example,
if we search partners for the literals P(z), Q(a, f(z)) it may be the case that we find thousand potential
partners for P(z) (all clauses with a positive (maximal) literal P(¢)) but only a few for Q(a, f(z)) (only
clauses with a positive (maximal) literal Q(a, f(t)) or with variable occurrences at the positions of a, f(t)).

2.3. INFERENCE AND REDUCTION RULES 25

So starting with @ (a, f(x)) for partner search is the more efficient way, since it will potentially provide
instantiation of 2 when we subsequently search for partners of P(x). So a good heuristic is to proceed at
any time of the partner search with the literals that has a maximal number of symbols with respect to the
already established partial unifier. Nevertheless, please note that the number of hyper resolvents grows in
the worst case exponentially in n.

2.3.4 Reduction Rules

Our philosophy is that reduction rules are at the heart of successful automated theorem proving. The aim
of reduction rules is to transform clauses (or even formulas see [38]) in simpler ones. So whereas inference
rules are at the search side of automated theorem proving, reduction rules are at the computation side.

Definition 2.3.15 (Duplicate/Trivial Literal Elimination)
The reductions
O|T - AEE

R Ol - AE

and
R O|T,E,E— A
O|IT,E— A

and
R 0,4 AT = A
0,A|IT = A

are called duplicate literal eliminations. The reductions

O, t~t— A

R O - A

and
[t~ s —

R O

where for the final variant we assume that ¢ and s are unifiable, are called trivial literal eliminations.

Duplicate/trivial literal elmination are both activated by the ~-RObv option.

Please recall that although trivial literal elimination can be simulated by equality resolution or factoring,
for these inference rules to apply a clause must first be selected as Given clause. Reduction rules like
duplicate or trivial literal elimination apply to all (newly) generated clauses.

Definition 2.3.16 (Subsumption Deletion)
The reduction

@1||F1—)A1 @2||F2—)A2

R
@1 ||F1 — Al

where Oy || s — Ay is subsumed by ©1 || 'y — A; is called subsumption deletion.

Subsumption deletion is activated by the ~RFSub and ~RBSub option for forward and backward
subsumtion, respectively (see Section refsecfirstsimpprover).

Testing subsumption between two clauses is an NP-complete problem [19]. Nevertheless, subsumption
is indispensable for saturation based theorem proving as we already discussed in Section 2.2. Hence, there
exist a variety of papers presenting algorithms that show a polynomial behavior on certain subclasses of
clauses (e.g., [21]) or that introduce specific data structures to speed up the subsumption test in practice
(e.g., [46, 50]). Many of todays provers use a variant of the [47] algorithm for the subsumption test.
Basically, the algorithm tries to find for every literal in ©1 || I'; — A adifferentinstance in Oy || Ty — A,
such that all single instantiations are compatible, i.e., identical variables are mapped to identical terms. This
simple version is not tractable in practice. Prefilters must be added to the algorithm that make it tractable

26 CHAPTER 2. SPASS

in practice. In SPASS we introduced two filters [37]. The first filter is based on the size of the clauses. A
necessary condition for a subsumption deletion application over multisets is that size(0 ||} — Ap) <
size(Oq ||T2 — Ay). Since the size of clauses is usually needed for selection heuristics (see the discussion
on the choose function in Section 2.2), the size of a clause is already stored in a clause data structure and
therefore this test is almost for free. For every two clauses passing this test, the second prefilter checks
whether for every literal in @, || T’y — A; there exists some instance literal in Oy ||y — A at all. So
we consider the literals in @4 ||’y — A; separately and don’t check compatibility between the different
substitutions. This check is again a necessary condition for the subsumption test to succeed and can be
done in polynomial time. Clauses passing these two tests are then subject to the Stillman algorithm. In
practice, more than 95% of all subsumption tests can already be rejected by the two filters.

Note that there is a subtle difference between multiset subsumption (considered here) and set subsump-
tion. The clause — Q(a,x), Q(y,b) subsumes the clause — ((a, b) if we consider clauses to be sets, but
does not if we consider clauses to be multisets. Therefore, in our version of the Stillman algorithm we
require matched literals to be different.

When integrated into a prover, subsumption deletion is not an operation applied to two clauses but
applied to two sets of clauses or a clause and a set of clauses (see Table 2.1 and Table 2.3). The former test
can be reduced to the latter by considering the clauses in one set separately. So it remains to test whether
some clause C' subsumes some clause in a set NV or is subsumed by some clause in N. We already argued
that the set NV (in particular the Us set) can become very large. Then it is in practice intractable to traverse
all clauses in N and then to apply the subsumption test to each clause. An additional filter is needed:
Indexing. Indexing is the data base technology of automated theorem proving. The crucial operations
provided by an index of a clause store N are: compute all clauses that include an atom that is an instance/a
generalization/unifiable with some query atom. Typically, the result of such a query consists of the clauses
together with the found atom. So in order to test whether some clause C' is subsumed by a clause in an
indexed clause store N, one picks a literal from C' that has a low probability of being subsumed, searches
the index for generalizations of that literal and then tests C' and the found clauses for subsumption. Since
the query and the result literal are already found, using appropriate data structures of SPASS it is sufficient
to test the clauses without these literals. We use a more general subsumption test with the possibility to
hide at least one literal in each clause and we are able to keep the bindings of an indexing query result. This
extended test is also needed for the reduction rules matching replacement resolution (Definition 2.3.20) and
non-unit rewriting (Definition 2.3.21).

Definition 2.3.17 (Condensation)
The reduction

@1 ||F1 — Al
(“)2 ||F2 — AQ

where O2 || Ty — As subsumes O [|[T'; — A; and ©2 ||y — A, is derived from ©1 ||y — A by
instantiation and (exhaustive) application of trivial literal elimination is called condensation.

R

Condensation is activated by the ~-RCon option.

In the literature condensation is often defined on the basis of factoring applications. From an imple-
mentation point of view the above definition is much sharper, because it only suggests matchers to generate
duplicate literals that can be eventually removed, not unifiers as suggested by a definition based on factor-
ing. All these candidate instantiation substitutions can be effectively computed by subsequently searching
for matchers o such that Eyo = E, for Ey, Es € T’y (respectively for ©1, Aq) and then testing whether
(01 ||y \ {E2} = Ay)o subsumes ©4 || Ty — Aj. This idea leads to a procedure that is more efficient
than the factoring based algorithm suggested by [28] and related to the techniques presented by [20].

Definition 2.3.18 (Tautology Deletion)
The reduction

r— A
R@H—)

where = O || — A is called rautology deletion.

2.3. INFERENCE AND REDUCTION RULES 27

The above rule is sometimes also called semantic tautology deletion, since it is based on a semantic
tautology test. This test corresponds to testing unsatisfiability of a set of ground literals. If we keep in
mind that any literal can be coded as an (dis)equation, in order to test unsatisfiability of a set of ground
literals it is sufficient to test congruence closure with respect to the positive equations. This can be done in
polynomial time [14]. There are certain weaker syntactic conditions that can be checked in linear time:

O|T,E—-AE

R
or
R 0,A|T—>AA
or
OIT = Attt
o Ol A,

In SpPASS the syntactic as well as the semantic check is implemented (see Appendix 2.5). For the semantic
test we adopted the algorithm presented by [14] to our data structures. These conditions are implemented by
nearly all todays theorem provers. The semantic check requires appropriate data structures for an efficient
implementation. It is contained in the provers E, Saturate and SPASS.

Tautology deletion is activated by the —-RTaut option. If the option is set to 1 only syntactic tautologies
are deleted and if the option is set to 2 also the semantic test is performed.

Definition 2.3.19 (Conflict)
The reduction

R O

where ©1 || T1 = Aq,...,0,]||T, = A, = Ois called conflict.

Even if n is fixed, the rule conflict is not effective, in general. It basically solves the general unsatis-
fiability problem of first-order logic. The rule sort simplification is an effective instance of this rule. Two
further effective instantiations of this rule that are not related to specific theories are implemented in todays
provers: unit conflict and the terminator [1]. 7 The former is the rule

|| —)El ||E2—)
O

R

such that E; and E5 are unifiable. It seems that this rule is superfluous since it only detects a contra-
diction between two unit clauses. However, since we consider unification between E; and E», this rule
cannot be simulated by, for example, matching replacement resolution (see Definition 2.3.20), but only by
a resolution step. In the context of problems where the majority of generated clauses are units (e.g., unit
equational problems or condensed detachment problems [31]) the probability that both clauses are selected
for inferences can become arbitrarily low. Then it can pay off to add this reduction rule that implements a
(global) one step search for the empty clause.

The terminator is a generalization of unit conflict and a restriction of the general conflict rule to at most
k non-unit clauses out of the n clauses, k fixed. For some given, finite set of clauses it is decidable whether
we can derive the empty clause by resolution, if any derivation is restricted to contain at most £ non-unit
clauses. This is easy to see, since there are only finitely many different derivations using k non-unit clauses
and resolving with a unit clause strictly reduces the length of the resolvent compared to the maximal length
of one of its parent clauses. That’s the terminator. In practice the terminator can be useful with values
k < 3. Larger values rarely make sense, since the number of clauses that have to be considered for this rule
grows exponentially in k times the length of the non-unit clauses. Note that if the terminator is applied to
a Horn clause store without equality, it can be turned into a complete refutation procedure by subsequently
increasing n.

"Hasta la vista baby!

28 CHAPTER 2. SPASS

As an exception from all other reduction rules, in practice the terminator is integrated in the search
procedure like an inference rule, not like a reduction rule. It is too expensive to apply the terminator to all
newly generated clauses and often it does not pay off. So the terminator is solely applied to the selected
Given clauses, if it is activated.

Unit conflict is activated by the ~RUnC option. The terminator is activated by the ~-RTer=<n> option,
where n specifies the number of considered non-unit clauses.

Definition 2.3.20 (Matching Replacement Resolution)
The reductions

O1||IT1 = A1, E1 O3||T9, By = Ay

R
(“)] ||F1—)A1,E1
O[Ty = Ay
and
R @1||F1,E1 —)Al @2||F2 —)AQ,EQ
@1 ||F1,E1 —)Al
®2||F2 —)AQ
and
R O[Ty = Ay, Ay Oy, Ay || Ty — Ay

@1 ||F1 — Al,Al
@2 ||F2 — A2

where (i) E10 = Ey (A10 = A, for the third variant), (ii) @10 C ©5, I'io C I's, Ao C A are called
matching replacement resolutions.

Matching replacement resolution is activated by the -RFMRR and —RBMRR option, for the forward and
backward direction, respectively.

Matching replacement resolution is a restricted variant of replacement resolution, itself a restricted
form of resolution where the conclusion must subsume one of its parent clauses. For matching replacement
resolution we restrict the unifier of the complementary literals computed for replacement resolution to be
a matcher. This speeds up the applicability test significantly.

The third variant of the rule that applies to the sort constraint cannot be simulated by sort simplification
(Definition 2.3.5), because it also considers clauses that are not declarations. On the other hand, matching
replacement resolution can also not simulate sort simplification. Consider the clauses

T(x), S(f(x)),O1 [Th = Ay
R(x)[= S(f(x))
T(x)[— R(x)

The negative occurrence of S(f(z)) in the first clause cannot be eliminated by matching replacement
resolution but by sort simplification.

Definition 2.3.21 (Non-Unit Rewriting)
The reductions

@1||F1 —)Al,SNt @2||F2,E[S’]p—)A2

R (“)]HF]—)AhS%t
@2 || FgE[p/tU] — AQ
and
R @1||F1—)A1,S%t @2||F2—)A2,E[Sl]p

0.l = A,s~t
0, Ty — A27E[p/t0]

where (i) so = s', (il) s = t, (ili)) ©10 C @5, 1o C T'y, Ajo C A, are called non-unit rewriting.

2.3. INFERENCE AND REDUCTION RULES 29

Non-unit rewriting and unit rewritung (see below) are activated by the —-RFRew and ~RBRew option,
for the forward and backward direction, respectively.

The ordering restrictions for non-unit rewriting are a priori ordering restrictions, i.e., we do not compare
the terms s and ¢ with respect to the found matcher o. The ordering test with respect to ¢ is sharper, but
an efficient implementation of this check is non-trivial because it requires a tight connection between
indexing, ordering computation and subsumption. Therefore, SPASS uses the a priori ordering check, i.e.,
SpPASS verifies s > t. See also the discussion on page 23.

Definition 2.3.22 (Unit Rewriting)
The reductions

| = s~t | E[s],—

R
|| > s=~t
| Elp/to] —
and
R | =»s~t || = E[s],
|| > s=t
| = Elp/to]

where (i) so = §', (ii) so > to, are called unit rewriting.

Unit rewriting is an instance of the second version of non-unit rewriting where all ©;, T';, A; are empty.
We mention it here explicitely, because it is the style of rewriting used in purely equational completion,
a theorem proving discipline of its own. Furthermore, the a posteriori ordering check is much easier to
implement, because we need no subsumption check. Actually, it is implemented in SPASS.

In practice the rewriting reductions are among the most expensive reductions. Note that any subterm
of any clause has to be considered and that subsequent rewriting steps to the same clause are common.
Therefore, many provers don’t use the full power of non-unit rewriting, but restrict the left clause to be a
positive unit equation. They reduce non-unit clauses by positive unit equations.

Even the a posteriori check, condition (ii), can be further refined. Consider an equation where the
left and right hand side don’t share any variables. Then the a posteriori check will typically fail but may
succeed by appropriate further instantiations. For example the equation f(z,y) & g(z) cannot be oriented
and hence the equation f(a,b) = a cannot be rewritten by unit rewriting using the first equation. Now
assume a RPOS with precedence f > g > a > b. Then the equation f(a, b) = g(z) (the result of matching
f(z,y) with f(a,b)) can be turned into an oriented equation by instantiating z with a or b. This enables
rewriting of f(a,b) to g(a) or g(b). In general it is sufficient to consider the minimal constant and the
crucial extra variables for further instantiation. Note also that the equation f(z,y) = ¢(z) subsumes an
equation like f(z,y) =~ ¢(y) that is oriented and can therefore be used for rewriting in a straightforward
way. This refinement is not implemented in SPASS Version 2.0 but remains an option for further releases.

Another way to solve the problem of unorientable equations because of extra variables is to split equa-
tions. Given some equation s & t where vars(s) € vars(t) and vars(t) € vars(s), we introduce a new
function symbol h where the arity of h is exactly |vars(s) Nwvars(t)|. If {z1, ..., z,} = vars(s)Nvars(t)
then the equation s = ¢ is replaced by the equations s =~ h(z1,...,x,) and t = h(z1,...,z,). Given
a KBO or RPOS and a precedence where the new symbol h is smaller than the top symbols of s and ¢,
both introduced equations are oriented from left to right. In order to obtain a complete calculus that in-
cludes splitting of equations splitting must not be applied infinitely many times. Splitting equations is not
implemented in SPASS Version 2.0.

Definition 2.3.23 (Contextual Rewriting)
The reductions
01T = A, st Oy Ty, E[s'], = Ay
01T = Ay, st
@2 || FQ,E[p/tU] - Az

R

30 CHAPTER 2. SPASS

and
@1||F1—)A178Nt @2||F2—)A2,E[S’]p

(“)] ||F] — A17S ~t
62 || FQ — A27E[p/t0']

R

where (i) so = s/, (ii) s = t, (iii) s & t is strictly maximal in ©1 ||} — Aj,s =~ t, (iv) for any
term ¢ in Oy ||y — Ap,s = t, s = t', (v) if E[s'], does not occur negatively, so ~ to < E[s'],,
(vi) |= fred(©y — S(t')) for all sort atoms S(#') € sortsimp(©10), (vil) | fred(T'y — E) for all atoms
E € T'yo, (viil) |= fred(E — A,) for all atoms E € Aqo are called contextual rewriting.

The expression sortsimp(©,0) denotes the sort constraint @0 after exhaustive application of the
rule sort simplification. The function fred, see Table 2.5, (recursively) applies the reduction rules to the
constructed subclauses before they are checked as tautologies. The performance of fred, i.e. which rules
are actually tested/applied, determines the strength as well as the cost for testing and applying contectual
rewriting. Our current idea is to use all reduction rules except contextual rewriting. We do not test/apply
contextual rewriting recursively. Contextual rewriting is not implemented in SPASS Version 2.0 but will be
included in the next release. We already have a prototype implementation of the rule.

The final reduction rule exploits particular equations of the form x = ¢ (called assignment equations),
where x does not occur in ¢ nor in the rest of the clause. Negative equations of this form can simply be
removed from a clause. In order to remove positive assignment equations the domain structure shared by
any model of the current clause store has to be examined. In particular, we exploit the case that the domain
is non-trivial. Therefore, before this rule can be applied, certain properties of any clause store model must
be checked. This can, e.g., be done by a sufficient criterion that can be tested syntactically.

Definition 2.3.24 (Assignment Equation Deletion)
Let N be the current clause store. The reductions

Ollz~t,[- A
O - A

R

and
OT »z~t A

R OT - A

where for both variations of the rule we assume (i) z ¢ vars(t), (i) z ¢ vars(©||T — A) and for
the second variant, where we remove a positive equation, we assume in addition that |D| > 1 for any
interpretation M with M |= N, are called assignment equation deletion.

Assignment equation deletion is activated by the ~RAED option. If ~RAED is set to 1 only the first
variant is applied, if set to 2 both variants are used.

For the elimination of the positive equation to be sound it is necessary to guarantee a non-trivial domain
for any model of the current clause store. A syntactic condition is the existence of a clause || s ~ t —
where s and ¢ are arbitrary. If such a clause is contained in the clause store, the domain of any model is
non-trivial and we can apply the second variant of the rule.

2.3.5 Splitting

The effect of a splitting rule application is not only to extend the current clause store but also to modify
and extend the current clause store collection.

Definition 2.3.25 (Splitting)
The inference

@1,@2 || Fl,F2 — Al,AQ
O1ITT = Ay | Oy)|Ty = Ay

where vars(©1 ||T1 — A1) Nwars(Os || T2 = As) = @ and Ay # 0, Ay # () is called splitting.

S

2.3. INFERENCE AND REDUCTION RULES 31

Splitting is activated by the —Splits=<n> option, where n specifies the overall number of splitting
applications in a SPASS run. Unlimited application of the rule can be achieved by choosing —1 for n.

Without the condition that the two split clauses must not share variables, Splitting is very much like
the [-rule of free variable tableau. Since the clauses don’t share variables, the two cases are completely
independent and the derived clauses can be used for simplification/reduction without any restriction. For
example, both clauses subsume the parent clause.

In case the first split part is ground, i.e., vars(S(t) || E — E') = 0, where S(t) = S1(t1), ..., Sn(tn),

E=E,...,E,andE' = E}, ..., Ejand1<i<n,1<j<m,1<Ek<Iitis very useful to add the

3 3 3

negation of the first split clause to the second part

S(t),(")z ||E7F2 —>F7A2
@2” F2—)A2
SN s T | —=Sit:)
Sit)||E— FE'
o]l -

| B~

S

All these additional unit clauses can help a lot in reducing the clause set of the second part (see match-
ing replacement resolution, Definition 2.3.20 or non-unit rewriting, Definition 2.3.21). In a purely propo-
sitional setting, a calculus solely based on unit conflict (see Definition 2.3.19) and extended splitting can
polynomially simulate truth tables, whereas a calculus based on unit conflict and the simple splitting rule
cannot [9].

Of course, for any first part split clause we could add its negation to the second part. However, in
general this leads to the introduction of new Skolem constants, and in practice this tends to extend the
search space for the second part. Note that in this case the ground units resulting from the negated first
part cannot be used for matching replacement resolutions, because the introduced Skolem constants are
new. As an alternative one could also record the ground instances of the variables in the first split clause
used in the refutation of the first part and then add their negation as a disjunct to the second part. But it is
questionable whether such an effort pays off in practice.

Splitting itself often tends to generate a huge search tree, so additional refinements are necessary. There-
fore, we required that A, and A, are non-empty in Definition 2.3.25. So we only split non-Horn clauses
into clauses having strictly less positive literals. The rationale behind this comes from the propositional
level. For a set of propositional Horn clauses, satisfiability can be decided in linear time [13], whereas
satisfiability for arbitrary clauses is an NP-complete problem. The reduction rule matching replacement
resolution (Definition 2.3.20) is also a decision procedure for propositional Horn clauses (although it results
in a quadratic time implementation). Hence, non-Horn splitting and matching replacement resolution are a
reasonable decision procedure for propositional clauses. In case a clause can be split into a propositional
part (no variables) and a non-propositional one, it is very useful to split the clause that way and to add the
negation of the propositional part to the second as indicated before.

An alternative to an explicit case analysis is to split clauses by the introduction of new propositional
symbols. For example, the clause
()| f(z) ~ y = Q(z,5), Q(a, 2)

can be replaced by the clauses

S@) || f(z) =y, A= Q(z,z)
H B—Q(a,z)

—A,B

where A, B are new propositional symbols. The replacement preserves satisfiability of the current clause
store and if it is only applied finitely many often during a proof attempt it also preserves completeness.
If A, B are minimal in the ordering, no inference on A, B will be performed as long as other literals are
contained in the respective clauses. So the different parts of the original clause don’t interfere as long as
they are completely resolved. This simulates splitting without the need to extend the notion of a clause
store to a collection of clause stores and hence a less complicated implementation. The second advantage
of this approach is that it does not introduce the inherent redundancy of an explicit splitting approach.
The main disadvantage of this splitting style is that none of the generated clauses can be directly used for

32 CHAPTER 2. SPASS

1 PROVER(N)

2 Wo:=0;

3 Us :=ired(N,N);

4 While (Us# 0 and O ¢ Us) {

5 (Given, Us) := choose(Us);

6 Wo = Wo U {Given};

7 New = inf (Given, Wo);

8 (New, Wo, Us) := ired(New, Wo, Us);
9 }
10 If (Us = 0) then print “Completion Found”;
11 If (O € Us) then print “Proof Found”;

Table 2.4: The Overall Loop without Splitting

reductions, because the propositional variables A, B must be new. This splitting style is available in the
provers Saturate and Vampire, explicit splitting (Definition 2.3.25) is available in SPASS.

2.4 Global Design Decisions

2.4.1 Main-Loop

The main-loop without splitting, Table 2.4, is a generalization of the main-loop introduced in Section 2.2,
Table 2.1.

Compared to the simple, resolution-based prover, all inferences are computed in the extra function inf
and (inter)reduction takes place in the function #red. In the automatic mode of SPASS, the inference rules
applied in inf are chosen after an analysis of the input problem, such that the resultion calculus is sound
and complete. For example, if the input problem contains no equality, the superposition/paramodulation
rules are not activated or if the input problem is Horn, factoring rules are not needed. In Appendix 2.5.1 we
sum up all SPASS options needed to (de)activate the inference/reduction rules introduced in Section 2.3.
Please note that a manual setting setting of inference/reduction rules can result in an unsound or incomplete
calculus. SPASS does not verify your manual settings.

The combination of the reduction rules gets more subtle compared to the combination of subsump-
tion/tautology deletion presented in Section 2.2. The function ired serves this purpose, Table 2.6. Please
recall that the terminator is integrated like an inference rule and hence does not show up. First, line 4,
any newly derived clause is forward reduced with respect to the sets Wo and Us. The function fred is
presented in detail in Table 2.5. The ordering of the tested forward reductions is determined by potential
dependencies between the rules and by their respective implementation costs.

We don’t consider the lazy reduction approach introduced in Section 2.2, Table 2.3. Tt is a bit tricky
but not too difficult to develop it out of the presented full reduction algorithms. Inside the algorithms a
redundant clause is not always directly deleted, but represented by the constant T.

In practice, tautology deletion (Table 2.5, line 2), elimination of trivial literals (line 4), condensation
(line 5) and assignment equation deletion (line 6) are cheap operations, because only the derived clause
has to be considered for testing their applicability. This is not completely true for the assignment equation
deletion (see Definition 2.3.24), but the suggested syntactic domain size criterion can be tested once at the
beginning of the search process, so no extra effort is necessary. Clauses that pass these tests, are checked for
forward subsumption with respect to Wo and Us (line 7) and for forward rewriting (line 8) where Hit is set
to true, if a rewriting step actually took place. If a rewriting step is performed, the rules tautology deletion,

2.4. GLOBAL DESIGN DECISIONS

1 fred(Given, Wo, Us)

2 Given = taut(Given);
3 If (Given = T) then return(T);
4 Given = obv(Given);
5 Given := cond(Given);
6 Given := aed(Given, Wo, Us);
7 If (fsub(Given, Wo, Us)) then return(T);
8 (Hit, Given) := frew(Given, Wo, Us);
9 If (Hit) then {
10 Given := taut(Given)
11 If (Given = T) then return(T);
12 Given = obv(Given);
13 Given := cond(Given);
14 If (fsub(Given, Wo, Us)) then return(T);
15)
16 Given := ssi(Given, Wo, Us);
17 Given := fmrr(Given, Wo, Us);
18 Given := unc(Given, Wo, Us);
19 Given := sst(Given, Wo, Us);
20 return(Given);

Table 2.5: Forward Reduction

34 CHAPTER 2. SPASS

1 ired(New, Wo, Us)
2 While (New # () {
3 (Given, New) := choose(New);

4 Given := fred(Given, Wo, Us);

5 If (Given # T) then {

6 (New, Wo, Us) := bsub(Given, New, Wo, Us);
7 (New, Wo, Us) := bmrr(Given, New, Wo, Us);
8 (New, Wo, Us) := brew(Given, New, Wo, Us);
9 Us = Us U {Given};

10 }

1)
12 return((), Wo, Us);

Table 2.6: Interreduction

elimination of duplicate/trivial literals, condensation and forward subsumption are checked a second time
(lines 10-14). Below is a simple example that demonstrates dependencies between the different reduction
rules.

o 309, B R UCIN S
: Ti

—~

~

—~

8

<

=

The clauses 3—6 are completely interreduced with respect to the reductions presented in Section 2.3.
Rewriting with clause 1 into clause 3 generates a syntactic tautology, rewriting with clause 1 into clause 4
enables a further condensation step on clause 4 resulting in 4': P(b) — and rewriting clause 5 with clause 2
produces 5':P(b), P(¢) — (assuming a > b) that is forward subsumed by clause 4'. After rewriting with
clause 1, duplicate literal elimination can be applied to clause 6.

Finally the reductions sort simplification (line 16), forward clause reduction (line 17), unit conflict
(line 18) and static soft typing are tested. These reduction rules don’t enable further applications of other
rules, because they either strictly reduce the number of literals or reduce the clause to T (static soft typing).
In order to test the applicability of these rules the overall clause stores Wo and Us must be considered.

All clauses that pass forward reduction (Table 2.6, line 4) are used for back reduction (lines 6-8) and
are finally added to the Us set (line 9). Backward subsumption (line 6) deletes all clauses from Wo and Us
that are subsumed by Given. Backward matching replacement resolution (line 7) tests all clauses in Wo
and Us for matching replacement resolution with Given. Reduced clauses are always deleted from their
respective source set and added to New. Back rewriting (line 8) behaves the same, but tests rewriting. The
clauses in New are not directly tested for all these reduction rules. They are tested after having entered the
Us set. This is motivated by efficiency issues which we will discuss below.

The function choose (Table 2.6, line 3) selects a clause with the smallest number of symbols. Small
clauses have a higher probability to reduce other clauses. For example, a subsuming clause must have
fewer symbols (consider the discussion after Definition 2.3.16) than the clause it subsumes. For many
other reductions like rewriting, selecting small clauses is still a good heuristic because the size ordering of
terms is often included in the reduction ordering.

Note that a clause can be selected several times as Given clause in the while-loop of the interreduction

2.4. GLOBAL DESIGN DECISIONS 35

1 PROVER(N)
2 Wo =0
3 Us = ired(N, N);
4 Stack = emptystack();
5 While (Us # 0 and (O ¢ Us or not stackempty(Stack))) {
6 If (O € Us) then
7 (Stack, Wo, Us) := backtrack(Stack, Wo, Us);
8 else {
9 (Given, Us) := choose(Us);
10 If (splittable(Given)) then {
11 New := firstsplitcase(Given);
12 Stack := push(Stack, secondsplitcase(Given));
13 }
14 else {
15 Wo = Wo U {Given};
16 New := inf(Given, Wo);
17 }
18 (New, Wo, Us) = ired(New, Wo, Us);
19 }
20)
21 TIf (Us = 0) then print “Completion Found™;
22 If (O € Us) then print “Proof Found”;

Table 2.7: The Overall Loop with Splitting

algorithm, if it is successfully reduced several times. Selecting small Given clauses tries to minimize the
number of such situations.

The main-loop presented in Table 2.7 extends the already discussed main-loop of Table 2.4 with splitting.
Whether SPASS applies splitting or not depends on the input problem® and can be controlled by the splitting
option (see Appendix 2.5.2). In case splitting is not applied, executing the main-loop in Table 2.7 or
Table 2.4 results in exactly the same behavior.

If splitting is possible (Table 2.7, line 10) it is preferred over all other inferences. The rationale behind
this decision is that a splitting application results in a strictly smaller clause store collection. The explo-
ration of the binary tree generated by the splitting rule is performed by a standard depth-first, backtracking
search (lines 7, 11, 12). Compared to the SPASS Versions 1.0.z, Version 2.0 has a more sophisticated
splitting clause selection. It selects the clause with the highest unit reduction potential after the split.

All functions implementing inference/reduction operations have to be refined and must also consider
the split level of a clause. Initially, all clauses have split level zero and the current split level is zero. Then
any clause generated by a splitting inference gets the current split level plus one as its split level and the
current split level is incremented. Clauses generated by all other inference/reduction rules get the maximal
split level of their parent clauses as their new split level. Backtracking resets the current split level to the
split level of the activated branch. But what happens if a clause C' is now subsumed by a clause D with a

8SpAass only splits non-Horn clauses, see Definition 2.3.25.

36 CHAPTER 2. SPASS

greater split level? We must not delete C', but only remove it from the current clause store, store it at D’s
split level on the split stack and reinsert it if backtracking considers that level. Clauses that are rewritten or
reduced by clauses with a higher split level must be copied and also kept appropriately on the split stack.

Basically that is all to integrate splitting into a saturation based prover. Nevertheless, some refinements
are possible. First, since all clauses have a split level, also the empty clause has a split level. This level
indicates where backtracking should start to consider open branches and all branches at a higher split level
can be discarded. For example, if we derive the empty clause at split level zero, then we can immediately
stop and don’t have to consider any further possibly open branches. Second, if we don’t only store the
split level with each clause but also a bit array with length of the split level, the following improvement
is possible. The bit array is updated together with the split level and indicates every level that contributed
to the clause. If we now derive an empty clause at some split level and detect that it does not depend on
some earlier levels above the previous backtracking level that have open branches left, we can erase these
levels, their split clauses and all clauses depending on these. We call this operation branch condensation
and it is indispensable to make splitting feasible in practice. In the Al literature branch condensation it
often referred to as dependency directed backtracking.

In Section 2.2 we also introduced a main-loop with lazy reduction, Table 2.3. Although we did not present
it here, lazy reduction is also possible with the extended inference rule set and it is not too difficult to think
of lazy extensions of the main-loops according to Table 2.3. Therefore, we omitted an extra presentation
here.

2.4.2 Proof Documentation/Checking

By default, SPASS does not output a proof in case it derives the (final) empty clause nor does SPASS provide
a final saturated set of clauses, in case all possible inferences have been performed without finding an empty
clause. This can be changed by activating the proof documentation option (see Appendix 2.5.1).

Proof documentation is possible by implicitly or explicitly storing all clauses during the overall search
process that might contribute to a proof. As a consequence, a run with proof documentation has a higher
memory consumption and thus causes the prover to slow down. This effect is further supported by splitting
applications, where all clauses from all significant branches must be kept as well. Therefore, in favor of
execution speed, by default SPASS does not output proofs (saturated clause stores). Nevertheless, SPASS
can handle proofs of several hundred thousand steps in reasonable time.

Automated proof checking is a very important topic in any theorem proving project. The inference/reduction
rules are non-trivial to (efficiently) implement, so there is a high potential for bugs. This is also shown by
several a posteriori disqualifications at the CASC theorem proving competitions happened so far [49].
Proofs of automated theorem provers cannot be checked by hand in practice. So there is a need for auto-
mated proof checking. Our solution is a separately implemented proof checker. The checker takes a proof
and starts with an analysis of the splitting rule applications. The checker generates the binary tree resulting
from subsequent splitting inference applications and tests whether all branches contain an empty clause,
whether the split level assignments are done correctly and whether the splitting inference rule is applied in
a sound way. Then the checker generates for every inference/reduction rule application the corresponding
first-order theorem proving problem and provides it for a separate prover. The single step proof problems
can typically be easily solved if they are correct. This way, it is possible to validate proofs up to several
hundred thousand steps in reasonable time and that completely automatically. As such a proof checker
solely relies on logical implication, it supports most of today’s saturation-based inference systems and is
robust against modifications to inference/reduction rules.

2.4.3 Data Structures and Algorithms

In Section 2.2 we discussed a simple prover based on resolution. In Section 2.4.1 we extended this prover
to cope with the inference/reduction rules of SPASS. For our simple resolution-based prover we already
argued that

e the Us set grows very fast,

2.4. GLOBAL DESIGN DECISIONS 37

e reductions are indispensable to reduce the number of clauses in the Us set
e most of the time is spent with reductions.

The situation is getting even more dramatic if we consider the inference rules for equality introduced in
Section 2.3 and the suggested main-loops (Table 2.4, Table 2.7). For example, if the selected Given clause
C in the main-loop contains a positive equation, then any non-variable subterm of any literal of a clause in
Wo that unifies with the left or right hand side of the equation generates a new clause by paramodulation. If
the considered left hand side is a variable then any subterm of any different clause unifies with the variable
and produces a new clause via paramodulation. An example for such a clause is one that forces a finite,
two element domain: — = =~ a,x = b. Ordering restrictions improve the situation (not for the finite
domain clause), but we nevertheless have to find reasonable ways to store large Us sets and to efficiently
find reduction/inference partners.

There are several solutions to these problems. We now focus on one solution and discuss alternatives
at the end of this section. The first design decision in SPASS is to store all atoms in Wo, Us in a shared
way, respectively. That means every occurrence of any subterm of an atom in Us (Wo) exists exactly once
and is shared by all superterms containing this subterm. The idea is to save space and to keep indexing
structures small. As all terms are shared, any subterm is only submitted once to the indexing structure
that provides retrieval for inferences/reductions. This works fine for ground terms, but in general clauses
contain variables that are considered different if they occur in different clauses. Therefore, almost nothing
can be shared between two different non-ground clauses. The solution to this problem is our second design
decision that is to normalize variables of clauses. For any clause, if the clause is considered from left to
right as a sequence of its literals, the variables are named with respect to their occurrence according to a
fixed variable sequence. After normalization there is a high probability that clauses with variables share
non-ground subterms. This is confirmed by experiments.

A consequence of this decision is that algorithms for unification/matching/generalization have to keep
track of this fact. For example, we have variants of the unification algorithm that use two substitutions
(which are called contexts inside the unification algorithm) in order to store bindings between variables for
two terms stemming from two different clauses in an appropriate way.’

Putting newly generated clauses into a sharing/indexing data structure is extra effort. Since newly
generated clauses have a high probability of being subsumed or reduced by already existing clauses, the
New set (Table 2.4, 2.7, 2.6) is kept unshared. Furthermore, reductions are (by definition) destructive, so
they can only be efficiently applied to unshared clauses. Shared clauses have to be extracted/copied from
the sharing structure before modification, because destructive manipulation of shared terms may also effect
other clauses where the considered reduction is not permitted. So any forward reduction to the Given
clause inside the interreduction algorithm (Table 2.6) is done destructively, but before a back reduction
operation can actually be performed (lines 6-8) the clause has to be extracted/copied from the Wo, Us
sharing structure first. As it is unshared afterwards, it can be moved to the New set. At line 9 of the ired
function (Table 2.6), the Given clause is inserted into the sharing/indexing structures of the Us set.

An alternative solution not implemented in SPASS is to completely abstract from variable positions,
e.g., by introducing one dummy variable for all occurring variables. We build one or several atom/term
trees that represent all atoms/terms without considering variables to be different. These trees are then linked
to the real atoms/terms and efficient algorithms can be devised to search for candidate atoms/terms out of
such skeleton trees. Atoms/terms found this way are still candidates, because of the variable abstraction.
They have then to be verified by the appropriate matching/unification test. The so called discrimination
trees support such an approach.

If we resign from complete interreduction and focus on lazy reduction (see Table 2.3), no reduction rule
needs to be tested with respect to the Us set. So inserting the Us clauses into an indexing structure for
access is not needed. The Us clauses are only needed to provide a pool from which the next Given clause
is selected. To this end, we only need the necessary information for the choose function and the clause
itself. If the choose function relies on size, the necessary information is simply a number. Since all Us
clauses are children of two Wo clauses, instead of storing the clause, we store the numbers of the parents

9See the discussion in Section 2.2.

38 CHAPTER 2. SPASS

and the way it was generated represented by, say, one extra number. So, every clause in the Us set can
be represented by four numbers, in practice in constant space. This results in a huge reduction of memory
consumption and hence in an increase of execution speed. The Waldmeister system (see Appendix 2.7) can
treat the Us set this way. Note that the extra time needed to generate the Given clause can be neglected. In
case a parent of a selected Given clause is no longer in the Wo set, it must have become redundant, hence
the Given clause is redundant as well and needs not to be considered.

A further possibility to restrict the number of clauses in the Us set is to simply throw away clauses. This
may cause incompleteness of the theorem prover. Such techniques are available in Fiesta, Otter, SPASS
and Vampire, see Appendix 2.7 and the discussion in Section 2.2.

2.5 SPASS Version 2.0 Options

From a (unix) shell, SPASS is called
SPASS [options] [<input-file>]

where opt ions influence the behavior of the prover. Here, we only introduce SPASS options that relate
to the content of this chapter. Further options, e.g., options controlling the output, are documented in
the SPASS man-pages. The options discussed here apply to SPASS Versions 2.0. Options can be set to
integer values. For boolean options 0 means falsity and 1 means truth. For example, the option —IMPm=1
enables the inference rule merging paramodulation which can be abbreviated by —IMPm whereas —IMPm=0
disables the inference rule.

2.5.1 Control

Auto Automatic Mode, after a problem analysis, all options are set automati-
cally.
FullRed Full Reduction, Section 2.2. If full reduction is enabled, the overall

SPASS loop corresponds to the loop presented in Table 2.1, if the op-
tion is disabled, it corresponds to the lazy reduction loop presented in
Table 2.3.

BoundMode Bound Mode selects the mode for resource controlled generation of the
search space, Section 2.2. If set to 1 clauses are weight restricted, if set
to 2 clauses are depth restricted.

BoundStart Bound Start determines the start value for resource restriction, Sec-

tion 2.2.

BoundLoops Bound Loops determines the number of resource restricted main-loop
iterations.

DocProof activates proof documentation.

2.5.2 Inference Rules

ISoR Sort Constraint Resolution, Definition 2.3.3.

IEmS Empty Sort, Definition 2.3.4.

IEQR Equality Resolution, Definition 2.3.7.

IERR Reflexivity Resolution, Definition 2.3.7.

ISpL Superposition Left, Definition 2.3.8.

IOPm Ordered Paramodulation, Definition 2.3.8 and Definition 2.3.9.
ISPm (Standard) Paramodulation, Definition 2.3.8 and Definition 2.3.9.
ISpR Superposition Right, Definition 2.3.9.

IOFcC Ordered Factoring, Definition 2.3.10.

ISFc (Standard) Factoring, Definition 2.3.10.

IEQF Equality Factoring, Definition 2.3.11.

2.6. POINTERS INTO THE SPASS SOURCE CODE 39

IMPm
IORe
ISRe
IOHY
ISHy
Splits

Merging Paramodulation, Definition 2.3.12.

Ordered Resolution, Definition 2.3.13.

(Standard) Resolution, Definition 2.3.13.

Ordered Hyper Resolution, Definition 2.3.14.

(Standard) Hyper Resolution, Definition 2.3.14.

Splitting, Definition 2.3.25. The option determines the number of split-
ting applications where any negative number means that splitting is not
restricted.

2.5.3 Reduction Rules

RSSi
RSST
RObv
RFSub
RBSub
RCon
RTaut

RUnNC

RTer

REMMR

RBMMR

REFRew

RBRew
RAED

Sort Simplification, Definition 2.3.5.

Static Soft Typing, Definition 2.3.6.

Trivial Literal Elimination, Definition 2.3.15.

Forward Subsumption Deletion, Definition 2.3.16, Table 2.5.
Backward Subsumption Deletion, Definition 2.3.16, Table 2.6.
Condensation, Definition 2.3.17.

Tautology Deletion, Definition 2.3.18. If the option is set to 1 only
syntactic tautologies are eliminated. If it is set to 2, semantic tautologies
are deleted as well.

Unit Conflict, Definition 2.3.19.

Terminator, Definition 2.3.19, where the value of the option determines
the number of non-unit clause occurrences in the searched refutation.
Forward Matching Replacement Resolution, Definition 2.3.20, Ta-
ble 2.5.

Backward Matching Replacement Resolution, Definition 2.3.20, Ta-
ble 2.6.

Forward Rewriting, Definition 2.3.21 and Definition 2.3.22, Table 2.5.
Backward Rewriting, Definition 2.3.21, Table 2.6.

Assignment Equation Deletion, Definition 2.3.24. If set to 2, it is as-
sumed that any model has a non-trivial domain and the corresponding
eliminations are performed.

2.6 Pointers into the SPASS Source Code

The below tabular relates algorithms presented in this chapter to the actual source code. It is meant to
provide a starting point to explore further details or to adapt the code to personal desires. For every topic,
we point to the SPASS source file and the name of the corresponding function.

Main-Loop, Table 2.7

fred, Table 2.5
ired, Table 2.6

inf, Table 2.7

top.c

top_ProofSearch

rules-red.c
red_CompleteReductionOnDerivedClause
rules-red.c

red CompleteReductionOnDerivedClauses
rules—-inf.c

inf_DerivableClauses

LETeLiEl

2.7 Links to Saturation Based Provers

Bliksem by Hans de Nivelle
http://www.mpi-sb.mpg.de/ nivelle/

40 CHAPTER 2. SPASS

Discount by Jorg Denzinger
http://agent.informatik.uni-kl.de/denzinge/denzinger.html
E by Stephan Schulz [44]
http://wwwjessen.informatik.tu-muenchen.de/personen/schulz.html
Fiesta by Robert Nieuwenhuis, Pilar Nivela and Guillem Godoy
http://www.lsi.upc.es/ roberto/
Gandalf by Tanel Tammet
http://www.cs.chalmers.se/ tammet/gandalf/
Otter by William McCune [32]
http://www-unix.mcs.anl.gov/AR/otter/
Saturate by Harald Ganzinger, Robert Nieuwenhuis and Pilar Nivela [36]

http://www.mpi-sb.mpg.de/SATURATE/

SPASS by Christoph Weidenbach, Bijan Afshordel, Enno Keen, Chris-
tian Theobalt, Dalinor Topic¢ [54]
http://spass.mpi-sb.mpg.de/

Vampire by Alexandre Riazanov and Andrei Voronkov [40]
http://www.cs.man.ac.uk/fmethods/vampire/

Waldmeister by Arnim Buch, Thomas Hillenbrand, Roland Vogt, Bernd
Lochner and Andreas Jaeger [25]
http://agent.informatik.uni-kl.de/waldmeister/

Acknowledgments

Knowledge about the design of automated theorem provers is mostly distributed by discussions among the
authors of such systems. I want to thank Bill McCune the author of Otter that is the father system of all
today’s “modern” automated saturation based theorem provers. We learned a lot about the implementation
of theorem provers by inspecting Otter. My colleagues Arnim Buch, Thomas Hillenbrand, Bernd Lochner,
authors of Waldmeister, Jorg Denzinger, author of Discount, Hans de Nivelle, author of Bliksem, Tanel
Tammet, author of Gandalf, Stephan Schulz, author of E, Harald Ganzinger, author of Saturate, Andrei
Voronkov, co-author of Vampire, Robert Nieuwenhuis, author of Fiesta (and Saturate) contributed a lot to
this chapter.

As mentioned in the introduction the development of a competative theorem prover is a challenging
software project, exemplified in the following for the SPASS theorem prover: Although there existed some
preliminary versions of SPASS before 1994, the first version called SPASS was started in that year and was
finished in 1995 by Bernd Gaede in the context of his diploma thesis. This version already relied on a library
of data structures we called EARL.'? The library already contained indexing support and was developed by
Peter Graf and Christoph Meyer and myself. Clause normal form translation was added to SPASS by Georg
Rock as a diploma project. Further development of SPASS took place in paid student projects that typically
lasted for several months each. Christian Cohrs introduced splitting to SPASS, Enno Keen was responsible
for inference rules and parsing support, Thorsten Engel wrote our proof checker, Dalibor Topic significantly
improved our memory management module and contributed to the implementation of reduction rules and
Christian Theobalt wrote a whole bunch of documentation support scripts and mastered the challenge to
port SPASS to the Windows world. As a prerequisite he developed a neat graphical user interface. Bijan
Afshordel contributed to reductions on the formula level and programmed the atom definition module,
Uwe Brahm was indispensable for putting SPASS on the Web and Christof Brinker added the most recent
development, the detection and deletion of non-syntactic tautologies. Thanks to all of them.

Finally, I'm indebted to Thomas Hillenbrand, Enno Keen, Andreas Nonnengart and Andrei Voronkov
for many comments on this chapter that lead to significant improvements.

10Efficient Automated Reasoning Library

Bibliography

(1]

(2]
(3]

(7]

(8]

Grigorios Antoniou and Hans Jiirgen Ohlbach. Terminator. In Alan Bundy, editor, Proceedings of S8th
International Joint Conference on Artificial Intelligence, IJCAI-83, pages 916-919, 1983.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation, 4(3):217-247, 1994. Revised version of Max-
Planck-Institut fiir Informatik technical report, MPI-1-91-208, 1991.

Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2, pages 19-99. Elsevier,
2001.

Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with simplification as a deci-
sion procedure for the monadic class with equality. In Georg Gottlob, Alexander Leitsch, and Daniele
Mundici, editors, Computational Logic and Proof Theory, Third Kurt Gidel Colloguium, volume 713
of LNCS, pages 83-96. Springer, August 1993.

Dan Benanav. Simultaneous paramodulation. In M. E. Stickel, editor, Proceedings of the 10th In-
ternational Conference on Automated Deduction, volume 449 of LNAI, pages 442-455. Springer,
1990.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving.
Computer Science and Applied Mathematics. Academic Press, 1973.

Witold Charatonik, David McAllester, Damian Niwinski, Andreas Podelski, and Igor Walukiewicz.
The horn mu-calculus. In Proceedings 13th IEEE Symposium on Logic in Computer Science,
LICS 98, pages 58—69. IEEE Computer Society Press, 1998.

Marcello D’ Agostino. Are tableaux an improvement on truth-tables? Journal of Logic, Language
and Information, 1:235-252, 1992.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7:201-215, 1960.

Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17:279—
301, 1982.

Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1):69—-115, July
1987.

William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satisfiability of propo-
sitional horn formulae. Journal of Logic Programming, 1(3):267-284, 1984.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpression
problem. Journal of the ACM, 27(4):758-771, 1980.

41

42 BIBLIOGRAPHY

[15] Norbert Eisinger. Completeness, Confluence, and Related Properties of Clause Graph Resolution.
Research Notes in Artificial Intelligence. Pitman Ltd., London, 1991.

[16] Bernd Fischer, Johann Schumann, and Gregor Snelting. Deduction-based software component re-
trieval. In Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction - A Basis for Applica-
tions, volume 3 of Applied Logic, chapter 11, pages 265-292. Kluwer, 1998.

[17] Thom Frithwirth, Ehud Shapiro, Moshe Y. Vardi, and Eyal Yardeni. Logic programs as types for logic
programs. In Albert R. Meyer, editor, Proceedings of the 6th Annual IEEE Symposium on Logic in
Computer Science, LICS 91, pages 300-309. IEEE Computer Society Press, July 1991.

[18] Harald Ganzinger, Christoph Meyer, and Christoph Weidenbach. Soft typing for ordered resolution.
In Proceedings of the 14th International Conference on Automated Deduction, CADE-14, volume
1249 of LNAI, pages 321-335, Townsville, Australia, 1997. Springer.

[19] Michael R. Garey and David S. Johnson. Computers and intractability : A guide to the theory of
NP-completeness. Mathematical Sciences Series. Freeman, New York, 1979.

[20] Georg Gottlob and Christian G. Fermiiller. Removing redundancy from a clause. Artificial Intelli-
gence, 61:263-289, 1993.

[21] Georg Gottlob and Alexander Leitsch. On the efficiency of subsumption algorithms. Journal of the
ACM, 32(2):280-295, 1985.

[22] Peter Graf. Term Indexing, volume 1053 of LNAI. Springer, 1996.

[23] Reiner Hihnle, Manfred Kerber, and Christoph Weidenbach. =~ Common syntax of the dfg-
schwerpunktprogramm “deduktion”. Interner Bericht 10/96, Universitit Karlsruhe, Fakultét fiir In-
formatik, Germany, 1996. Current version available from http://spass.mpi-sb.mpg.de/.

[24] Nevin Heintze and Edmund Clarke, editors. Workshop on Formal Methods and Security Protocols,
Trento, Italy, July 1999. Self Publishing.

[25] Thomas Hillenbrand, Andreas Jaeger, and Bernd Lochner. Waldmeister — improvements in perfor-
mance and ease of use. In Harald Ganzinger, editor, 16th International Conference on Automated
Deduction, CADE-16, LNAI, pages 232-236. Springer, 1999.

[26] Ullrich Hustadt and Renate A. Schmidt. On evaluating decision procedures for modal logics. In
Proceedings of 15th International Joint Conference on Artificial Intelligence, IJCAI-97, pages 202—
207, 1997.

[27] Florent Jacquemard, Christoph Meyer, and Christoph Weidenbach. Unification in extensions of shal-
low equational theories. In Tobias Nipkow, editor, Rewriting Techniques and Applications, 9th Inter-
national Conference, RTA-98, volume 1379 of LNCS, pages 76-90. Springer, 1998.

[28] William H. Joyner Jr. Resolution strategies as decision procedures. Journal of the ACM, 23(3):398-
417, July 1976.

[29] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic and stochastic
search. In Proceedings of the 13th National Conference on AI, AAAI’'96, volume 2, pages 1194-1201.
AAALI Press / MIT Press, 1996.

[30] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In I. Leech,
editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press, 1970.

[31] William McCune and Larry Wos. Experiments in automated deduction with condensed detachment.
In 11th International Conference on Automated Deduction, CADE-11, volume 607 of LNCS, pages
209-223. Springer, 1992,

[32] William McCune and Larry Wos. Otter. Journal of Automated Reasoning, 18(2):211-220, 1997.

BIBLIOGRAPHY 43

(33]

(34]

[47]

(48]

(49]

Christoph Meyer. Soft Typing for Clausal Inference Systems. Dissertation, Technische Fakultit der
Universitit des Saarlandes, Saarbriicken, Germany, 1999.

Robert Nieuwenhuis. Basic paramodulation and decidable theories (extended abstract). In Proceed-
ings 11th IEEE Symposium on Logic in Computer Science, LICS’96, pages 473-482. IEEE Computer
Society Press, 1996.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7, pages 371-
443, Elsevier, 2001.

Pilar Nivela and Robert Nieuwenhuis. Saturation of first-order (constrained) clauses with the Sarurate
system. In Claude Kirchner, editor, Rewriting Techniques and Applications, Sth International Confer-
ence, RTA-93, volume 690 of Lecture Notes in Computer Science, LNCS, pages 436440, Montreal,
Canada, June 16-18, 1993. Springer.

Andreas Nonnengart, Georg Rock, and Christoph Weidenbach. On generating small clause normal
forms. In Claude Kirchner and Heléne Kirchner, editors, 15th International Conference on Automated
Deduction, CADE-15, volume 1421 of LNAI, pages 397—411. Springer, 1998.

Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. In Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 6,
pages 335-367. Elsevier, 2001.

Gerald E. Peterson. A technique for establishing completeness results in theorem proving with equal-
ity. SIAM Journal of Computation, 12(1):82—-100, February 1983.

Alexandre Riazanov and Andrei Voronkov. Vampire. In Harald Ganzinger, editor, 16th International
Conference on Automated Deduction, CADE-16, volume 1632 of LNAI, pages 292-296. Springer,
1999.

G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order theories with equality.
In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 135-150, 1969.

John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23-41, January 1965.

Manfred Schmidt-Schaufl. Implication of clauses is undecidable. Theoretical Computer Science,
59:287-296, 1988.

Stephan Schulz. System abstract: E 0.3. In Harald Ganzinger, editor, 16th International Conference
on Automated Deduction, CADE-16, volume 1632 of LNAI, pages 297-301. Springer, 1999.

Wayne Snyder. On the complexity of recursive path orderings. Information Processing Letters,
46:257-262, 1993.

Rolf Socher. A subsumption algorithm based on characteristic matrices. In E. Lusk and R. Overbeek,
editors, 9th International Conference on Automated Deduction, CADE-9, volume 310 of LNCS, pages
573-581. Springer, 1988.

Rona B. Stillman. The concept of weak substitution in theorem-proving. Journal of the ACM,
20(4):648-667,1973.

Geoff Sutcliffe and Christian B. Suttner. The tptp problem library — cnf release v1.2.1. Journal of
Automated Reasoning, 21(2):177-203, 1998.

Geoff Sutcliffe and Christian B. Suttner. The cade-15 atp system competition. Journal of Automated
Reasoning, 23(1):1-23,1999.

44

[50]

BIBLIOGRAPHY

Tanel Tammet. Towards efficient subsumption. In Claude Kirchner and Heléne Kirchner, editors, 15th
International Conference on Automated Deduction, CADE-15, volume 1421 of LNAI, pages 427-441.
Springer, 1998.

Christoph Weidenbach. Computational Aspects of a First-Order Logic with Sorts. Dissertation,
Technische Fakultit der Universitit des Saarlandes, Saarbriicken, Germany, 1996.

Christoph Weidenbach. Sorted unification and tree automata. In Wolfgang Bibel and Peter H. Schmitt,
editors, Automated Deduction - A Basis for Applications, volume 1 of Applied Logic, chapter 9, pages
291-320. Kluwer, 1998.

Christoph Weidenbach. Towards an automatic analysis of security protocols in first-order logic. In
Harald Ganzinger, editor, /6th International Conference on Automated Deduction, CADE- 16, volume
1632 of LNAI, pages 378-382. Springer, 1999.

Christoph Weidenbach, Bijan Afshordel, Uwe Brahm, Christian Cohrs, Thorsten Engel, Enno Keen,
Christian Theobalt, and Dalibor Topic. System description: Spass version 1.0.0. In Harald Ganzinger,
editor, 16th International Conference on Automated Deduction, CADE-16, volume 1632 of LNAI,
pages 314-318. Springer, 1999.

L. Wos, G.A. Robinson, and D.E. Carson. Efficiency and completeness of the set of support strategy
in theorem proving. Journal of the ACM, 12(4):536-541, 1965.

Chapter 3

dfg2dfg

3.1 Introduction

The tool dfg2dfg allows the user to calculate some approximation of a clause set. It is named dfg2dfg
because it first reads clauses from an input file in DFG syntax [1]. It then calculates some approximation
of the clause set depending on command line options. Finally it writes the approximated clause set in DFG
syntax to a file.

3.2 Synopsis
dfg2dfg [-horn] [-monadic] [-linear] [-shallow] infile J[outfile]

If neither infile nor outfile are given, dfg2dfg reads from standard input and writes to standard output. If
one file name is given, it reads from that file and writes the output to standard output. If more than one file name is
given, dfg2dfg reads from the first file and writes to the second.

The following sections describe the effects of the command line options. We are using a notation similar to the
notation of reduction rules [2]:

0T —=A
‘I’1||H1—)A1
v, |, = A,

Such a rule is applied to a clause set P by selecting a clause © || I' — A from P and replacing it by the clauses
W, || II; — A;. A transformation is calculated by recursively applying the corresponding rule. The calculation stops
when the rule isn’t applicable to any clause from the clause set.

3.3 Transforming a clause to a Horn clause

This transformation is enabled with the —horn command line option. The rule is

@”F—)El,,En

0|l - E,
where n > 2 and F, ..., E, are equality or non-equality literals.

3.4 Transformation to monadic literals

The following two transformations are enabled with the -monadic command line option. They transform non-
monadic non-equality literals into monadic literals. Note that equality literals are not transformed.

45

46 CHAPTER 3. DFG2DFG

3.4.1 Transformation by term encoding

This transformation is enabled with the option —monadic, which is equivalent to -monadic=1. It is described by

the rule
O T —= P(t,...,tn), A

O T —= T(p(ti,...,tn)), A
where p is a new function corresponding to the predicate P and T is a special predicate. All occurrences of P in the
clause set are transformed into the same function p. Constraint and antecedent literals are transformed in a similar way.
This approximation is equivalence preserving.

3.4.2 Transformation by projection
This transformation is enabled with the option —-monadic=2. It is described by the two rules

O = P(ty,....tn), A

O P(ty,...,ta), T = A OT = Pi(th), A
O Pi(tr),..., Pa(tn), T > A -

O = Py(tn), A

where P, ..., P, are some new predicates. All occurrences of P in the clause set are transformed into the same
predicates P, ..., P,. Constraint literals are transformed similar to antecedent literals.

3.5 The linear approximation of a clause

A term is called linear, if it contains no repeated variables. This transformation generates the linear approximation of
a clause with monadic literals by replacing a variable x repeated within the succedent by some new variable z’. Note
that the transformation isn’t applicable to clauses containing equality or non-monadic literals. This transformation is
enabled with the ~1inear option. It is described by the rule

01T - Alsl,. Bly, A
O'c, 0| T"o, T — A, Blg/z'], A

where (i) all literals are monadic, (ii) A # B or p # g, (iii) ' is a new variable, (iv) 0 = {z — z'}, (v) ©' = {L €
O]z evars(L)} and vi)[" ={L € ' | z € vars(L)}.

3.6 The shallow approximation of a clause

We implemented three kinds of transformations with different requirements for the input clause and different output
clauses. The transformations are enabled with the —~shallow option. Note that the rules aren’t applicable to non-horn
clauses.

3.6.1 The strict version

This transformation is enabled with the —shallow option, which is equivalent to —shallow=1. It is described by
the rule
O T = P(t[s]p)
S(x)a I ” I — P(t[pla B ap”/w])

@2 || Fz — S(S)
where (i) all literals are monadic and all terms in ©, I" are variables, (ii) s is a complex term at non-top position p in ¢,
(iii) vars(s) Nvars(P(¢[p1, - . ., prn/c])) = B, where ¢ is an arbitrary constant and p1, . . ., p, are all positions of s in ¢,

(iv) z is a new variable and S is a new predicate, (v) ©1 and ©» are a partition of ©, with ©» = {L € O | vars(L) C
vars(s)} and (vi) I'; and ', are a partition of I', with I'; = {L € I | vars(L) C vars(s)}. Note that all occurrences
of s in ¢t are replaced simultaneously. This transformation is equivalence preserving with respect to the extension of P
in the minimal model.

3.6.2 A more relaxed version

This version uses the same rule as the strict version, but condition (iii) is omitted. This results in an upper approximation
of P. This transformation is enabled with the —shallow=2 option.

3.7. COMBINING SEVERAL TRANSFORMATIONS 47

3.6.3 The least restricted version

This transformation is enabled with the —shallow=3 option. It uses the rule

O I T = P(ts],)
S@), O = P(tlps,....pa/a])
O T — S(s)

where (i) all literals are monadic, (ii) s is a complex term at non-top position p; int and p1, . . . , p, refer to all positions
of s in ¢ and (iii) = is a new variable and S is a new predicate. Note that © and I" may contain non-variable terms and
that s and ¢[p1, ..., pn/c|] (where c is an arbitrary constant) may share variables. In contrast to the other two versions
all negative literals are copied into all resulting clauses. This transformation is an upper approximation of P.

3.7 Combining several transformations

It is possible to combine several of the transformations described above. However, transformations from the sections
3.4 or 3.6 aren’t combinable with other transformations from the same section, because they have the same goal. But
for the other transformations the order of their application becomes important if several transformations are combined.
For example a transformation to monadic literals should be applied before the linear transformation because the latter
requires monadic literals. If the transformations are applied in this order it might be possible to apply the second
transformation more often. dfg2dfg therefore applies the transformations in the same order as the order of their
description in this paper. That means transformations are applied in the following order:

1. transformation to horn clauses

2. transformation to monadic literals
3. linear transformation

4. shallow transformation.

The shallow transformation is applied last because it has the most preconditions.

48

CHAPTER 3. DFG2DFG

Bibliography

[1] Reiner Hihnle, Manfred Kerber, and Christoph Weidenbach. Common syntax of the dfg-schwerpunktprogramm
“deduktion”. Interner Bericht 10/96, Universitit Karlsruhe, Fakultit fiir Informatik, Germany, 1996. Current
version available from http://spass.mpi-sb.mpg.de/.

[2] Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, volume 2, chapter 27, pages 1965-2012. Elsevier, 2001.

49

50

BIBLIOGRAPHY

Chapter 4

EML Logic Features

4.1 Introduction

This chapter describes the features and facilities for supporting automated reasoning in a large class of
related logics which we refer to as EML logics (short for extended modal logics). Support for EML logics
was implemented from 1998 onwards in the MSPASS theorem prover [11, 13, 20] as an extension of
SPASS 1.0. This code has been integrated and upgraded with respect to SPASS 3.0 (and FLOTTER 3.0) so
that support for modal, relational and description logic reasoning is now immediately available to SPASS
users (as had been planned from the outset) and the latest SPASS technology is immediately available to
MSPASS users.

EML logics include (traditional) propositional modal logics such as K ,,,), KD (5,), KT4 (1, etc., which
play an important role e.g. in the specification of multi-agent systems. EML logics also include dynamic
modal logics [22] which are PDL-like modal logics in which the modal operators are parameterized by
relational formulas. These can be used to formalize dynamic notions such as actions or programs and are
useful in linguistic or Al applications. Examples of dynamic modal logics are Boolean modal logic, tense
logic, information logics, logics expressing inaccessibility and sufficiency, Peirce logic, as well as a large
class of description logics. The EML class further includes relational logics, i.e. logical versions of Tarski’s
relation algebras. The strongest dynamic modal logic that the prover supports is Peirce logic [22, 23] or
equivalent logics. SPASS handles these logics by translation to first-order logic.

With the EML facilities SPASS supports the following kind of reasoning for EML logics.

1. For dynamic modal logics and relational logics: non-logical axioms, modal operators character-
ized by any first-order frame correspondence properties, relational symbols satisfying any first-order
properties, specification of concrete worlds as constants, (first-order) relationships between concrete
worlds, specifications of frames and models.

2. Fordescription logics: the corresponding features, including terminological axioms, TBox and RBox
statements, and ABox statements for concept and role expressions.

Because SPASS is a first-order resolution prover its capabilities as a modal, relational or description
logic prover are very different and more varied than those of other provers for these logics. It is possible
to use SPASS as a decision procedure for a large class of EML logics. For instance, it decides extensions
of Boolean modal logic with converse, domain/range restriction, and positive occurrences of composition,
and the corresponding description logics, i.e. extensions of ALB with positive occurrences of composition.
SpPASS is a decision procedure for many solvable first-order fragments including the guarded fragment,
Maslov’s class K, first-order logic in two variables, the clausal class DL*, and many decidable quantifier
prefix classes. No other (special-purpose) prover currently decides these logics. Using the features of
SPASS it possible to approximate the behaviour of modal and description logic tableau provers with SPASS.
Additionally, SPASS can be used as a model finder. For details and references please consult the survey
papers [12, 22] (see also [4, 8, 21]).

52 CHAPTER 4. EML LOGIC FEATURES

In the following we assume terminology and notation of dynamic modal logic and Peirce logic as
described in [22]. We do not discuss description logics and relational logics separately because

1. description logics and dynamic modal logics can be viewed as syntactic variants of each other, and

2. dynamic modal logics can be viewed as two-sorted combinations of relational logics and proposi-
tional logic and therefore cater also for relational logics.

4.2 Dynamic modal logics

This section defines the class of dynamic modal logics [22] in which Peirce logic is the strongest logic and
the basic multi-modal logic K(,,)is the weakest logic. Peirce logic is a logical formalisation of representable
Peirce algebras [14, 23] and is closely related to de Rijke’s dynamic modal logic [5].

Formally, Peirce logic is the modal logic defined over relations which form a relation algebra. The
language of Peirce logic consists of two syntactic types: dynamic modal formulas and relational formulas.
The logical connectives are

1. the connectives of the modal logic K(,,), with the difference that the modal operators are indexed
with relational formulas, instead of just numbers,

2. the standard connectives of relational logics, namely: ; (composition), ~ (converse), id (identity),
and

3. aleft cylindrification operator .

Instead of the left cylindrification operator one could have chosen the test operator of PDL, domain restric-
tion, range restriction, or cross product, cf. [3]; the symbol id is a logical constant which is interpreted as
the identity relation. Given countably many propositional variables denoted by p;, and countably many re-
lational variables, denoted by r;, dynamic modal formulas and relational formulas are generated according
to the following production rules.

Dynamic modal formulas: ¢ — pi|l-dloNnd]lale

Relational formulas: a — rjloalaNalasala”]id] ¢f

are defined inductively as follows.

We define the set of formulas of Peirce logic to be the set of dynamic modal formulas. The definition in
[23] allows also relational formulas as first-class citizens, but these can be expressed in terms of dynamic
modal formulas (see below). This variation in the definition is thus inconsequential.

The semantics of Peirce logic is defined in terms of frames, where a frame is a tuple (W, R) of a non-
empty set W (of worlds) and a mapping R from relational formulas to binary relations over W satisfying:

R.o = W\R,
Ra/\g =R,N RB
Ra. s = Ra; R
R,- = R}

Ry = Idw

Rye = {(z,y) e W |z € v(9)}.

Here and in the rest of the paper we prefer to use the notation R, instead of R(«). Idw denotes the identity
relation on the set W, while R~ denotes the converse (or inverse) of a relation R. A model is now given
by a triple M = (W, R, v), where (W, R) is a frame and v is a mapping from propositional variables to

4.3. OVERVIEW OF EML INPUT SPECIFICATIONS 53

subsets of W satisfying:

M,z | piffz € v(p)
M,z = iff M,z [~ ¢
M,z = ¢ ANpiff both M,z |= ¢ and M,z = 9
M,z = [a]¢iff (z,y) € R, implies M,y = ¢, foranyy € W

If M,z = @ holds then we say ¢ is true at z in M and that M satisfies . A modal formula o is satisfiable
iff there exists a model M and a world z in M such that M, z = . A modal formula is valid in a frame
iff it is valid in all models based on the frame.

We can define numerous other connectives in Peirce logic. For example:

Relational sum: at B =% <((=a); (-8))

Domain restriction: ale = a A ¢°

Range restriction: alg =% (a719)”

Test: 7 =t id A ¢°

Universal modality: [T]¢ =% [r v =r]¢ where r denotes some relational variable

Relational formulas as ‘independent’ formulas are implicit in all dynamic modal logics with relational
negation and relational conjunction or disjunction. For example, implication between relational formulas
can be defined by

(@D B) =% T >[an-p]L.

Then it is also possible to specify properties of the underlying accessibility relations. Figure 4.1 gives some
properties of the accessibility relation associated with r which can be specified by relational formulas in
Peirce logic. In the figure the relational operators are assumed to have higher priority than D.

Property of R, Relational formula Property of R, Relational formula
reflexivity idDr transitivity rirOr
symmetry ror” functionality rYsr Did
seriality TOr;TorT D (r)T |Euclideanness r;r~ Dr

Figure 4.1: Relational properties expressed as relational formulas.

The basic multi-modal logic K(,,)is the reduct of Peirce logic in which relational formulas are limited
to m relational variables r;. Dynamic modal logics are defined over the language of K(,,)but include in
addition to the operators of K(,,)and relational variables also finitely many relational operators %1, . . ., %
We assume that these relational operators are definable in terms of the operators of Peirce logic. A logic
K(m) (*1,...,%) is then defined to be the multi-modal logic defined over relations closed under the set-
theoretic operations corresponding to the relational operators %1,...,*;. The class of dynamic modal
logics forms therefore a lattice in which K(,,,)is the weakest logic and every other logic is obtained by
enhancing the language with one or more relational operators ;. Clearly some of the logics in this lattice
are expressively equivalent. Peirce logic is equivalent to the top element in the lattice. Tense logic coin-
cides with the logic K, (), Boolean modal logic coincides with K(,,)(—, A), and the description logic
ALB [10] coincides with K(,,) (=, A, ~,1).

4.3 Overview of EML input specifications

The dfg input language of SPASS was extended to support the input of EML problems without changing
the syntax for formulas in first-order logic or clause form. EML problems are specified with new, special
types of formulas using

list_of_ special_ formulas (axioms, EML)

54 CHAPTER 4. EML LOGIC FEATURES

for axioms and
list_of_special_ formulas (conjectures, EML)

for conjectures. Currently the only class of special formulas are EML formulas. EML formulas include first-
order formulas, Boolean type formulas and relational type formulas. First-order formulas are specified with
formula using the familiar dfg syntax. Boolean type formulas are specified with either

prop_formula or concept formula,
and relational formulas with either
rel formula or role_ formula.

Boolean and relational type formulas can be constructed using common modal, relational and descrip-
tion logic operators. The pre-defined logical operators include the following.

e The standard Boolean operators (for all three types of formulas): true, false, not, and, or,
implies (subsumed by), implied (subsumes), and equiv. These operators have different se-
mantics depending on the type of formulas they combine.

e Multi-modal operators with atomic or complex relational arguments: dia and box (synonyms are
some and all), as well as domain and range.

e Additional relational operators: comp (composition), sum (relational sum), conv (converse), 1d
(the identity relation), and div (the diversity relation).

e test (test), domrestr (domain restriction) and ranrestr (range restriction).

Apart from their usual interpretation in propositional logic and first-order logic, the (nullary) operators
true and false may also be used as Boolean or relational formulas. true used as a Boolean type,
resp. relational type, represents the universal set, the universal (binary) relation, or truth in first-order logic.
Similarly, false represents either, the empty set, the empty relation or falsum.

We give three examples of EML formulas, two Boolean type formulas and one relational type formula.

“4.1) prop_formula(implies (box (bell,p), box(knowl,box (bell,p)))).
4.2) concept_formula(implies (expert_ AR,
not (some (not (has_studied) ,proof_methods)))).

4.3) rel_formula(implies (comp(r,r), r)).

(4.1) is an example from modal logic and says that if agent 1 believes p then it knows that it believes p,
i.e. it is aware that it believes p. The example (4.2) is a description logic example; it says that an expert
in automated reasoning is someone who has studied every proof method. This kind of example cannot be
handled by current tableau-based description logic provers because it requires negation of roles. (4.3) is
the way to express transitivity of a relation in relational logic (or in description logics).

Boolean- and relational-type atomic formulas must be declared as nullary predicates in the declaration
section of the input file (because the supported EML logics are propositional non-classical logics defined
over languages free of first-order variables).

For EML problems it is sometimes useful to specify the first-order predicate symbols to which the
nullary Boolean and relational predicate symbols are mapped. This can be done with a new kind of decla-
ration statement. For example,

translpairs (p, Qp)

causes the nullary symbol p to be translated to a first-order predicate symbol with the name Qp. Qp should
be declared as a unary (resp. binary) predicate symbol if p is a Boolean (resp. relational) symbol.
The new extended dfg is sufficient to support the following.

4.4. TRANSLATION MAPPINGS 55

e For dynamic modal logics and relational logics: non-logical axioms, modal operators characterised
by any first-order frame correspondence properties, relational symbols satisfying any first-order
properties, specification of concrete worlds as constants, (first-order) relationships between concrete
worlds, specifications of frames and models.

e For description logics: the corresponding features, including terminological axioms, TBox and RBox
statements, ABox statements for concept and role expressions,

A more detailed, formal specification of the input language with examples of input files in the extended
dfg format can be found in [24].

4.4 Translation mappings

Boolean and relational type formulas are translated into first-order formulas using one of numerous trans-
lation methods. Table 4.1 summarizes the implemented translation methods.

Translation method Options

relational translation —-EMLTranslation=0 (default)

(monadic) functional translation -EMLTranslation=1

polyadic functional translation -EMLTranslation=1 -EMLFuncNary=1
(monadic) optimized functional translation | ~EMLTranslation=2

polyadic optimized functional translation -EMLTranslation=2 —-EMLFuncNary=1
semi-functional translation -EMLTranslation=3

relational-functional translation -EMLTranslation=0 -EMLFuncNary=1
relational-relational translation -EML2Rel=1 [-EMLTranslation=0]

Table 4.1: Available translation methods

The different translation methods are based on first-order encodings of the different ways of defin-
ing the semantics of the logics. The basis for the relational translation, or standard translation, method
is the standard set-theoretic semantics of EML logics. It is implemented for all Boolean and relational
EML formulas. The basis for the different functional translations is the functional semantics of traditional
modal logics. The optimized functional translations are obtained from the functional translations by a non-
standard quantifier exchange operation, which is implemented by replacing non-constant Skolem terms
by Skolem constants. The polyadic functional translation methods are variations of functional translation
methods and differ in the way they encode world paths (transition sequences). The polyadic translations
avoid the use of an extra function symbol by using n-ary predicates of different arities. The semi-functional
translation approach is a mixture of the relational and functional translation approaches. It translates
box modalities in the standard relational way, while diamond modalities are translated functionally. The
relational-functional translation method, or tree-layered relational translation, is a variation of the rela-
tional translation specialized for the basic modal logic K(,,,). The relational-relational translation converts
Boolean EML formulas into the relational formulas via a cylindrification operation. All translation methods
are sound and complete for the logics they are implemented for and have linear time complexity.

The transformation of non-first-order EML formulas into first-order logic can be specified with the
—~EMLTranslation option. Unless output is disabled, the prover outputs the translated formulas using
the indicators as specified in Table 4.2,

The different transformation mappings are described in more detail in the following sections. The
relational translation, the relational-functional translation and the relational-relational translation are col-
lectively referred to as relational translation mappings and are discussed in Sections 4.4.1, 4.4.7, and
4.4.8. The monadic and polyadic, optimised and non-optimised functional translations and the semi-
functional translation are collectively referred to as functional translation mappings and are discussed
in Sections 4.4.2-4.4.6.

56 CHAPTER 4. EML LOGIC FEATURES

Translation method Output indicator
relational translation RelTr
(monadic) functional translation FuncTr
polyadic functional translation FuncFTr

(monadic) optimised functional translation | (FuncTr)
polyadic optimised functional translation (FuncFTr)

semi-functional translation SemiFuncTr
relational-functional translation RelFuncTr
relational-relational translation Rel

Table 4.2: Translation output indicators

4.4.1 Standard relational translation method

The standard relation translation is enabled by —-EMLTranslation=0. This is the default setting for
—-EMLTranslation. Itis implemented for all EML formulas. It maps formulas into fragments of first-
order logic defined over unary and binary symbols [12, 22]. These are uninterpreted unless properties have
been specified in the input file.

The relational translation is determined by the usual Kripke semantics. For instance, the standard
relational translation of Peirce logic into first-order logic is specified by the following.

For dynamic modal formulas:

=m (¢, z) A (¢, 2)
=Vy (re(v, 2, y) D me(h,y))
For relational formulas:

)_Tr(a Y. w)
(B T, y)—ﬂz(rr(a xz,2) N1(B, 2,y))
)—Wr(x)

) =

Qp, respectively (), denote a unary, respectively binary, predicate symbol uniquely associated with the
propositional symbol p, respectively the relational symbol r.

Let L be a logic in the lattice of dynamic modal logics and let X be a (possibly empty) set of first-order
relational frame properties. Then we have that, for any formula ¢,

1. 7,.(p,) can be computed in linear time, and

2. s satisfiable in L with respect to ¥ iff ¥ A 3z 7, (¢,) is first-order satisfiable [22].

4.4.2 (Monadic) Functional translation method

The (monadic) functional translation method is enabled by ~-EMLTranslation=1. Itis implemented for
the basic multi-modal logic K(,,,)possibly with serial (total) modalities (-EMLTheory=1), plus frames
(atom structures) and models, and non-logical axioms. The corresponding decription logics are ALC
with concept ABox statements (concept and role assertions) and TBox statements (general inclusion and
equivalence axioms), and total roles.

4.4. TRANSLATION MAPPINGS 57

The functional translation transforms modal formulas into a fragment of monadic many-sorted first-
order logic. The sorts are: Sy for the set of worlds W, S; for each modality O; in the logic. For each 7 there
is a binary, left-associative function [-,-]; of sort Sy x S; — W. There are special unary predicates nde;
of sort Sy representing subsets of 1¥. Each propositional variable p is uniquely associated with a unary
predicate symbols @), of sort Sy,. The (monadic) optimised functional translation 7 is defined by:

mr(p,s) = Qp(s)
71'f(—|(p7 5) = _'7Tf(90= S)
Wf(‘%”“l’: :Trof((p75) /\Wf(d):'s)

s)
77 (Oip, s) = Vy:Si(nde;i(s) D mr(p, [sy:Sili)

If O; is a D modality then 7 is given by the following.
w7 (Bi, s) = Vy:Sims (@, [s y:Sili)

The symbol s denotes a path and y:S; denotes a variable of sort S;. The intuition of the term [s y:5;]; is
that it represents an z-successor world which is reached via the path s to its predecessor world followed by
a y transition of type S;. This means [s y:5;]; represents both a world and the path via which it is reached
from the initial world. The intuition of nde; (s) is that the world represented by s is not a dead-end.

The following holds: A modal formula ¢ is satisfiable in K(,,,) or KD,y iff 3z oz (0, 2:Sw) is first-
order satisfiable [2, 6, 16, 19].

In the prover the [-,-]; function is implemented by the appl function and the nde; predicates are
implemented as uninterpreted special unary nde predicates. There is currently no support for specifiying
additional properties for the nde predicates. Similarly for the other functional translations.

4.4.3 Polyadic functional translation method

The polyadic functional translation method is enabled by —-EMLTranslation=1 -EMLFuncNary=1.
The polyadic functional translation methods are variations of functional translation methods. Instead of
using the [-,-]; (or appl) functions, and unary predicates, to encode truth in world paths, k-ary predi-
cates are used. The polyadic functional translation method is implemented for the basic multi-modal logic
K(m)possibly with D modalities.

The k-ary predicate symbols are (), , and nde; , where p denotes a propositional symbol, and o is a
sequence of length k of natural numbers. We use T to denote a sequence of variables x1, ..., xy, and we
denote by ‘e’ and ‘.” the empty sequence and the concatenation operation on sequences, respectively. Then
the polyadic functional translation w} is given by the following.

P Qp, ifo=candk =0
Wf(p,.’l/',k,ﬂ') =)
Qpo(x1,...,z) otherwise
ﬂ-.lf(_"p7f7k7a) = ﬁﬂ'}((p,f,k,ﬂ)
TP AT k,0) = (0, T,k 0) AT (. T, K, 0)

74 (0ip, T, k, 0) = Vn 1 (nde; o (F) D 74 (0, T2 11, k+1,0.0))
In KD,y the translation of O; formulas is given by the following,
W}(Ditp, z, k, O’) = V$n+1 71"If ((p7 E.$k+1 , k+17 UZ)

In this definition the variable sequence in the argument position two of 7r} represents the world, and its
path from the initial world, where the formula in argument position one is true. The translation of a modal
formula ¢ is given by 7 (¢, €,0, €).

For any multi-modal logic L with K -modalities and D-modalities only, a modal formula ¢ is satisfiable
in L iff 74 (p, €, 0, €) is first-order satisfiable [7]. 7} embeds modal formulas into fluted logic [12, 18].

58 CHAPTER 4. EML LOGIC FEATURES

4.4.4 (Monadic) Optimised functional translation method

The (monadic) optimised functional translation method is enabled by ~EMLTranslation=2. Itis im-
plemented for K ,,,), possibly with serial modalities.

It is an optimisation of the functional translation. A crucial difference is that it eliminates the depen-
dency of existentially quantified first-order variables on universally quantified first-order variables via a
non-standard quantifier exchange operator.

The (monadic) optimised functional translation maps the basic modal logic K{,,) to basic path logic [18].
Basic path logic is a fragment of monadic many-sorted first-order logic. Basic path logic has a sort Sy,
for the set of worlds W and a sort .S; for each modality O; in the logic. For each i there is a binary,
left-associative function [-, -]; of sort Sy x S; — W. There are special unary predicates nde; of sort Sy,
representing subsets of W. Each propositional variable p is uniquely associated with a unary predicate
symbols @), of sort Sy. The (monadic) optimised functional translation 7, is implemented as a two step
process:

1. The application of the functional translation to a modal formula which translates it to basic path
logic, followed by

2. the application of a quantifier exchange operation which converts the first-order formula obtained
from the functional translation into prenex normal form and moves all existential quantifiers outwards
as far as possible (or inwards, depending on one’s point of view).

The following defines the optimised functional translation obtained as a result of both steps.

Tof (P:8) = Qp(s)
Tof (20, 8) = Tor (0, 8)
of(so/\dl 8) =Tor(p,8) AN (¢,)
of (Bip,) = Vy:Si(nde;(s) D mop (¢, [s y:Sili))
of (Citp,) = nde;(s) A mor (0, [sy:Sili)

The symbol s denotes a path and y:S; denotes a variable of sort S;. The intuition of the term [s y:5;]; is
that it represents an z-successor world which is reached via the path s to its predecessor world followed by
a y transition of type S;. This means [s y:S;]; represents both a world and the path via which it is reached
from the initial world. The inclusion of a specification for diamond formulas in the above definition is
intentional and so is the omission of the quantifiers. The optimised functional translation of a modal
formula ¢ is given by 7,f (¢, :Sw), where z:Syy is an arbitrary variable of sort Sy, and z:Sy as well as
the y:S; from 7o (40, s), are free variables which are implicitly existentially quantified.

In KD,y the translation of 0; and <; formulas is given by:

Top (i, 8) = Vy:Simop (@, [s y:Sili)
Tof (Cip, 8) = mor (¢, [sy:Sili).

The following holds: A modal formula ¢ is satisfiable in K(,,) or KDy, iff 3277,z (0, 2:Sw) is
first-order satisfiable [17, 18].

4.4.5 Polyadic optimised functional translation method

The setting —-EMLTranslation=2 —-EMLFuncNary=1 uses the optimised version of the polyadic
functional translation.

4.4. TRANSLATION MAPPINGS 59
The following specifies the polyadic optimised functional translation 7r’0f.

ﬂ-;f(pafakm) _ {pr ifo=eand k =0 .
Qpo(z1,...,2) otherwise
mop (0, T, k,0) = il (0.7, k, 0)
T (O N, Tk, 0) = o (@, T, k,0) ANy (9,7, k, o)
Top (i, Ty b, 0) = Vo, q1 (ndej o (T) D s (@, Towpyr, k+1,0.4))
7Tlﬂf (Cip, T, k,0) = nde; ,(T) A W;f (o, T.wpar, k+1,0.0)

In KD,y the translation of O; and <; formulas is given by:

7T’Df(|:|itp,f7 k, O’) = V$n+1 ﬂ—i)f (w,f.ka s k+17 UZ)
71-Inf (Ol(p/ E: k: (7') = 71-Inf (907 f'mk+1 ’ k-l'l, UZ)

The translation of a modal formula ¢ is given by 7 . (¢, €, 0, €).

For any multi-modal logic L with K -modalities and D-modalities only, a modal formula ¢ is satisfiable
in Liff Iz 7, (p, €, 0, €) is first-order satisfiable [9, 17]. 7, embeds modal formulas into the Bernays-
Schonfinkel class, the class of 3*V* prefix quantifier formulas [9].

4.4.6 Semi-functional translation method

The semi-functional translation method is enabled by ~-EMLTranslation=3. It is defined for numer-
ous traditional-style modal logics [15], but is implemented only for the basic multi-modal logic K(,,)and
KD () (-EMLTheory=1), plus frames (atom structures) and models, and non-logical axioms. The corre-
spondmg decription logics are ALC with concept ABox statements (concept and role assertions) and TBox
statements (general inclusion and equivalence axioms), and total roles.

The semi-functional translation maps modal formulas to many-sorted first-order formulas. We distin-
guish between the sorts W and AF' for worlds and accessibility functions. Unary predicate symbols have
sort W, the binary predicate symbol R associated with the accessibility relation has sort W x W, the con-
stant symbol € has sort W, and the binary (left-associative) function [+, -] has sort W x AF — W. Then
the semi-functional translation 7 is defined as follows.

s (p:8) = Qp(s)
Tsf (b, 8) = —msp (¢, 5)
Tsf (6 A1), S): sf (9,8) A mf (1,)
Top (O, 5) = Vy((s,9) D e (¥, y))
Tsf (O, 8) = nde(s) A Jamys (¥, [sa])

[15] proves the following: A modal formula ¢ in negation normal form is satisfiable in K,,)iff 7. (¢, €)
is satisfiable. And, a modal formula ¢ in negation normal form is satisfiable in KD(,,) iff 7y (0, €) A
VaVa(nde(z) A R(z, [za])) is satisfiable.

4.4.7 Relational-functional translation method

The settings —EMLTranslation=0 -EMLFuncNary=1 enable the relational-functional translation
method. This translation is implemented for multi-modal K.

The relational-functional translation method was introduced as the tree-layered relational translation
method in [1]. It is a variation of the relational translation specialised for the basic modal logic K,,)but
there is also a close connection to the (optimised) functional translation [22].

60 CHAPTER 4. EML LOGIC FEATURES

The relational-functional translation 7,y is specified by the following.

Trf (P, 2, 0) = Qp,q(x)
s (=, 2, 0) = s (., 0)
(oA, x,0) = mop(p,x,0) Nmpp(h, 2, 0)
mrf (Bip, @, 0) = Vy (Roi(x,y) D mrs(p,y,0.1))
o denotes a sequence of natural numbers of length k, € denotes the empty sequence, and ‘.’ is the concate-

nation operation on sequences.
We have that a modal formula ¢ is satisfiable in K, iff ¢ (p, z, €) is first-order satisfiable [1].

4.4.8 Relational-relational translation method

If the option ~EML2Rel=1 is used, dynamic modal formulas are embedded into the relational calculus.
The option is disabled by default. It can be combined only with the relational translation to first-order
logic, option ~EMLTranslation=0, which is the default. The translation is specified by the following
and the obvious extension to all other operators of the language.

For dynamic modal formulas:

T () =
Tor (2)= ()
Tor (@ A p) = pr (@) A T (¥)
T ([]@) = = (1 (@) s~ (6))

7Trr(<06>)—Trr() 7T7’T()

For relational formulas with relational operators 7., is a homomorphism, and:
Tn(67) = Trn(9) A id
Trr(@10) = Trr(@) A 7 (9)
Trr(@l@) = 7rr () A ()™

The definition amounts to a reduction of Boolean type formulas via a cylindrification operation (which
maps Boolean type formulas to right-ideal relations). There are other ways of embedding dynamic modal
logic into the relational calculus, cf. [3].

4.5 Background theories

The ~-EMLTheory option can be used to add certain relational properties to the background theory, and
can in particular be used to add the frame correspondence properties for all modalities.

1. —=EMLTheory=1 for D = 0O;p D <p.
When the relational translation is used, it adds the seriality condition for every non-equality binary
predicate symbol. For the functional, optimised functional and semi-functional translation methods,
it simplifies the translation of O and < subformulas.

2. —EMLTheory=2 for T = 0O;p D p.
When the relational translation is used, it adds the reflexivity condition for every non-equality binary
predicate symbol. Not implemented for any of the functional translations.

3. -EMLTheory=3 for B= <;0;p D p.
When the relational translation is used, it adds the symmetry condition for every non-equality binary
predicate symbol. Not implemented for any of the functional translations.

4. ~-EMLTheory=4 for4 = O;p D 0;0;p.
When the relational translation is used, it adds the transitivity condition for every non-equality binary
predicate symbol. Not implemented for any of the functional translations.

4.6. ADDITIONAL OPTIONS 61

5. “EMLTheory=5 for 5 = $;0;p D O;p.
When the relational translation is used, it adds the Euclideanness condition for every non-equality
binary predicate symbol. Not implemented for any of the functional translations.

6. —-EMLTheory=56 for $4 axioms, i.e. T and 4.
When the relational translation is used, it adds reflexivity and transitivity for every non-equality
binary predicate symbol. Not implemented for any of the functional translations.

7. —EMLTheory=7 for S5 axioms, in particular, 7, B and 4.
When the relational translation is used, it adds reflexivity, transitivity and symmetry for every non-
equality binary predicate symbol. Not implemented for any of the functional translations.

4.6 Additional options

There are various additional EML options.

4.6.1 Path representations

The main purpose of the option ~-EMLFuncNary is to vary the way paths are encoded when the functional
translations are used. With ~-EMLFuncNary=1 enabled the polyadic versions of the functional transla-
tions is used. The option can be combined with the functional translation and the optimised functional
translation, but also the relational translation, see Sections 4.4.3, 4.4.5 and 4.4.7 above. This option is
switched off by default.

4.6.2 Dead-end predicates

When a functional translation is used, the option ~-EMLFuncNdeQ=1 places the nde; literals outside the
scope of the quantifiers. For example, for the functional translation O; formulas are translated according to

7y (Oi, s) = nde;(s) D Vy:S; 7y (¢, [sy:Sili)
rather than

7y (i, s) = Vy:Si(nde;(s) D mp(p, [sy:Si]i))-

The pattern used is ‘nde; literal followed by quantifier’ rather than ‘quantifier followed by nde; literal’.
The translation for <; formulas and the other functional translations is defined similarly. Enabling this
option is only meaningful together with a functional translation method. The default is enabled.

4.6.3 Sorts

When enabled the option ~EMLFFSorts=1 uses explicit sorts in the translation rather than encoding
the information into predicate names. Enabling this option is only meaningful together with a functional
translation method. By default this option is disabled.

4.6.4 Eliminating composition

When enabled the option ~EMLE1 imComp=1 attempts to eliminate composition using these replacement
rules.

By default this option is disabled.

62 CHAPTER 4. EML LOGIC FEATURES

4.6.5 Exchanging quantifiers

When enabled, the option —QuantExch=1 replaces non-constant Skolem terms in the clausal form of
the conjecture are replaced by constants. The option is automatically set for the optimised functional
translation methods (~-EMLTranslation=2). The option is not limited to EML logics. It can also be
used for classical formulas and clauses. By default this option is disabled.

4.7 Combinations of options

Table 4.3 summarises the combinations of options which are meaningful.

Relational translations Functional translations
EMLTranslation O EMLTranslation 1,2,3
EMLTheory 0,1,2,3,4,5,6,7 | EMLTheory 0,1,2,3,4,5,6,7
EMLFuncNary 0,1 EMLFuncNary 0,1

EMLFuncNdeQ 0,1

EMLFFSorts 0,1
EMLElimComp 0,1 EMLElimComp 0,1
EML2Rel 0,1

Table 4.3: Meaningful combinations of options

Bibliography

[1] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-based heuristics in modal theorem
proving. In W. Horn, editor, Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI-2000), pages 199-203. I0S Press, 2000.

[2] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint. Journal of Logic and
Computation, 2(3):247-297, 1992.

[3] C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal Aspects of Computing, 6(3):339-358,
1994.

[4] H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for modal logics. Logic
Journal of the IGPL, 8(3):265-292,2000. Commissioned survey paper.

[5] M. de Rijke. Extending Modal Logic. PhD thesis, Univ. of Amsterdam, December 1993,

[6] L. Farifias del Cerro and A. Herzig. Modal deduction with applications in epistemic and temporal
logics. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming: Epistemic and Temporal Reasoning, volume 4, pages 499-594.
Clarendon Press, Oxford, 1995.

[7]1 A. Herzig. A new decidable fragment of first order logic, June 1990. In Abstracts of the 3rd Logical
Biennial, Summer School & Conference in honour of S. C. Kleene, Varna, Bulgaria.

[8] I. Horrocks, U. Hustadt, U. Sattler, and R. A. Schmidt. Computational modal logic. In P. Blackburn,
J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and
Practical Reasoning, pages 181-245. Elsevier, Amsterdam, 2007. Commissioned overview paper.

[9] U. Hustadt and R. A. Schmidt. An empirical analysis of modal theorem provers. Journal of Applied
Non-Classical Logics, 9(4):479-522, 1999.

[10] U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in the framework of
resolution. In R. Caferra and G. Salzer, editors, Automated Deduction in Classical and Non-Classical
Logics, volume 1761 of Lecture Notes in Artificial Intelligence, pages 191-205. Springer, 2000.

[11] U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and first-order resolution.
In R. Dyckhoff, editor, Automated Reasoning with Analytic Tableaux and Related Methods, Interna-
tional Conference (TABLEAUX 2000), volume 1847 of Lecture Notes in Artificial Intelligence, pages
67-71. Springer, 2000.

[12] U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-order fragments and descrip-
tion logics. Journal of Relational Methods in Computer Science, 1:251-276, 2004. Invited overview

paper.

[13] U. Hustadt, R. A. Schmidt, and C. Weidenbach. MSPASS: Subsumption testing with SPASS. In
P. Lambrix, A. Borgida, M. Lenzerini, R. Moller, and P. Patel-Schneider, editors, Proc. of Intern.
Workshop on Description Logics’99, pages 136—137. Linkoping University, 1999,

63

64

[14]

[15]

[16]

[17]

(18]

(19]

(20]
(21]

(22]

BIBLIOGRAPHY

K. Nellas. Reasoning about sets and relations: A tableaux-based automated theorem prover for Peirce
logic. Master’s thesis, University of Manchester, UK, 2001.

A. Nonnengart. A Resolution-Based Calculus for Temporal Logics. PhD thesis, Universitit des
Saarlandes, Saarbriicken, 1995.

H. J. Ohlbach. Semantics based translation methods for modal logics. Journal of Logic and Compu-
tation, 1(5):691-746, 1991.

H. J. Ohlbach and R. A. Schmidt. Functional translation and second-order frame properties of modal
logics. Journal of Logic and Computation, 7(5):581-603, 1997.

R. A. Schmidt. Optimised Modal Translation and Resolution. PhD thesis, Universitit des Saarlandes,
Saarbriicken, Germany, 1997.

R. A. Schmidt. Decidability by resolution for propositional modal logics. Journal of Automated
Reasoning, 22(4):379-396, 1999.

R. A. Schmidt. MSPASS, 1999. http://www.cs.man.ac.uk/~schmidt/mspass/.

R. A. Schmidt and U. Hustadt. Mechanised reasoning and model generation for extended modal log-
ics. In H. C. M. de Swart, E. Orlowska, G. Schmidt, and M. Roubens, editors, Theory and Applica-
tions of Relational Structures as Knowledge Instruments, volume 2929 of Lecture Notes in Computer
Science, pages 38-67. Springer, 2003. Survey paper commissioned for the Kickoff Volume of EU
COST Action 274.

R. A. Schmidt and U. Hustadt. First-order resolution methods for modal logics. In A. Podelski,
A. Voronkov, and R. Wilhelm, editors, Volume in memoriam of Harald Ganzinger, Lecture Notes in
Computer Science. Springer, 2006. Invited overview paper, to appear.

R. A. Schmidt, E. Orlowska, and U. Hustadt. Two proof systems for Peirce algebras. In R. Bergham-
mer, B. Mdéller, and G. Struth, editors, Relational and Kleene-Algebraic Methods in Computer Science
(RelMiCS 7), volume 3051 of Lecture Notes in Computer Science, pages 238-251. Springer, 2004.

Christoph Weidenbach, Renate A. Schmidt, and Dali Topic. Spass input syntax version 3.0. Contained
in the documentation of SPASS Version 3.0, 2007.

Index

SPASS, 9 superposition left, 22
superposition right, 22
atom input reduction, 12
maximal, 6
strictly maximal, 6 maximal, 6
monadic, 5
clause, 6 multiset, 5
declaration, 7
derived, 13 occurrence
Horn, 7 equation, 6
kept, 13 ordering
reductive, 6 Knuth-Bendix, 18
store, 7 RPOS, 18
store collection, 7
unit, 5 precedence, 17
prover
bliksem, 39

declaration, 7

linear, 7 Discount, 40
semi-linear, 7 E, 40
shallow, 7 fiesta, 40
subsort, 7 gandalf, 40
term, 7 otter, 40
trivial, 7 saturate, 40
depth, 6 spass, 40
waldmeister, 40
equation
maximal, 6 reduction
strictly maximal, 6 ordering, 6
reduction rules, 17
Horn assignment equation deletion, 30
clause, 7 condensation, 26
theory, 7 conflict, 27
contextual rewriting, 29
implementation, 36 duplicate literal elimination, 25
inference rules, 17 matching replacement resolution, 28
(ordered) factoring, 23 non-unit rewriting, 28
(ordered) hyper resolution, 24 sort simplification, 20
(ordered) paramodulation, 22 splitting, 30
(ordered) resolution, 24 static soft typing, 20
empty sort, 20 subsumption deletion, 25
equality factoring, 24 tautology deletion, 26
equality resolution, 22 trivial literal elimination, 25
merging paramodulation, 24 unit rewriting, 29
reflexivity resolution, 22 reductive, 6
sort constraint resolution, 19 renaming
splitting, 30 variable, 5

66

saturated, 7

size, 6

sort theory, 7
linear, 7
semi-linear, 7
shallow, 7

strictly maximal, 6

substitution, 5

subsumption, 6
backward, 13
forward, 13

term
declaration, 7
linear, 7
semi-linear, 7
shallow, 7
theorem proving, 9
theory
Horn, 7
sort, 7

INDEX

