Programmierparadigma:
Funktionale Programmierung

Christoph Klotz

Inhaltsverzeichnis
1 Introduction 1
2 Functional programming 1
2.1 Characteristics and advantages 2
2.1.1 Higher-order functions 2
2.1.2 Purityo 2
2.1.3 Recursion Lo 2
2.2 Types . . . e 3
3 The Lambda Calculus 3
3.1 The Lambda Calculus syntax 3
3.2 Evaluation of Lambda Expressions 3
3.3 The Normal Forms 4
3.4 Encoding datatypes 0oL 4
4 Conclusion 4

1 Introduction

Since there was programming there was functional programming, not to say
even longer. It began with mathematican who wanted to formalize mathematics
with functions and ended with a lot of different realisations of implementations.
Functional programming is not that popular but has some important aspects,
which made it survive its counterpart, the imperative programming style.

2 Functional programming

This type of programming is so called because its programs consist only of
functions. Typically the main function consists of other functions, which are
also seperated in more functions until at the bottom level the functions are
primitives. This programs are then executed by evaluating these functions and
expressions.

2.1 Characteristics and advantages
2.1.1 Higher-order functions

Higher-order functions are functions, which take as their argument other func-
tions or are returning functions as their result. They are very useful to avoid
simple loops respectively recursive functions. One of these Higher-order function
is map which executes another function on every instance of a list. An example
with Ocaml [4]:

recursive function: Higher-order function:
#let rec doubleAll=function # let double x=2%*x;;
o->10
| (x::x8)->(2%x) : : (doubleAll xs);; # let doubleAll lst=map double lst;;

2.1.2 Purity

Pure functional programms normally operate on unchangeable data, to prevent
side effects. The function only computes the expression and does nothing but
return the result. Typical side-effects would be incremented count variables or
printed strings.

That also means, everytime an expression is computed with a certain argument,
it returns the same result. This is called referential transparency which would
make it possible to replace two functions like y = fx and g = hyy with one like
9= h(fz)(fz).

With these two properties there can be found the conclusion, that pure com-
putations can be performed any time and will return the same result. So it is
possible to postpone computations until they are needed. This is called textit-
Lazy evaluation and avoids unnecessary evaluations and makes it possible to
use infinite data structures like the fibonacci numbers, the primes or any other
number type [3].

2.1.3 Recursion

A recursive function is an expression which is computed by calling itself, just like
the code in 2.1.1. Recursion is often used in functional programming because it
is basically the only way to iterate. Recursive functions sometimes need a lot of
memory and to prevent a memory overflow the functions are implemented tail-
recursive. This form of recursion needs almost no memory. The tail-recursive
code to the example of 2.1.1:

#let doubleAll xs =
let rec doubleAll acc = function
[1 -> acc
ly::ys -> doubleAll (acc@[2*y]) ys
in
doubleAll [] xs;;

2.2 Types

At first functional programming languages' only supported dynamic typing,
which means functions and values got their types not until runtime. But with
the discovery of the Hindley-Milner type inference for the lambda calculs it was
possible to implement languages which were able to do static typing. These
programming languages already typed their functions at compiletime which can
prevent failures at runtime. Programmers didn’t need to type their functions
and values because this was from now on the job of the compiler.

3 The Lambda Calculus

A main foundation of the functional programming is Alonzo Church’s Lambda
Calculus. Because this calculus was type-free it became small and simple and
also had a very interessting characteristic which gives the lambda calculus its
power, functions could be applied to themselves [1]. This made it possible to
use recursion without defining a recursion explicitly.

3.1 The Lambda Calculus syntax

The abstract syntax of the lambda calculus is called lambda expressions. They
are defined by the following BNF:

xeld Identifiers
t € Exp Lambda expressions/Lambda terms
where t ::= x|t1to]| Azt

Expressions in the form Az.t (somehow equivalent to a function definition
like f(x) = t) are called abstractions and of the form (¢1t2) are called applicati-
ons (these are representing the functions). The evaluation steps of the lambda
calculus are mostly substitutions of a term ¢, for all free appearences of an iden-
tifier « in another term to ([t1/x]t2). To understand this we must know what a
free variable of such an expression is. We name this free variable FVar(t) and
define it as followed [2]:

FVar(z) =z
FVar(tite) = FVar(t1) U FVar(ts)
FVar(Az.e) = FVar(e) — x

so z is free in t if z € FVar(t)

3.2 Evaluation of Lambda Expressions

After knowing the syntax of the lambda calculus it would be interesting to
know how to do computations with it. Surprisingly we only need three rules to

like Lisp and its variants

unleashe the full computational power of this calculus.

1. a-conversion (renaming)hudak:
Az;.t & Axj.[z;/x;]t, where x;¢FVar(t).

2. (-conversion (application):
()\I'.tl)tg <~ [tg/l’]tl .

3. m-conversion:
Ax.(ex) < t, if € fVar(t).

3.3 The Normal Forms

A Lambda Term is in normal form if it is no possible to apply any (- or 7-
reduction. Some lambda expressions, like (Azx.zx)(Az.2x), have no normal form.
The result of a S-reduction would be the same expression we wanted to compute.
In two theorems Church and John Barkley Rosser proved that if a normal form
exists, it can be found.

3.4 Encoding datatypes

Church didn’t need any arithmetic or boolean values and operators, he was able
to emulate them in lambda terms. For example [2]:

0 = Afz.x TRUE = Az \y.x
1 = Afzx.fz FALSE :=Xz.)\yy
ADD = mAnAf A z.mf(nfz) AND = Ap.\q.pgp

This can be accomplished for every datatype, even more complex like pairs,
lists and it is even possible to write recursive functions.

4 Conclusion

Functional programming is not an unimportant programming style, in fact it is
used quite often, but the popular style is the very imperative programming.

Literatur

[1] Hudak, Paul: Conception, evolution, and application of functional program-
ming languages (1989)

[2] Sternagel, Christian and Zankl, Harald: Functional Programming (with
Ocaml) (2011)

[3] http://www.haskell.org/haskellwiki/Functional_programming

[4] http://www.csc.villanova.edu/ dmatusze/resources/ocaml/ocaml.
html#Higher-order’,20functions

