Computer and Natural Language

Christoph Leitner
June 4, 2012

1 Introduction

Using search-engines, translating texts automatically, controlling devices using speech
commands - all those applications require the processing of natural language by com-
puters. According to Alan Turing and the Turing test, a machine can be considered
intelligent, if it can hold a conversation with a human, so that the human doesn’t rec-
ognize that he is only talking (writing) with a computer program.

The field of Computational Linguistics is researching methods to let a computer un-
derstand our natural language.

This article provides a brief introduction to some of the basic concepts and techniques
of natural language processing.

It is aimed at readers who have a basic knowledge of formal language theory, especially
on the Chomsky hierarchy, finite state automata and reqular languages.

The article is organized as follows. In section 2 we locate natural languages in the
Chomsky Hierarchy of formal languages. In section 3 we focus on the significance of
regular languages in natural language processing, introduce regular relations and show
their applications in disambiguation.

2 Natural Languages in the Chomsky Hierarchy

It seems quite obvious to use formal grammars to model the structure of natural lan-
guage. If we manage to build a formal grammar, that generates all and only the sentences
of a natural language, we have efficient algorithms to further process the language. For
instance: for regular languages we have regular expressions and finite state automata
(FSA) to build dictionaries and look up words within these dictionaries. To know which
kind of grammar we have to use to describe a natural language, we need to know where
that language is located in the Chomsky hierarchy.

Natural languages generally can’t be modeled using only regular grammars - Noam
Chomsky states in a Theorem, that “English is not a finite state language” - so no

FSA can produce all grammatical sentences of English. However, some aspects can be

Noam Chomsky - Syntactic Structures ([1, p. 21])

modeled using regular grammars and most aspects can be modeled using context-free
grammars.

3 Regular Languages in Natural Language Processing

As mentioned previously, a natural language can not simply be expressed in a regular
language. However, lexicons or dictionaries can be built using finite state automata
(F'SA) and regular expressions are useful for parsing input text. Those lexicons are often
used for information retrieval needed for spell checking or for part-of-speech tagging.
Regular languages are especially interesting for natural language processing because of
their simplicity for computation. For instance - recognizing a string using an FSA can
be done in linear time in the length of the provided string.

3.1 Finite State Automata, Regular Expressions and ELIZA

In many languages, morphological rules mostly consist of adding affixes (suffixes, pre-
fixes, infixes) to words. In the English language, for instance, the plural form of a word
can (mostly) be formed by simply adding the suffix “-s” or “-es” to the word. Therefore,
words and affixes can be efficiently stored in a dictionary that uses FSAs (and later
mapped by finite state transducers - see 3.3).

A good example for the usage of regular expressions in NLP is the ELIZA program.
The ELIZA program was an early natural language processing tool, which simulated a
psychologist and could maintain a simple conversation with a user. For these conversa-
tions, ELIZA used mostly regular expressions with a memory to perform substitutions
within a text - the same way the UNIX program grep does.

For example: the user’s statement “it seems you like me” would be split into four
parts:

1 | 2 | 3 |4
it seems that ‘ you ‘ like ‘ me
then the decomposition rule (0 YOU O ME) would be applied and an answer would be
formed using the reassembly rule WHAT MAKES YOU THINK I 3 YOU (the O in the decom-
position rule stands for an arbitrary number of words, the 3 in the reassembly rule stands
for the third part of the input sentence) leading to the answer: WHAT MAKES YOU THINK
I LIKE YOU

Even though the rules ELIZA used were quite simple, people interacting with the
program often believed that it really understood their problems and refused to believe
otherwise, even after they were told that they were just talking to a computer program.

3.2 Regular Relations and Part-of-Speech Tagging

Regular relations - relations over natural languages - are often used to map words of
natural language to some useful information regarding that word.

For instance - a simple part-of-speech tagger could map every word of a natural lan-
guage sentence to their respective part of speech (also called word class).

Consider the two sets X1 = {a,b,...,2} and ¥y = {PRON,V,DET,ADJ, N, P},
where Y is the alphabet of our natural language and s is a set containing part of
speech Tags, then

The DET | of P
moon N green ADJ
is A% cheese N
made V

could be pairs in the relation the tagger uses.

3.3 Finite State Transducers

Finite State Transducers (F'ST) are used to implement relations over two regular lan-
guages.

“DEFINITION: A finite state transducer is a six-tuple (@, qo, X1, 22,6, F),
where Q) is a finite set of states, gy € @ is the initial state, F' C @ is the set of
final states, 3 and Xy are alphabets, and § is a subset of Q x £ x Lo x Q.”3

Basically, a FST can be seen as an FSA
which generates an output. Each charac-
ter read from the input may result in a
change of state. This transition can out-

‘
put a character. Input and output char- @@ @ @@ e:e
acter are separated by a colon (:) fif

Example: Figure 1 shows an F ST that . o . °=e

maps the singular form of a verb to its plu-

ral form. It can be used to check whether Figure 1: A finite state transducer

a input word is a correct plural form. E.g.

if the computation ends in state ql16 the accepting pair is foot:feet.

Since the same procedure can be applied to a word and a set of tags, a FST can also
implement a part-of-speech tagger.

3.4 Disambiguation

Ambiguity is a big issue in natural language processing. In natural languages, words
can have different meanings, depending on the context they are used in. For example:
consider the following two sentences:

1. Their last song was a great hit.

2. She hit him with a frying pan.

As you can see, in the first sentence, the word “hit” is a noun, while it is a verb in the
second sentence.

2Pronoun, Verb, Determiner, Adjective, Noun, Preposition
32, p. 25]

If a part-of-speech tagger could assign the correct tag to the “hit”s in their respective
sentences, the meaning would become clear - the tagger performs a word-sense disam-
biguation.

The problem to solve now is: “How does the tagger know which tag to assign to which
word?”

Generally, there are two methods to tell a tagger how to assign tags:

Rule based: a set of rules is applied to fix the assignment of tags

Probabilistic: the tagger assigns the “most probable tag”

Current applications in NLP mostly use probabilistic methods for disambiguation.
These methods also make it easier to implement machine learning algorithms, so that
the processing machine can acquire the needed probabilities from raw text on their own.

4 Conclusion

In this article, I focused mostly on some foundations of natural language processing.
Firstly, I mentioned that the best way to model natural language in a way that com-
puters can process them are formal grammars and that regular grammars are useful for
processing natural language, but not expressive enough to cover all aspects.

Secondly, I used the ELIZA program as an example of the applications of FSAs and
regex for NLP. I introduced the concept of relations over regular languages and presented
the finite state transducer as a way to implement these relations.

Finally, I addressed the problem of ambiguity in NLP and stated the existing methods
for disambiguation.

I didn’t mention more complicated aspects of NLP like the usage of more expressive
grammars (context-free grammars and mildly context-sensitive grammars) or how the
mentioned probabilistic methods work. Topics like speech recognition (which also uses
probabilistic methods for conversion) were not mentioned either. The interested reader
can find more information on these topics in [2] and [3].

References

[1] N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

[2] A. Clark, C. Fox, and S. Lappin, editors. The Handbook of Computational Linguistics
and Natural Language Processing. Blackwell Handbooks in Linguistics. John Wiley
& Sons, 2010.

[3] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recognition
(Prentice Hall Series in Artificial Intelligence). Prentice Hall, 1 edition, 2000.

[4] J. Weizenbaum. Eliza - a computer program for the study of natural language
communication between man and machine. Commun. ACM, 9(1):36-45, 1966.

