
Seminar Report

OPA-Lang

Martin Karrer
martin.karrer@stundent.uibk.ac.at

30 July 2015

Supervisor: Priv.-Doz. Dr. René Thiemann

Abstract

Opa is a very young programming language targeting web development. Opa tries
to combine the three mein goals of webdevelopment security, scalability and reliability.
Opalang is developed by MLstate and was releast as stable on 13th February 2013. This
articel will look at the benefits and features of this programming language. Also we will
compare Opa to two other popular programming languages Ocaml and Ruby. For a better
understanding some code examples and pictures will be used.

mailto:martin.karrer@stundent.uibk.ac.at

Contents
1 Introduction 1

2 Brief History of Webdevelopment 1

3 Ideas and Goals 2

4 Usecases 3

5 Community and Surrounding 3
5.1 The License Problem . 3

6 The Language Itself 4
6.1 Lexical Conventions . 4
6.2 Basic Datatypes . 5
6.3 Integers . 5

6.3.1 Floats . 5
6.3.2 Strings . 5
6.3.3 Native Datastructures . 6

6.4 Type System . 6
6.5 Type Inference . 6
6.6 Polymorphism . 6
6.7 Pattern Matching . 7
6.8 Partial Application . 7

7 OPA vs. Ocaml 7

8 OPA vs. Ruby 8

9 Reason for Development 9

10 Alternatives 9

11 Conclusion 9

Bibliography 11

ii

1 Introduction

Opa is a a very young programming language. The first language design and prototype
was officially presented at the OWASP conference in 2010 and the source code of OPALang
was published under the GNU Affero General Public License in June 2011. The language
is mainly developed by MLState, a well known company in the world wide web for
messaging and mail exchange. MLstate created this language to make web developing
more fun again. The design of the language solves most problems for the developer,
so the code writer does not have to waste time for checking browser compatibilities or
maintaining the full stack, application from to database and client. [13]

Figure 1: OpaLang Logo

OpaLang can be used for both client-side
and server-side scripting, where complete
programs are written in OpaLang and sub-
sequently compiled to Nodejs on the server-
side, MongoDB calls for the database, and
JavaScript on the client-side. The com-
piler automatically handles all communi-
cation between the database, server and
client components. ”OpaLang implements
strong, static typing, which can be helpful
in protecting against security issues such
as SQL injections and cross-site scripting
attacks.” [13]

OpaLang Code looks like JavaScript
code on the first look, in development
OpaLang shows a full functional feature
set and behaves like a well known functional language like OCaml or Haskell.

2 Brief History of Webdevelopment

In 1989, developed Roy Fielding, Tim Berners-Lee and others at CERN, the European
nuclear research center in Switzerland, the Hypertext Transfer Protocol, together with
the concepts URL and HTML. With this base the foundations of the World Wide Web
were created. The first results of these efforts was 1991, the HTTP 0.9 Version. [2] [3] At
the same time at CERN, HTML (HyperText Markup Language) has been designed and
released 1992. Two years later 1994 Hakon Wium Lie suggested Cascading Style Sheets in
short CSS for describing the look and formatting of a document written in the hypertext
markup language. [11] On April the 1st 1993 Mosaik, the first web browser with an
general user interface was released in Version 1.0 which helped the world wide web to grow.
The concept of cookies was originally developed by Netscape Communications Group and
in 1994 published Netscape Navigator implemented cookies to keep a state with the server
over the stateless communication with the HTTP protocol. [3] 1995 the first Version of
PHP was released, the first server side scripting language for web servers. On September

1

3 Ideas and Goals

18, 1995 Netscape released with the previous version of Navigator 2.0 a browser with an
embedded scripting language called at this time Live scripts and had been developed
by Brendan Eich, in the next Version the scripting language was renamed to JavaScript.
Originally, Ruby on Rails was developed for a web application called Basecamp, but then
extracted therefrom and presented in July 2004 to the public for the first time. The
Version 1.0 was completed on 13 December 2005 and nowadays Ruby on Rails has a huge
community. [5] From 2002 to the present the so called browser wars took place, fighting
for the most users and including more and more new web standards and new versions
of HTTP, CSS and HTML. Smartphones and other mobile devices for browsing the
web, have created new browsers verisons and ensured that browser battle continues. [16]

3 Ideas and Goals

OpaLang was designed with security and scalability in mind. But it is not the only thing
to make an application scaling and secure, it also should be maintainable and easy to
write. OpaLang used all modern programming paradigms tested them and descidet to put
them in to solve other problems. It is clear that Opalang was designed by web-developer
who understood the problems and weak parts in the application chains and solved the
problems all in a creative way. The main idea was to create one language for everything
in a webapplication life cycle. MLState saw the problem in the myth of an full-stack
developer. [15] It is too much know-how for one Developer. For example a full-stack PHP
developer has to have knowhow about the hardware and operatingsystem for setting up
an develop or production enviroment. He/She should have good programming skills in
PHP and a lot of hardware to test on. But this is not everything a full-stack developer
should know. Also security and scalabilty is a hot topic today. MLState improves this by
the fact you only have to know how OpaLang works, everything else does the compiler
for you. Every application is per design secure (in a limited way) and scalable, because
every single key component in OpaLang is also built to be scalable (MongoDB, Node.js)

2

[7]

4 Usecases
Opalang is used for rapid web development, because it is easy to code and fast written.
Opalang shaked up some web developer but did not make the breakthru at the moment.
So OPALang is more likely used on Hackathons where someone tries to start a project
with a new language. At the other hand OPAlang is used for rapid prototyping or on
universities for some teaching purposes, which are not only webdevelopment, also source
to souce compiling where the opalang compiler, which is written in ocaml, plays the
leading role. [9]

5 Community and Surrounding
Having a solid community of people who uses the same language is very important for
developing and gaining features. With a large community it is easier to get into a new
language, because some platforms like stackoverflow.com offers a rich set of questions
and good answers. Large communities help to spread news and the existence of this cool
new language.

It is hard as an OPAlang Developer to find the community (if it is even there) the
forum hosted by the MLState is down for about two years. In the IRC-Channel ”opalang”
on chat.freenode.net are only 5 People online, 3 of them are channelbots. The only two
ways to connect to opalang developers is stackoverflow and the blog posts from MLState
and the comment section of each blogpost.

The other point of view can be from the communities itself. PHP developers are a
sworn in community offering frameworks and is a matured language, because the first
version was released 1995. PHP has a large fanbase and good community on forums
and IRC-Channels. If you ask people for OpaLang in the IRC-Channel you will get the
answers with prejudices like: ”Server in Node.js is Javascript and Javascript is, we all
know, super slow”. Same thing with Ruby on Rails developer. Those don’t want to learn
a new language and a different application stack, they are happy with Ruby and the
Rails web framework, they do not see the point to switch to a fresh an young untested
language.

If you want to start a new Project with OpaLang you have to be brave, feeling like
going in an area no human ever has been before. This is maybe the reason why OpaLang
is not commonly in use, because the features are great and the language itself offers
everything a web developer expects and want to have as a web developer, as you will see
in the next section.

5.1 The License Problem

At the beginning OpaLang got a lot of feedback, most of them were not critics about the
language design or used technologies but about licensing:

3

6 The Language Itself

We chose initially to release Opa under the Affero GPL (AGPL) license. We
made this choice to ensure that all improvements to Opa benefit the whole
community – and also provide more programs written in Opa.

[12]
The two components in OpaLang were both released under AGPL:

• the compiler

• the run time environment

Because of the latter, every program written in OpaLang, that links to the runtime,
must itself be released under the AGPL or the GPL. [12]

On 2012 MLState came with an acceptable solution to change standard library and
the native backend license to the GPL license with the so-called ClassPath exception,
like Java. The exception means you can link the GPL code with any code, opening the
door to license your application under any license.

6 The Language Itself

OpaLang is a statically and strongly typechecked language. This means that the type
of an expression is computed once and for all at compile-time, an expression has one
unique type and this type can’t be used as another one. The opalang compiler is written
in ocaml and is a so calles source to source compiler, compiler source code in this case
from OpaLang to Node.js and MongoDB executable code. [13] [8]

In the further reading of this sections i will point out the basics of Opalang and also
some special features which are not so common in serverside web development.

6.1 Lexical Conventions

It is clear to see that OpaLang want to be easy to learn, because lexical conventions
are similar to well known languages. For example Comments can be created in severals
styles, like Ruby, Ocaml, C or C++ Style comments are interpreted as valid OpaLang
comments.

// one l i n e comment
/∗

mult i l i n e comment
∗/
/∗

nested
/∗ mult i l i n e ∗/
comment

∗/

4

6.2 Basic Datatypes

A comment is treated as whitespace for all the rules in the syntax that depend on the
presence of whitespace.

It is a good idea to document code. Documentation can later be collected and compiled
to HTML by the opadoc tool and collected into a cross-referenced searchable HTML
document. Documentation takes the place for special comments, starting with /**, as
we know from Java.

/∗∗
∗ I a s su re you , t h i s func t i on does l o t s o f u s e f u l th ing s !
∗ @return 0
∗∗/
func t i on zero (){ 0 }

6.2 Basic Datatypes
OpaLang has 3 basic datatypes: strings, integers and floating point numbers.

6.3 Integers
Integers literals can be written in a number of ways:

x = 10 // 10 in base 10
x = 0xA // 10 in base 16 , any case works (0Xa , 0XA, Oxa)
x = 0o12 // 10 in base 8
x = 0b1010 // 10 in base 2

6.3.1 Floats

Floating point literal can be written in two ways:

x = 42.42
x = .42 // one can omit the i n t e g e r part when the decimal part i s g iven
x = 42 . // and v i c e versa
x = 42 .5 e10 // s c i e n t i f i c notat ion

6.3.2 Strings

Text is represented by utf8-encoded character strings which is immutable. String literals
can aslo be written in the common C/Java/JavaScript and Ruby syntax:

x = ” h e l l o ! ”
x = ”\”” // s p e c i a l c h a r a c t e r s can be escaped with back s l a she s

OpaLang features string insertions, which is the ability to put arbitrary expressions in
a string as we know from Ruby. This feature is comparable to string concatenations or
manipulation of format strings, but is generally both faster, safer and less error-prone:
[13]

5

6 The Language Itself

x = ”1 + 2 i s {1+2}”
// eva lua t e s to ”1 + 2 i s 3”

func t i on emai l (f i r s t name , last name , company){
”{ St r ing . l owercase (f i r s t n a m e) } .
{ St r ing . l owercase (last name)}@{company } . com”

}

my email = emai l (” Darth ” ,” Vader ” ,” deaths ta r ”)
// eva lua t e s to ” darth . vader@deathstar . com”

Expressions have to be embedded into strings between curly braces.

6.3.3 Native Datastructures

Opalang also supports some native datastructs, which are commonly known in functional
programming. Records, tuples and lists are supported by default, but any other datastruct
known from Ocaml or Ruby can be built with ease.

6.4 Type System

One of the most important features of OpaLang is its typing system. Although OpaLang
may look like a dynamic language and has many advantages of dynamic programming
languages, it is a compiled language which relies on a state-of-the-art type system.
OpaLang is a statically and strongly type checked language. This means that the type of
an expression is computed once and for all at compile-time, an expression has one unique
type and this type can’t be used as another one. In OpaLang, any expression evaluates
into a value and functions are first class values. This means that, like integers, booleans,
strings in other languages, are functions in OpaLang and can be passed as arguments,
returned as results, stored in data-types, and so on. [8]

6.5 Type Inference

OpaLang compiler offers type inference, i.e. it automatically determines the type of
expressions from the context, without the user needing to write these types. Hence, a
definition like

x = 42

will lead x to have the type int because the integer literal 42 is known to be of type int,
this type representing the type of integer values.

6.6 Polymorphism

The type system of OpaLang features polymorphism, so some types in which some parts
are not constrained and can be of any type. These feature is also offered in OCaml and

6

6.7 Pattern Matching

Java calls this feature Generic Datatypes which are internaly handeled in a different way
as in OpaLang or OCaml. [14]

6.7 Pattern Matching

PatternMatching is a so called dispatch mechanism: choosing which variant of a function
is the correct one to call. Opalang allows pattern matching according to this syntax:

match (expr) {
case ca s e 1 : expr 1
case ca s e 2 : expr 2
. . .
case case n : expr n
d e f a u l t : exp r de f

}

the expression expr is matched against each pattern in sequence, stopping on the
first one that matches. This fitting between the value and the pattern may induce
bindings of pattern variables. The environment is then extended by these bindings and
the right-side part expression of the matching case is then evaluated as the result of the
whole expression. [6] [14]

As a consequence, the matched value and all the patterns must have a same type.
Because any right-side part expression of the cases can be returned, they must also have
a same type. [14]

6.8 Partial Application

It is possible to fix one of N arguments of a function, to get an new function with the
remaining arguments. Some, who know OCaml or Haskell will do this their inutitive way.

From a function add with 2 arguments, we derive a new function add1 with less
arguments (only 1) by partial application:

func t i on add (x , y){ x+y }
add1 = add (1 ,) // which means func t i on add1 (y){ add (1 , y) }
x = add1 (2) // x i s 3

The trapdoor of this functionality is, that the side effect of the arguments are once
computed and cached and not (as we may think) each time the function is called.

7 OPA vs. Ocaml
To compare Opalang and OCaml would be the same as comparing Haskell and OCaml.
Opalang will be compiled to other sourcecodes by the OpaCompiler, this compiler is
written in OCaml. This suggests us that OpaLang Core Developers love function pro-
gramming and may also OCaml. [7] The whole featureset of OCaml can be found again
in OPALang. The syntax has been used from other better known mostly imperative

7

8 OPA vs. Ruby

languages like Ruby and Javascript. Typechecking and Typeinferance is excatly the same
as in OCaml and Patternmatching differs only by syntax. [4] Ocaml developer will feel
like at home when they use partial application in exactly the same way as in OCaml. The
only thing OpaLang does not have is the AutoGarbageCollection Feature and honestly it
does not need it, because the end code in production is Node.js and Javascript code.

Feature OpaLang OCaml
Functional YES YES

Pattern-Matching YES YES
Typeinference YES YES
Polymorphism YES YES

Modules YES YES
Tail-Recursion YES YES

AutoGarbageCollection NO YES

8 OPA vs. Ruby

Ruby is a scripting language developed by Yukihiro ”Matz” Matsumoto in Japan. Ruby is
object-oriented general-purpose programming language and was influenced by Smallralk,
Ada, Perl and Lisp. It supports multiple programming paradigms, including functional,
object-oriented, and imperative. It’s type system is dynamic and also has automatic
memory management. Version 1.0 of Ruby was release on December 25, 1996 under the
BSD License. Matsumoto has said that Ruby is designed for programmers productivity
and fun, following the principles of good user interface design. [1] [13]

Both Ruby’s interpreter is cross platform same as OpaLang compiler, instead of gen-
erating code the ruby interpreter is generating machine executable instructions. [1] As
we learned before, Opalang is a strong typed language, which ruby is not. Ruby is
dynamic typed and distinguishes from Opalang and OCaml. Both languages are active
in development, but Ruby has definitely more community driven development and also a
higher community background. Ruby and OpaLang are supporting lambda calculus and
Ruby the base functionality for functional programming. Ruby is know for its easy to
learn aspect, which Opalang and Ocaml (basically all functional programming languages)
not have.

8

Feature OpaLang OCaml
Functional YES YES

Pattern-Matching YES YES
Typeinference YES NO

Dynamic Typing NO YES
Polymorphism YES YES

Modules YES YES
Tail-Recursion YES YES 1

AutoGarbageCollection NO NO 2

9 Reason for Development

Reasons for development was definitely the lack of support of the common web languages
for the developer. Also the fact that it is not easy with standard languages and databases
to provide scalability and security by design. As web developer you have to have, or
should have pretty good knowledge of the full stack and the minimum number of 3
languages (Javascript, PHP, SQL). With OpaLang you can handle database, client and
server code in one language, so the developer only needs to know the markup language
HTML and is able to build secure, scalable and reliable application code.

10 Alternatives

There are lot of alternatives around in this time, because OpaLang is use-case is developing
web applications you can achieve the same with the language Ruby and the Ruby on Rails
framework. Also PHP and Python can be used with Laravel or Django web framework.
It is also possible to write in C the same application with CGI web hooks. [10] But
these technologies are not hitting the same goal, because you have to know at least three
programming languages, two markup languages and the technology of the full-stack of
you application. OpaLangs purpose is to make web development easy and fun. Also
producing a scalable, secure and reliable productive environment by design is really
awesome. So yes there are alternative but non of them have security and scalabilty per
design in mind and you can not write in one single language the code for server and
client side.

11 Conclusion

OpaLang is a interesting functional approach for web developing. The Language itself
has a rich feature set for imperative and even more in functional programming paradigms.
The main goal, making web developing more easy with the support for scaleable and
secure web applications and a robust runtime could shake up web development completely.
Since June 2012 the new License, the GPL License with the ClassPath exception, you are
not anymore forced to open your applications code to the public and maybe OpaLang

9

11 Conclusion

will get more interesting for companies. Also the approach to write simultaneously the
frontend and backend code, in the same language, within the same module completely
new in the web developer scene. Most of programmer errors will be notices or most
critical parts will be autoatically done by the compile, e.g. the communication between
database server and clients, so no more dead AJAX calls. Until now this new web
language does not have a large community base and it’s hard to get into this language.
OpaLang is still in active development by MLState and some features for other database
types will be added in the future.

10

References

References
[1] R. Author. Ruby language. https://www.ruby-lang.org/. Accessed: 2015-08-14,

Added: 2015-07-30 10:02:02.

[2] T. Berners-Lee. The original http as defined in 1991. http://www.w3.org/
Protocols/HTTP/AsImplemented.html. Accessed: 2015-08-14, Added: 2015-07-
30 10:02:02.

[3] T. Berners-Lee. Rfc: Hypertext transfer protocol – http/1.0. https://tools.ietf.
org/html/rfc1945. Accessed: 2015-08-14, Added: 2015-07-30 10:02:02.

[4] O. T. Contributors. Some great news on opa. http://blog.opalang.org/2013/
02/some-great-news-on-opa.html.

[5] David. Rails 1.1: Rjs, active record, respond to, inte-
gration tests, and 500 other things! http://weblog.
rubyonrails.org/2006/3/28/rails-1-1-rjs-active-record-respond_
to-integration-tests-and-500-other-things/. Accessed: 2015-08-14,
Added: 2015-07-30 10:02:02.

[6] Etangreal and MLState. Static enforcement of web application in-
tegrity through strong typing. https://www.mendeley.com/research/
static-enforcement-of-web-application-integrity-through-strong-typing/.
Accessed: 2015-02-30, Added: 2015-07-30 10:02:02.

[7] InfoQ and MLState. Questions and Answers by opa developers. http://www.infoq.
com/articles/Opa. Accessed: 2015-02-30, Added: 2015-07-30 10:02:02.

[8] S. P. Jones. Haskell 98 language and libraries: The revised report. http://www.
haskell.org/onlinereport/exps.html#pattern-matching. Accessed: 2015-02-
30, Added: 2015-07-30 10:02:02.

[9] A. Koprowski. Leaving MLStat - discussing opa. http://www.a-koprowski.com/
news/Opa. Accessed: 2015-02-30, Added: 2015-07-30 10:02:02.

[10] J. Korpela. Getting started with cgi programming in c. https://www.cs.tut.fi/
˜jkorpela/forms/cgic.html. Accessed: 2015-08-30, Added: 2015-07-30 10:02:02.

[11] C. Lilley. Rfc: The text/css media type. https://tools.ietf.org/html/rfc2318.
Accessed: 2015-08-14, Added: 2015-07-30 10:02:02.

[12] MLState. Opa license change: Not just agpl anymore. http://blog.opalang.
org/2012/05/opa-license-change-not-just-agpl.html. Accessed: 2015-02-30,
Added: 2015-07-30 10:02:02.

[13] MLState. OpaLang rapid and secure web development. https://ocaml.org. Ac-
cessed: 2015-03-30, Added: 2015-07-30 10:02:02.

11

https://www.ruby-lang.org/
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.w3.org/Protocols/HTTP/AsImplemented.html
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc1945
http://blog.opalang.org/2013/02/some-great-news-on-opa.html
http://blog.opalang.org/2013/02/some-great-news-on-opa.html
http://weblog.rubyonrails.org/2006/3/28/rails-1-1-rjs-active-record-respond_to-integration-tests-and-500-other-things/
http://weblog.rubyonrails.org/2006/3/28/rails-1-1-rjs-active-record-respond_to-integration-tests-and-500-other-things/
http://weblog.rubyonrails.org/2006/3/28/rails-1-1-rjs-active-record-respond_to-integration-tests-and-500-other-things/
https://www.mendeley.com/research/static-enforcement-of-web-application-integrity-through-strong-typing/
https://www.mendeley.com/research/static-enforcement-of-web-application-integrity-through-strong-typing/
http://www.infoq.com/articles/Opa
http://www.infoq.com/articles/Opa
http://www.haskell.org/onlinereport/exps.html#pattern-matching
http://www.haskell.org/onlinereport/exps.html#pattern-matching
http://www.a-koprowski.com/news/Opa
http://www.a-koprowski.com/news/Opa
https://www.cs.tut.fi/~jkorpela/forms/cgic.html
https://www.cs.tut.fi/~jkorpela/forms/cgic.html
https://tools.ietf.org/html/rfc2318
http://blog.opalang.org/2012/05/opa-license-change-not-just-agpl.html
http://blog.opalang.org/2012/05/opa-license-change-not-just-agpl.html
https://ocaml.org

References

[14] MLState. Opalang wiki. Github Wiki, 2014.

[15] A. Shora. The myth of the full-stack developer. http://andyshora.com/
full-stack-developers.html. Accessed: 2015-02-30, Added: 2015-07-30 10:02:02.

[16] G. Wolfe. The (second phase of the) revolution has begun. http://archive.wired.
com/wired/archive/2.10/mosaic.html. Accessed: 2015-08-14, Added: 2015-07-30
10:02:02.

12

http://andyshora.com/full-stack-developers.html
http://andyshora.com/full-stack-developers.html
http://archive.wired.com/wired/archive/2.10/mosaic.html
http://archive.wired.com/wired/archive/2.10/mosaic.html

	Introduction
	Brief History of Webdevelopment
	Ideas and Goals
	Usecases
	Community and Surrounding
	The License Problem

	The Language Itself
	Lexical Conventions
	Basic Datatypes
	Integers
	Floats
	Strings
	Native Datastructures

	Type System
	Type Inference
	Polymorphism
	Pattern Matching
	Partial Application

	OPA vs. Ocaml
	OPA vs. Ruby
	Reason for Development
	Alternatives
	Conclusion
	Bibliography

