
Seminar Report

Smalltalk

Specialization Seminar

99 Bottles of Beer

Armin Gu�er

armin.gu�er@student.uibk.ac.at

18 February 2011

Supervisor: Sarah Winkler

Abstract

This seminar report is about the programming language Smalltalk. After a short
motivation and introduction to present Smalltalk, the history of this quite old language
and the process of its development is described, pointing out the reasons and the
purpose of developing it and what languages in�uenced this process. In the following
sections the main features, syntactical constructs, concepts and control structures of
the language are presented. First important characteristics like object-orientation and
message passing within Smalltalk are described. Second the most important syntactical
rules and constructs are explained. The description of the key concepts like classes
and objects and structures like loops then shows the great possibilities of Smalltalk,
comparing it constantly to modern languages such as Java or C++. To show how a
program is developed and executed, the Smalltalk Environment is explained. Finally
the usage of Smalltalk in the past, its usage now and its in�uence on other languages
nowadays is illustrated.

Contents

1 Introduction 1

2 History of Smalltalk 1

2.1 The Idea of Object Orientation . 2
2.2 Smalltalk-71 & 72 . 2
2.3 Smalltalk-80 . 3
2.4 Current Versions . 3

3 The Main Characteristics 3

3.1 Object Orientation . 3
3.2 Message Passing . 4
3.3 Strong Dynamic Typing . 4
3.4 Re�ection . 4

4 The Basics of the Syntax 5

4.1 Constants . 5
4.2 Pseudo-Variables . 6
4.3 Variables . 6
4.4 Comments . 6
4.5 Literals . 6

5 The Key Concepts and Control Structures 7

5.1 Classes . 7
5.2 Class Inheritance . 8
5.3 Objects . 8

5.3.1 Creating Objects . 9
5.3.2 Garbage Collection . 9

5.4 Messages & Methods . 9
5.4.1 Unary Messages . 10
5.4.2 Binary Messages . 10
5.4.3 Keyword Messages . 10

5.5 Code Blocks . 11
5.6 Conditional Statements . 12
5.7 Loops . 13
5.8 Indexed Instance Variables . 13

6 The Smalltalk Environment 14

6.1 Example: Creating a Simple Class . 16
6.2 Using Re�ection . 19

7 Usage in the Past, Usage Now 21

8 Conclusion 22

ii

1 Introduction

This section should be a motivation and give a short description of what Smalltalk is.

The programming language Smalltalk is object oriented, dynamically and strongly
typed and based on message passing between objects. It is considered the �rst pure
object programming language with the �rst real Integrated Development Environment
(IDE). The main concept behind Smalltalk is, that everything within the language is an
object and these objects communicate with each other simply by sending and receiving
messages. The main philosophy of Smalltalk can be summed up by �ve points, which
developer Alan Kay formulated [8].

• Everything is an object

• Objects communicate by sending and receiving messages

• Every object has its own memory

• Every object is an instance of a class

• The class declares the shared behavior for all its instances

Smalltalk was designed to be a simple, elegant and easy to learn language. It was
especially developed for a wide range of people, rather than a small group of experts
and so one main goal was that Smalltalk would become a language for children and
other unexperienced people to become familiar with computers and there functions.

This report is structured such that �rst the history and creation of the language will be
described. The features mentioned above will be described beginning with Section 3.
In Section 4 the basic syntax of the language is explained, followed by Section 5 where
the most important control structures and concepts are described in detail. To show
a current Smalltalk Environment, Squeak [3] is presented within Section 6, containing
an example of how to model a concrete class. Section 7 shortly depicts the usage of
Smalltalk now and in the past.

2 History of Smalltalk

Within this section the most important milestones in the history of Smalltalk and the
di�erent versions that were developed will be explained.

The language Smalltalk was mainly designed by Alan Kay, an American computer
scientist. Kay developed his idea of an object-oriented language starting in the late
sixties. The development and the language itself were in�uenced by LISP, Simula,
Sketchpad and also Logo [8].

2 History of Smalltalk

2.1 The Idea of Object Orientation

The idea of an object oriented programming (OOP) style came to Kay already in the
late sixties as he observed and participated in several projects, involving the program-
ming and development for the Air Force and later on for ARPA.

The motivation for Kay was to stop dividing the computer into weaker parts like
procedures and data structures, but to split it up into thousands of little computers
(objects), each simulating and o�ering something useful. With this thoughts the idea
of OOP was born.

In 1966 he got confronted with a document named Sketchpad: A man-machine graphical
communication system [12], which already contained big ideas concerning the graphical
user interface and interaction of the user with the computer in general. Together with
Simula, a language for simulation purpose, Sketchpad in�uenced Alan Kay in his later
development of Smalltalk. Furthermore Logo and LISP were languages Kay worked
with and had in�uence on his development process [8].

2.2 Smalltalk-71 & 72

In 1971 the �rst concrete version of the language, called Smalltalk-71, was implemented
by Kay's colleague Dan Ingalls. They were both working for Xerox PARC, an important
research company from California. Kay and a few colleagues worked on a conceptional
computer system called Dynabook, which was already similar to tablet PCs nowadays.
As a �rst prototype of the Dynabook the system miniCOM was developed. In his
design of miniCOM, which o�ered a bit-map display and a pointing device, Kay also
included this �rst version of Smalltalk.

The name Smalltalk was based on Kay's vision that �programming should be a matter
of Smalltalk� and �children should program in Smalltalk� [8]. Kay also wanted to react
against the tide that many systems back then got names from ancient gods like Zeus,
Thor etc.

Smalltalk-71 then got enhanced further and so Smalltalk-72 was created, which Kay
calls �the �rst real Smalltalk� [8]. In 1972 a computer prototype called Xerox Alto was
developed, which already had a graphical user interface and was in fact the �rst com-
puter with such an interface. The Xerox Alto included an environment for Smalltalk-72
and was used already to do actual research work. With features like the pointing device
(mouse) and the graphical user interface which already used windows, icons etc. it was
a very important milestone in the development of modern computers. In fact a lot of
these ideas came from the group that developed Smalltalk.

In the seventies Alan Kay also worked with children and adults, which he wanted to
teach Smalltalk and an understanding of computers in general. He always saw Smalltalk
as a language which should be very intuitive and easy to learn even for young children
and indeed his work showed that people were able to solve easy problems with Smalltalk
and to learn it fast [8].

2

2.3 Smalltalk-80

In the following years Smalltalk-72 was consecutively improved to the versions Smalltalk-
74 and Smalltalk-76.

2.3 Smalltalk-80

As a consequence of the development Smalltalk-80 was created and this version was
the �rst one to be released outside the research company. It represented a temporary
standard for the language and was given to companies like HP or Apple and also to
the university UC Berkeley.

A �nal standard for Smalltalk came in 1983 with the book Smalltalk-80: The Language
and its Implementation [7]. At the same time also Smalltalk-80 Version 2 was released
and made available for everyone. The version came as an image with object de�nitions
and a virtual machine and was also platform independent. Later and current versions
of Smalltalk are still based on this release.

2.4 Current Versions

Nowadays there are many di�erent implementations of Smalltalk and behind some of
them stands a big community supporting and updating it continuously. The most
popular implementations are VisualWorks Smalltalk [4] and Squeak Smalltalk [3]. The
latter one is an open source implementation and has a strong developer team and
community. Among the contributors are Alan Kay and Dan Ingalls, the two main
founders and developers of the language back in the sixties and seventies. VisualWorks
is a proprietary version, sold by Cincom. Therefore it is mostly used in a commercial
way. Both VisualWorks and Squak are direct descendants of the original Smalltalk-80,
which makes them �pure� Smalltalk systems. For a more detailed list of versions the
reader is referred to the o�cial Smalltalk website [2], which also provides many other
resources to learn more about the language.

3 The Main Characteristics

In this section the main concepts and features of Smalltalk are described.

As already stated in the �rst section, Smalltalk is object oriented, re�ective, has dy-
namic strong typing and pervasively uses message passing between objects. What each
property means will be described now.

3.1 Object Orientation

Nowadays object oriented languages such as Java, C++ and Python are widely used
to program modern software systems. Smalltalk was one of the �rst languages to be

3

3 The Main Characteristics

considered object oriented, and had a big in�uence on these languages, but the ob-
ject orientation of the modern object oriented languages is di�erent from the one of
Smalltalk. In Smalltalk everything is an object. This includes numbers, strings, char-
acters, blocks of code, hence it is a pure object programming language. �Purely� object
oriented means, that there are no primitive values like integers, characters etc. like in
Java. Alan Kay, who was one of the main characters to �invent� object orientation,
de�ned object oriented programming as:

�OOP to me means only messaging, local retention and protection and hiding of state-
process, and extreme late-binding of all things.� [9]

This statement is not intended to be a clear de�nition of object oriented programming.
The extreme late-binding (dynamic typing) demonstrates Alan Kays distaste for static
types and may be considered a concept which is not crucial for a language to be object
oriented. So it can be observed, that languages like Java or C++ would not completely
satisfy this de�nition, because they do not use a dynamic type system, but if messaging
is considered the same as method invocation, the other properties are ful�lled.
An object in Smalltalk is always an instance of a class. Like in modern languages
the class describes the properties and behavior of the instances. Hence everything is
an object, the classes themselves are objects too. They are instances of the so called
metaclasses, more on that can be found in Section 5.1.

3.2 Message Passing

In Smalltalk every method call and computation is realized by sending messages be-
tween objects. Since every object holds a state and this state and the methods of the
object are private and not visible to anyone, other objects have to send a message to
the object in order to invoke a method. As a consequence of this process, programming
in Smalltalk can be seen as objects talking to each other, asking others for services and
answering to requests of other objects.

3.3 Strong Dynamic Typing

Smalltalk has a dynamic typing system, which means that type checking is not per-
formed at compile time and that a variable can contain any object. Nevertheless an
object does detect if a message having a parameter of the wrong type is received and
does only handle messages for which a correct behavior is de�ned. So even though the
language does o�er dynamic typing which allows a high applicability and reusability
the sending of invalid messages is prevented at runtime which makes the typing strong.

3.4 Re�ection

Smalltalk is a re�ective programming language which generally means that all the
objects, classes and methods are also accessible at runtime. This means that they can

4

be queried and modi�ed while the program is running by sending messages to them.
And since everything is an object and Smalltalk is implemented in Smalltalk itself, the
whole system is changeable and has the full power to change itself. Observing this,
Smalltalk can be seen as a �living� system.
If for example a class is being rede�ned (e.g. adding new variables) all existing instances
will be changed according to the new de�nition. This is done by an intern update
mechanism that in fact creates a new class and �lls instances with data from old
instances, but the system continues to run all the time.
The described characteristic is known as structural re�ection.

Smalltalk is not just structurally re�ective, but also computationally re�ective. That
denotes the ability to access and observe the computational state of the program (using
thisContext, see 4.2).

For more details about the concrete re�ective aspects and mechanisms, the interested
reader is referred to [11].

4 The Basics of the Syntax

Within this section the basic syntax, reserved words and valid expressions and state-
ments of the language are presented.

The core syntax of Smalltalk is rather small compared to the amount of keywords that
other languages use.
There are only six reserved words that can be seen as the keywords of the language,
because they cannot be changed.

nil , true , false , self , super , thisContext

Listing 1: The six reserved words of Smalltalk

4.1 Constants

The three objects nil, true and false are called constants, because they are pre-
de�ned and not changeable by the programmer. They are all singleton instances of a
respective class.
The constant nil is used to indicate an unde�ned value or that there is no value,
very similar to NULL in C or Java. Technically it is the singleton instance of the class
UndefinedObject.
The constants true and false are used to represent the boolean values true and false
and are singleton instances of the classes True and False respectively.

5

4 The Basics of the Syntax

4.2 Pseudo-Variables

There are actually three pseudo-variables, namely self, super and thisContext. The
pseudo-variables self and super are quite similar to this and super known from Java.
So self does refer to the current object (receiver of a message) itself. If a message is
sent to super then the lookup for the method starts in the superclass.
Using thisContext the current activation of a method is accessible and the object can
send messages to itself, to �nd out things like who this message came from.

4.3 Variables

In Smalltalk variables point to an object and are used quite similar as in most pro-
gramming languages. It is not necessary to declare a variable and a variable has no
inherent type. To keep it safe, in Smalltalk the programmer is not able to explicitly
take the address or use references and pointers. Variables do always point to objects
and if used they are always dereferenced implicitly.
The assignment of a value to a variable is realized with the syntax shown in Listing 2.

var := expression

Listing 2: Assignment syntax

Hence in Smalltalk the variable has no type, every object can be assigned to it and
hence everything is an object this is a very strong, profound and interesting concept.
When describing constructs like code blocks in later sections, it will become clear how
many possibilities the programmer has with variables in Smalltalk.

4.4 Comments

Like almost every language Smalltalk does o�er the possibility to insert comments
everywhere in the code to achieve better readability and understanding of the code.
Unlike most languages Smalltalk uses the double quote for comments.

"This is a comment"

Listing 3: Smalltalk comment

4.5 Literals

Smalltalk allows a lot of objects to be written as literal values. To be precise there are
integer literals, scaled decimal literals, �oating point literals, character literals, string
literals, symbol literals and array literals. So for example for the �oating point numbers

6

the precision can be de�ned explicitly. For string literals the single quote is used and
for characters the $-sign is used.

1.234 "Floating point , single -precision"

1.234q "Floating point , quad -precision"

'hello world' "A string literal"

$# "The # - character"

Listing 4: Literal examples

A more detailed description of all the literals available can be found in [9].

5 The Key Concepts and Control Structures

This section is dedicated to describing the key concepts of Smalltalk such as classes,
objects and messages. Furthermore standard constructs like conditional statements
and loops are described and compared to the ones known from other languages.

5.1 Classes

As most object oriented languages Smalltalk uses the principle of classes. A class
de�nes the behavior and structure of its instances. The behavior is de�ned with the
speci�cation and implementation of the instance methods o�ered and the structure is
speci�ed by the instance variables.

Smalltalk Java

Instance Variables Data Members

Instance Methods Methods

Table 1: Comparison to Java

The instance variables correlate to the data members or �elds in languages like Java
or C++. The instance methods are similar to the methods known from Java.

A class itself is also an object, and as mentioned earlier every class is instance of a
metaclass, actually the singleton instance. The metaclasses themselves are all instances
of the class Metaclass, which is then instance of a metaclass again and this Metaclass
class is then recursively an instance of Metaclass.
Let's look at an example. We assume that the class Person has been de�ned and then
the �hierarchy� shown in Listing 5 arises.

7

5 The Key Concepts and Control Structures

Person "instance of metaclass Person class"

Person class "instance of class Metaclass"

Metaclass "instance of metaclass Metaclass class"

Metaclass class "instance of class Metaclass"

Listing 5: A class hierarchy

Since the class is an object it can have its own methods too, the so called class methods.
These methods are invoked when sending messages directly to the class instead to
instances of the class. It can easily be seen that these class methods are the instance
methods of the metaclass de�ning the class.

5.2 Class Inheritance

The principle of class inheritance in Smalltalk is more or less the same as in Java or
C++. When de�ning a class, the programmer has the possibility to specify a superclass.
The created class is then a subclass of this superclass. That means that the subclass
inherits all the instance variables and also all the instance methods of the superclass.
Within the subclass it is also possible to create an instance method that has the same
name as a method of the superclass. This concept is called overriding a method and
is nowadays well known from other object oriented programming languages. With the
help of the �keyword� super the subclass can directly send messages to the superclass
in order to call methods that in the subclass have been overridden. As the root of the
class hierarchy exists a class named Object. This is a concept that Java adopted from
Smalltalk.
The inheritance of classes is usually also mirrored between the metaclasses of the sub-
class and the superclass. To get a deeper insight on metaclasses and metaclass inheri-
tance the reader is referred to [7, Chapter 5].

5.3 Objects

As already pointed out before objects are the central concept in Smalltalk. Every object
is an instance of a class, therefore it has its instance variables and instance methods,
like described before in Section 5.1. In order to communicate with an object, which
means invoking its methods, it is necessary to send it a message. Objects can also
be passed as arguments in messages, they can be returned as a result of a message
(method) and they can be assigned to a variable (see 4.3).

Encapsulation regarding objects is very important in Smalltalk. Actually an object
encapsulates three things:

• the object's behavior

• the object's state

8

5.4 Messages & Methods

• the object's structure

The behavior (method) can only be invoked by sending a message to an object, �asking�
the object to do something. Similarly the state and the structure can only be accessed
and modi�ed by sending a message to the object.

5.3.1 Creating Objects

The syntax to create objects in Smalltalk is very similar to the one known from modern
object oriented languages. It is realized by sending the desired class the message new.
The method new can be compared to constructors in Java or C++, but in Smalltalk
it is only a normal class method. It is implicitly inherited from the root class and if
desired it can be overridden by the developer, for the purpose of variable initialization
or other. If nothing is explicitly initialized all instance variables are set to nil when
creating a new instance.
As an example Listing 6 creates an instance of the Person class and assigns it to the
variable myPerson.

myPerson := Person new "Creating a Person instance"

Listing 6: Creating a new object

5.3.2 Garbage Collection

Smalltalk does have an automatic garbage collection. This means that every object
that has no remaining references will be deleted automatically. It is not possible to
delete an object manually, so the programmer has to remove all references in order to
delete the object. This garbage collection system is very similar to the one Java has
and results in a very safe and easy way of handling objects, because the programmer
does not need to worry about deleting objects. As a consequence of this, memory leaks,
that languages like C++ have to struggle with, are no problem in Smalltalk.

5.4 Messages & Methods

In Smalltalk computation is done by sending messages to objects. Sending a message
to an object is like asking the object to do something (execute a speci�c method).
The object which receives the message responds by invoking a method, if there is one
corresponding to the received message in the objects method namespace. The method's
or messages's name is called selector.
The messages are dispatched dynamically at runtime. As a central concept of object
orientation di�erent objects may of course respond to the same message in a completely
di�erent way.

9

5 The Key Concepts and Control Structures

A message in Smalltalk can have zero or more arguments. These correspond to the
parameters of a method or function in Java or C++. Three types of messages can be
distinguished.

• Unary Messages: messages with no argument

• Binary Messages: messages with exactly one argument (for +,−...)

• Keyword Messages: messages with one ore more arguments

5.4.1 Unary Messages

These messages do not have any arguments and can be compared to functions with no
parameter.

The following example shows the comparison between Smalltalk and Java, assuming
an object called MyObject which should be initialized. In Smalltalk the message with
name initialize is being sent to the object and in Java the method initialize()

is being called. Note that there is no prede�ned method called initialize in both
of these languages, for the example it's just assumed that such a message has been
de�ned.

Smalltalk Java

MyObject initialize MyObject.initialize ()

Table 2: Comparison to Java

5.4.2 Binary Messages

Binary Messages are used to realize statements such as 5 + 3 or 5 > 3. The big
di�erence to other programming languages is that in Smalltalk + or > does not represent
an operator.
To take the �rst example this just means that the message with name + is sent to the
object 5 and as an argument 3 is given.

This kind of approach has a problem with correct precedences. So for example the
statement 5 - 3 * 2 will not result in -1 but in 4. The reason is that messages are
evaluated from left to right and so �rst it will subtract 3 from 5 and then multiply the
result with 2. To solve this problem simply parentheses are needed.

5.4.3 Keyword Messages

To describe keyword messages it is essential to look at how a keyword in Smalltalk is
de�ned: A keyword is an identi�er which is directly followed by a colon.

10

5.5 Code Blocks

Some simple examples are key: or thisIsAKeyword:.

Keyword messages are like method calls in Java where the method has one or more
parameters, but they are one of the most di�erent constructs regarding the syntax. A
keyword message is a message which has one or more arguments and the name (selector)
of the message is composed of one or more keywords. The keywords are basically in
front of a parameter and therefore like the description of it. Some examples are shown
in Listing 7.

aPerson name: 'Peter'

aPerson birthdayYear: 1975 month: 2 day: 12

aString copyFrom: 3 to: 7

Listing 7: Examples for keyword messages

Listing 8 shows how equivalent Java statements could look like (depending on the
methods and messages implementation).

aPerson.setName("Peter");

aPerson.setBirthday (1975, 2, 12);

aString.subString(3, 7);

Listing 8: Examples for Keyword messages

The examples show an interesting characteristic of Smalltalk, which is that statements
often are very similar to an English sentence. Also the keyword does describe the role
and kind of the argument if programmed in a nice way.

5.5 Code Blocks

Code Blocks are a concept that cannot be found directly in languages like Java. They
are objects and comparable to anonymous functions of other languages. Blocks contain
a sequence of executable statements, may also have arguments and a block does also
return something, which is the last statement executed in the block. Optionally it is
also possible to write an explicit return statement by using the caret character in front
of the statement (^ result).
Unlike a normal function in another language like C, the code block in Smalltalk does
not have a name, but as it is an object it may be assigned to a normal variable. It is
also possible to send messages to the block, so for example the message value is used

11

5 The Key Concepts and Control Structures

to request a computation with given arguments.
Blocks are especially important in Smalltalk to easily create loops and conditional
statements as can be seen in Sections 5.6 and 5.7.

Code Blocks do also represent a real lambda calculus implementation with full closure
semantics within Smalltalk. If one is familiar with lambda calculus it is easy to see
that the lambda expression λx.(x ∗ 2) would correspond to the block [:x | x * 2].

Listing 9 describes the general syntax of blocks and shows some examples.

[:arg0 :arg1 ... | <expressions >] "Syntax"

[2+2+4] "Block with no arguments"

testBlock := [:a :b | "Block with 2 arguments"

b := a + 5. "Set b to a + 5"

b + a "Return b + a"

]

testBlock value: 2 value: 3 "Sending message with

arguments 2 and 3 to

the block"

Listing 9: Code Blocks

Note that regarding the statement sequences Smalltalk uses the period as a separator.
This gives the code a similarity to a natural language, which follows the concept that
Smalltalk should be a language which is easy to understand.

5.6 Conditional Statements

Unlike other languages Smalltalk does not o�er a prede�ned syntax for if -statements.
But there are easy ways to realize these constructs using objects and sending messages.
Namely there are the following messages that can be sent:

• ifTrue: corresponds to IF...THEN...

• ifFalse: corresponds to IF NOT...THEN...

• ifTrue:ifFalse: corresponds to IF...THEN...ELSE...

This means it is possible to test if something is true or false and then do something
by using the �rst two messages and giving one argument to the conditional block. The
third message realizes the IF...THEN...ELSE... construct and needs, as the selector
shows, two arguments. Additionally there is also ifFalse:ifTrue: as the reverse
construct. As arguments blocks must be used. Listing 10 shows an example for an
IF...THEN...ELSE... construct.

12

5.7 Loops

(x > 0)

ifTrue:[y := 'positive ']

ifFalse:[y := 'negative ']

Listing 10: Example for conditional statement

5.7 Loops

The principle to create loops is similar to the one of the if -statements. In order to create
a while-loop it is possible to send a whileTrue: message to a block giving another block
as argument. An example is shown in Listing 11.

i := 0.

x := 1.

[i < 10] whileTrue: [

x := x * 2.

i := i +1

]

Listing 11: A while-loop

The for -loop is also quite easy to write by using the pattern startIndex to: endIndex
do: block. The block has to have one argument (for the index). Listing 12 shows an
example for a for -loop.

x := 1.

1 to: 10 do: [:i |

x := x * 2

]

Listing 12: A for-loop

5.8 Indexed Instance Variables

Indexed instance variables are a powerful and �exible concept to realize objects which
represent an ordered sequence of some objects. These objects are needed to represent
things like arrays and strings. The indexed instance variables are di�erent from the
normal (called named) instance variables. The named instance variables bind a name
to a value whereas indexed instance variables bind an index to a value. The index is an
unsigned positive integer. An object with indexed variables may also contain named
variables, but it can contain only one set of indexed instance variables.

13

6 The Smalltalk Environment

As an example lets look at the class Array which is implemented using indexed vari-
ables. This allows the usage of arrays similarly to other language even though there is
no special structure for arrays in Smalltalk. Listing 13 shows how arrays are used.

myArray := Array new: 5 "Create an array of size 5"

myArray at: 2 put: 42 "Putting number at index 2"

myArray at: 2 "Get number at index 2"

Listing 13: Arrays as an example for objects with indexed variables

Smalltalk does o�er also data structures like lists or sets which are implemented using
arrays and objects with indexed instance variables. More details about these topics
can be found in [7] and [10].

6 The Smalltalk Environment

Programming with Smalltalk cannot be compared to programming in other common
languages. Smalltalk is not just a language where code is written in a �le and then
compiled and executed. It is a whole environment itself, just like an operating system.
In fact in the past it was designed to run on a dedicated machine as the main system
and not on top of another OS.

The Smalltalk Environment basically just contains objects that are sending messages
to each other. The system can be seen as a �living� system because all the objects are
encapsulated within an image. This image has an address space, a persistent storage
and runs in a special process. To develop applications running Smalltalk on top of
another OS like Linux, the Virtual Machine of Smalltalk with an image �le is used.

Hence all the objects within this image or system are running and �alive� it is not
possible to distinguish runtime and compile time from each other. Even though the
system is running all the time the programmer has all possibilities to change or add
something. This includes adding methods to classes, adding new classes, modify (or
also rename) classes or methods, insert new subclasses or superclasses and so on. The
compilation takes place if a message or something else is changed and the programmer
con�rms these changes. This compilation is fast, has no link or load phase and is
not visible for the developer. After adding methods, classes or making some other
changes the image �le can be saved. This is comparable to an operating system which
is hibernating. Due to this principle, if using implementations that are derived directly
from the original Smalltalk-80 (like Squeak or VisualWorks), the programmer actually
works with the same objects that began to exist and run back in the seventies.

The typical Smalltalk Environment is written mainly in Smalltalk itself, there are only
some routines within the virtual machine written in assembly language or C that allows
the environment to access hardware with high-level Smalltalk code.

A Smalltalk Environment normally is a window-based interface. It o�ers a main window

14

Figure 1: Squeak Environment with open Browser, Transcript and Workspace

part called the world. The system is designed to be controlled with a pointing device
(mouse) with three buttons. In documentations these buttons are often referred to
with di�erent colors in order to keep it general and to avoid using right/left button.
There are some key tools within the environment a programmer will use a lot.

• The System Browser: used to view, delete, modify and create new classes and
their methods

• The Workspace: an empty window where arbitrary code and text can be writ-
ten to and expressions may be evaluated or printed.

• The Debugger: a handy tool to debug methods and look at current variables
and methods.

• The Inspector: used to view existing objects in an easily readable way

• The Transcript: an object used to log system messages

To visualize what an environment looks like, the current open source implementation
Squeak in the version 4.1 is used [3].
Figure 1 shows the Squeak environment with the standard image �le. Within the world

15

6 The Smalltalk Environment

the System Browser, a Workspace and a Transcript have been opened. In this example
the Browser is not used, but in the Workspace some example statements have been
written. To visualize them on the screen the Transcript is used by sending the message
show with a value to it. The message cr tells the Transcript to insert a carriage return
(new line).

6.1 Example: Creating a Simple Class

This short section shows how to create a simple class with Squeak Smalltalk.

The goal is to create a class representing a Person which stores the name and the
birthday. The �rst step is de�ning the class itself. This can be done using the System
Browser with the code shown in Listing 14. It creates a class called Person as a subclass
of Object. The class has the instance variables name and birthday.
Note that the #-sign is used for symbol literals, which specify instances of the class
Symbol. More on symbols and their usage can be found in [9].

Object subclass: #Person

instanceVariableNames: 'name birthday '

classVariableNames: ''

poolDictionaries: ''

category: 'Example -Category '

Listing 14: De�ning the class

The class does not have any class variable and does not use any pool dictionaries. A
pool dictionary is a dictionary (a type of collection) whose keys de�ne variables which
can be shared by multiple classes. This means that the class can access any variable
within a dictionary stated in poolDictionaries:. This concept may be compared to
namespaces used in other languages. The category of a class is used to organize classes
in a structured way, comparable to packages in Java. The available categories are listed
in the leftmost pane of the System Browser. As category any available category can be
selected, in the example a �rst de�ned Example-Category is chosen.
Notable is also that the class is being created by sending a message to the class Object.
The class Object will understand this message and create the Person class as a subclass
with the given speci�cations. This shows the characteristic that everything is done by
sending messages.

Now it is possible to select the new class in the System Browser.
The next step is to create some methods for the class. The methods are all catego-
rized within di�erent protocols, visible and modi�able in the third pane of the System
Browser. Therefore it is recommended to �rst create some protocols to keep the class
well-arranged (e.g. get-data, set-data, initialize-release, transcript-print). Figure 2
shows new class including some de�ned protocols. For the Person class some simple
methods to initialize the object, to get the name and birthday, to set them and to print
the information about the person will be created.

16

6.1 Example: Creating a Simple Class

Figure 2: The System Browser showing the new class

Initializing

First a method to initialize an object with some default values for the instance variables
is presented. The method is put in the protocol initialize-release.

initialize

"Initialize Person with some default values"

name := 'undefined '.

birthday := 'unknown '.

Listing 15: Initialize method

Note that it is not mandatory to de�ne such a method. Smalltalk will just initialize
every variable with nil after the creation of the instance, but it is a good practice to
initialize manually. Another solution for this problem would be to override the new

method.

Setting data

To set the values of the instance variables the methods name: and birthdayYear:

month: day: could be de�ned as shown in Listing 16 and 17.

name: aString

"Sets the name of the person"

name := aString.

Listing 16: Method to set the name

birthdayYear: year month: month day: day

"Sets the birthday"

birthday := year asString , '-' ,

month asString , '-' , day asString.

Listing 17: Method to set the birthday

17

6 The Smalltalk Environment

Note that in the example method to set the birthday, the parameters are all converted
to strings using the prede�ned message asString and the strings are concatenated with
the comma, resulting in a single string as value of the instance variable birthday. Here
the class could of course be modeled such that there is a variable for year, month and
day or the method to set the birthday could just take one argument, with the drawback
that there is no �xed format for the date.
For the example this version is used mainly for the purpose to show how a method with
more keyword parameters is realized in practice.

Getting data

The methods to get the value of an instance variable are really simple. It is only
necessary to return the value using the caret sign (^). Listing 18 shows the method to
return the name.

name

"Gets the name of the person"

^name

Listing 18: Method to get the name

Note that there is no con�ict having a method name: and name , because the selector
is clearly distinguishable. The �rst method will be executed when receiving the key-
word message with selector name:. When receiving the unary message name the second
method will be executed.
Returning the birthday variable is the same and therefore omitted at this point.

Printing information on the Transcript

To print out all the information on the Transcript the method shown in Listing 19 can
be used. For order purposes it should be saved in a category like print-transcript or
similar.

printInfo

"Prints person info to Transcript"

Transcript show: 'The name of the person is '.

Transcript show: name.

Transcript show: ', it`s birthday is '.

Transcript show: birthday.

Transcript cr.

Listing 19: Method to print information

Now the Person class with all the methods is visible in the System Browser like any
other class, as can be seen in Figure 3.

18

6.2 Using Re�ection

Figure 3: The System Browser showing the created example class

Its now possible to use the class. An example use case is presented in Listing 20.

myPerson := Person new.

myPerson printInfo.

myPerson name: 'Peter'.

myPerson birthdayYear: 1975 month: 2 day: 12.

myPerson printInfo.

Listing 20: Testing the new class

First a new instance is created and then the initialized instance is printed to the Tran-
script. Afterwards the values are changed and the data is printed again. The Transcript
shows the following after executing the code above:

The name of the person is unde�ned, it`s birthday is unknown
The name of the person is Peter, it`s birthday is 1975-2-12

To learn more about Squeak Smalltalk the o�cial Squeak website is recommended [3].
A nice tutorial with lots of similar examples and guidelines can be found in the open
book Squeak by Example [6].

6.2 Using Re�ection

This section shows how the re�ective behavior of Smalltalk can be used by providing
some simple examples based on the class presented in the previous section.

As explained earlier Smalltalk o�ers a lot of re�ective features which allow the pro-
grammer to access the state of objects at runtime and to change the whole system
while it is running.
To visualize these characteristics the Person class from above is used. Additionally
there have been created two subclasses Student and Professor. Listing 21 shows
some messages that can be sent to the class to retrieve information about it. The
result is given right next to the statement as a comment.

19

6 The Smalltalk Environment

"Get the class a variable is instance of"

myPerson class. "Person"

"Get the parent class"

Person superclass. "Object"

"Get all subclasses"

Person subclasses. "{Student . Professor}"

"Test if the class responds to a specific message"

Person respondsTo: #name. "true"

Person respondsTo: #foo. "false"

"Get the instance variables of the class"

Person instVarNames. "#('name ' 'birthday ')"

"Get all available message selectors"

Person selectors. "#(# birthday #printInfo

#birthdayYear:month:day:

#initialize #name: #name)"

Listing 21: Examples for re�ection

It is also possible to call a method using re�ection with the perform: message providing
the selector of the desired method as an argument: perform:#selector. This may be
useful if the selector is not known until runtime. Listing 22 shows an example using
perform.

"Sending the message regularly"

myPerson name.

"Equivalent: Sending the message using perform:"

myPerson perform: #name.

Listing 22: An example using re�ection to call a method

The presented concepts are very useful, if the programmer does not know the structure,
inheritance hierarchy or the methods of an object he is working with. With the pro-
vided re�ective behavior the class of an object can be determined and all the properties
of a class like the available methods can easily be retrieved during runtime.
This is a really powerful feature of Smalltalk and even though many other languages
o�er some sort of re�ective concepts, they often only provide them using some exten-
sions or special libraries. For example in Java the package java.lang.reflect o�ers
some re�ective features.
To get more informations about the re�ective behavior of Smalltalk the reader is re-
ferred to [11].

20

7 Usage in the Past, Usage Now

Smalltalk was originally designed by Alan Kay to be a language which is easy to learn,
has a simple syntax and motivates the developer to try new things and be creative.
Therefore it was a goal that children and unexperienced users should be able to learn
programming and understand computers with the help of Smalltalk.

Hence Smalltalk is not just a language but a whole environment, it was also intended to
run as an operating system on a dedicated machine. In fact it actually includes tools to
access hardware, schedulers for threads and basic programs an operating system needs.
Nevertheless Smalltalk never became really famous. One reason that it did not become
as famous as Windows, Unix or Mac OS is, that it was never really advertised by
a strong company to the end users. Another problem was exactly this concept of a
whole operating system. It was just a big problem that for Smalltalk-80 an entire
computer was needed to use it, because of the high costs for hardware at that time. A
very important factor in the past were also the hardware requirements of the system.
At this time computers were just not ready for such high level things like the user
interface with windows. The limitation was mainly the memory, because in these days
computer memory was really small compared to now and it was seen as a huge waste
that Smalltalk needed up to two megabytes. Therefore Smalltalk did not manage to
establish a good image on the market and when systems such as Windows, Unix or Mac
OS became popular it became even more di�cult, because now users were accustomed
to these operating systems.

Nowadays Smalltalk does not really try to be an operating system anymore. With the
fast machines it is easily possible to run Smalltalk on top of an installed OS. In fact
it is really fast and does not need much resources and it can be used even in systems
considered as slow and cheap. As an example Squeak is used in a project where small
and simple laptops are developed for children in poor regions all over the world1. It
�nds use also in other areas regarding the education of children, which inventor Alan
Kay does support a lot even nowadays.
But there exist also Smalltalk-based OO-Databases (e.g. Magma [5]) or powerful tools
for Web application development (e.g. Seaside [1]) and many other applications.

1http://one.laptop.org/

21

http://one.laptop.org/

8 Conclusion

8 Conclusion

Smalltalk is a language with a long history which never became really a widely used
language in business, but it was important for the development of our modern com-
puters. It helped a lot to develop central features of computers known nowadays, like
the pointing device, windowing system, �personal� computers and others. Smalltalk
used these concepts long before others did and a lot has been adopted from Smalltalk
to develop Apple's Mac OS or Microsoft's Windows. And as already mentioned before
developer Alan Kay did not really aim at the big commercial success.
Further Smalltalk crucially contributed to the development of object oriented pro-
gramming as we know it today. Actually it was a pioneer on this area and as de-
scribed throughout this report modern languages like Java adopted many concepts
from Smalltalk.

With the implementation of Squeak the language gained new popularity and a quite
large community supporting Smalltalk. With Squeak there is now an easy and free
way to get a pure and real Smalltalk implementation. Many programmers appreciate
the easy concept of Smalltalk a lot and love the fast way of solving problems with
Smalltalk. Alan Kay and other developers claim that Smalltalk even nowadays is a
language where a programmer can create certain solutions faster than in most other
languages and especially changing things later on is faster and easier, because of the
re�ective behavior.
Smalltalk is not dead, it probably won't be in the near future and maybe even more
and more programmers learn to appreciate this easy and simple but also strong and
powerful language.

22

References

References

[1] Seaside Website. http://www.seaside.st/ [Last accessed: 16 February 2011].

[2] Smalltalk. http://smalltalk.org/ [Last accessed: 16 February 2011].

[3] Squeak. http://www.squeak.org/ [Last accessed: 16 February 2011].

[4] Visualworks. http://www.cincomsmalltalk.com/main/products/visualworks/
[Last accessed: 16 February 2011].

[5] The Magma Object Database. http://wiki.squeak.org/squeak/2665 [Last ac-
cessed: 16 February 2011], 2010.

[6] A. Black, S. Ducasse, O. Nierstrasz, and D. Pollet. Squeak by Example. 2007. Avail-
able from: http://squeakbyexample.org/SBE.pdf [Last accessed: 16 February
2011].

[7] A. Goldberg and D. Robson. Smalltalk-80: The Language. Addison-Wesley, 1989.

[8] A. Kay. The early history of Smalltalk, 1994. Available from: http://smalltalk.
org/smalltalk/TheEarlyHistoryOfSmalltalk_I.html [Last accessed: 16 Febru-
ary 2011].

[9] A.L. Lovejoy. Smalltalk: Getting the message, 2007. Available
from: http://smalltalk.org/articles/article_20100320_a3_Getting_The_

Message.html [Last accessed: 16 February 2011].

[10] H. Porter. Smalltalk: A white paper overview. Technical report, Computer Science
Department Portland State University, 2003. Available from: http://web.cecs.
pdx.edu/~harry/musings/SmalltalkOverview.html [Last accessed: 16 February
2011].

[11] F. Rivard. Smalltalk: a Re�ective Language. Available from: http://www2.parc.
com/csl/groups/sda/projects/reflection96/docs/rivard/rivard.html

[Last accessed: 16 February 2011].

[12] I. Sutherland. Sketchpad: A man-machine graphical communication system. Tech-
nical report, University of Cambridge, Computer Laboratory, 2003. Available
from: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf [Last ac-
cessed: 16 February 2011].

23

http://www.seaside.st/
http://smalltalk.org/
http://www.squeak.org/
http://www.cincomsmalltalk.com/main/products/visualworks/
http://wiki.squeak.org/squeak/2665
http://squeakbyexample.org/SBE.pdf
http://smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_I.html
http://smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_I.html
http://smalltalk.org/articles/article_20100320_a3_Getting_The_Message.html
http://smalltalk.org/articles/article_20100320_a3_Getting_The_Message.html
http://web.cecs.pdx.edu/~harry/musings/SmalltalkOverview.html
http://web.cecs.pdx.edu/~harry/musings/SmalltalkOverview.html
http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/rivard/rivard.html
http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/rivard/rivard.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

	Introduction
	History of Smalltalk
	The Idea of Object Orientation
	Smalltalk-71 & 72
	Smalltalk-80
	Current Versions

	The Main Characteristics
	Object Orientation
	Message Passing
	Strong Dynamic Typing
	Reflection

	The Basics of the Syntax
	Constants
	Pseudo-Variables
	Variables
	Comments
	Literals

	The Key Concepts and Control Structures
	Classes
	Class Inheritance
	Objects
	Creating Objects
	Garbage Collection

	Messages & Methods
	Unary Messages
	Binary Messages
	Keyword Messages

	Code Blocks
	Conditional Statements
	Loops
	Indexed Instance Variables

	The Smalltalk Environment
	Example: Creating a Simple Class
	Using Reflection

	Usage in the Past, Usage Now
	Conclusion

