informatik
institut far
universitat
| —

innsbruck

Seminar Report

Malbolge

Michael Schaper

michael.schaper@student.uibk.ac.at

19 February 2011
Supervisor: Martin Avanzini

Abstract

In this work we provide informations about the esoteric programming lan-
guage Malbolge. The language is unique and designed to be as difficult as
possible. We will introduce the language briefly and analyze the points that
make programming in Malbolge so complicated.

Contents

1 Introduction 1

2 Comparison to Other Languages 1
2.1 The INTERCAL Programming Language 1
2.2 The brainfuck Programming Language 3

3 The Malbolge Programming Language 3
3.1 Environment 4
3.2 Imstructions 4
3.3 Initialisation 5

3.4 Execution 6

4 Milestones
4.1 The HEIIO WORId Program
4.2 Thecat Program
4.3 The 99 bottles of beer Program

5 Conclusion

Bibliography

ii

1 Introduction

This work is about the esoteric programming language Malbolge. An esoteric
programming language is a language that is not designed for a “serious” or
“productive” reason. Such languages are designed to experiment with weird
ideas, to be hard to program or simply as a joke. Many esoteric languages use
obfuscation to make them difficult to program and understand. In computer
science obfuscation is the translation of source or binary code into equivalent
code that is hard to deconstruct. This can be used for security reasons or to
prevent reverse engineering.

Ben Olmstead invented Malbolge in the year 1998. The name Malbolge comes
from the word “Malebolge”, which is the name of the eighth circle of hell in
“Dante’s Inferno”. Malbolge is one of the languages that are designed to be
hard to program. More precisely, Malbolge is designed to be the most difficult
and incomprehensible programing language. The original website of Malbolge
was removed but is still available at the web archive!.

Olmstead was inspired by other esoteric languages, such as INTERCAL and
brainfuck. We will introduce them briefly as reference languages in Section 2.
In Section 3, we will give an overview about the language itself and state which
concepts make programming in Malbolge so difficult. Afterwards, we will men-
tion in Section 4 three important people who tried to “crack” the language and
contributed much to the Malbolge community. We conclude in Section 5.

2 Comparison to Other Languages

Malbolge is neither comparable with traditional languages like COBOL or BASIC
nor with newer languages like Python or Haskell. It does not support any well-
known constructs like variables, procedure definitions or even conditions. Thus,
comparison to other esoteric languages is more reasonable. We will briefly
describe INTERCAL and brainfuck, because Olmstead was inspired by these
languages and therefore Malbolge has much in common with them. Moreover,
they also provide a good introduction to esoteric languages.

2.1 The INTERCAL Programming Language

The INTERCAL programming language [3] was invented by Don R. Woods and
James M. Lyon in 1972. Officially, the intention of INTERCAL was to have a
compiler language that has nothing at all in common with any other major
language. Considering the year of its creation, major languages are for example
FORTRAN, BASIC, COBOL, ALGOL and LISP. The language is also said to sati-
rize various aspects, the constructs and notations, provided by these languages.
Inspecting the manual, one quickly discovers that the creators have fun writing
this language.

!B. Olmstead, Malbolge: Programming from hell, http://web.archive.org/web/
20000815230017/http: /www.mines.edu/students/b/bolmstea/malbolge

http://web.archive.org/web/20000815230017/http:/www.mines.edu/students/b/bolmstea/malbolge
http://web.archive.org/web/20000815230017/http:/www.mines.edu/students/b/bolmstea/malbolge

2 Comparison to Other Languages

The full name of the compiler is ’"Compiler Language With No Pro-
nounceable Acronym’, which is, for obvious reasons, abbreviated IN-
TERCAL [3, p. 1].

INTERCAL is well known for its obfuscated syntax and torturous statements.
For example, logic operators are unary and operate on the consecutive bits of
the operand. Providing the infamous COME FROM statement, they make their
own contribution to a world without “evil” GOTO statements.

To get an impression of this language we want to depict the Hello World
program.

DO ,1 <— #13
PLEASE DO ,1 SUB #1 <— #238
1 SUB #2 <— #108

1 SUB #3 <— #112

,1 SUB #4 <— #0

1 SUB #5 <— #64

1 SUB #6 <— #194

1 SUB #7 <— #48

9 PLEASE DO ,1 SUB #8 <— #22
10 DO ,1 SUB #9 <— #248

11 DO ,1 SUB #10 <— #168

12 DO ,1 SUB #11 <— #24

13 DO ,1 SUB #12 <— #16

14 DO ,1 SUB #13 <— #162

15 PLEASE READ OUT ,1

16 PLEASE GIVE UP

1
2
3
4
)
6
7
8

388883

Listing 1: C-INTERCAL:“Hello, World!”.

The program depicted in Listing 1 is actually written in C-INTERCAL, a di-
alect of INTERCAL. The original implementation of the language can only print
“butchered” Roman numerals. In line number 1 an array is created and from
line number 2 to 14 single characters are assigned. Line 15 prints the assigned
characters on the screen. Beside the syntax, the statement READ OUT makes
the program really difficult, because it implements character output based on
the “Turing Text” model. In particular, the relative distant to the previous
assigned character has to be calculated. For more details the reader may refer
to [3, p. 5].

Though it is really hard to program in INTERCAL, Olmstead states different
points why it is not suitable to be the most difficult programming language.
First of all, it supports different data types, variables and many instructions.
Although INTERCAL’s constructs may be torturous, they are way too flexible,
e.g. assigning a number to a variable can be done using a single statement.
Further, the compiler is also quite forgiving, simply ignoring illegal statements.

2.2 The brainfuck Programming Language

2.2 The brainfuck Programming Language

The other language we want to introduce is the esoteric language brainfuck?,
which was invented by Urban Miiller in 1993. He intended to provide the
smallest compiler for a Turing-complete language. The language brainfuck can
be compared with a Register machine. Thus, it only supports a small set of
simple operations, in numbers eight, and nothing like variables or data types.
This simplicity and inflexibility surely makes programming in brainfuck not easy.
Nonetheless, Olmstead claims the operations to be too intuitive. For example,
brainfuck uses > to increment the data pointer or + to increment the data by
one byte. This operations can be compared to C’s pointer operation ++ptr and
++*xptr, where ptr is of type unsigned char*. Listing 2 shows the Hello World
program of brainfuck.

} | I I | ‘l | J‘ | Ir\l I | T | 1 I>_|_<
T T T T L/ L L L L T

<KL S bbb S <<
Ftt > A+ . S>>,

Listing 2: brainfuck: “Hello World!”.

After executing the first ten + operations, the first memory segment 0 contains
the value 10. Using a loop [---], the memory segments from 1 to 4 are
initialized with 70,100,30 and 10. Afterwards, this segments are used to set
the correct ASCII values and printing it out with operation (.). For example,
the operations >++. after the loop are used to set the data pointer to memory
segment 1, containing the value 70, setting it to 72 and printing it out, which
yields the character H.

3 The Malbolge Programming Language

Olmstead stated, he wanted to borrow from both languages, eliminate their
weaknesses and put them together in a unique way. From the specification:

It was designed to be difficult to use, and so it is. It is designed to
be incomprehensible, and so it is°.

To get an overview of the language, we will describe it briefly. Further, we
try to analyze the language and express which features make Malbolge so dif-
ficult to program. Both, the specification* and the interpreter®, are available
on the internet. Within the spirit of Malbolge the official specification and the
reference interpreter do not match completely. In particular, the operators for
I/0 operations are switched. Programs are written for the interpreter normally,
that’s why we stick with the interpreters version within this report. Further-
more, there is also a bug in the interpreter, which we ignore for now and explain
later in Section 4.

Zprainfuck, http://www.esolangs.org/wiki/Brainfuck

3The Malbolge Specification, http://www.lscheffer.com/malbolge_spec.shtml
* Ibid.

5The Malbolge Interpreter, http://www.lscheffer.com/malbolge_interp.shtml

http://www.esolangs.org/wiki/Brainfuck
http://www.lscheffer.com/malbolge_spec.shtml
http://www.lscheffer.com/malbolge_interp.shtml

3 The Malbolge Programming Language

’ oPp ‘ Description ‘ Pseudo code
< | write a character A=PRINT (A%256)
/ | read a character A=INPUT
j | set data pointer D=MEM [D]
i | unconditional jump | C=MEM[D]
* | manipulate data A=MEM [D]=ROTATE_RIGHT (MEM[D])
p | manipulate data A=MEM[D]=CRAZY_0OP (A,MEM[D])
v | stop execution STOP
o | no operation NOP

Table 1: The Operator Table of Malbolge.

MEM[D] 1
2

N~ RO
N O O
=N Ol N

Table 2: The CRAZY_OP operation.

3.1 Environment

Malbolge programs run on a virtual machine. The machine uses trits (ternary
digits) and consists of one memory segment MEM and three registers A, C and D.
The address space of the memory is fix and contains 59049 (31°) words. A word
is ten trits wide and can be assigned to a value ranging from 0 to 59048. Data
segment and code segment share the same memory. Register C is the program
counter and points to the instruction being executed. Register D points to some
data and is used for data manipulation. Register A is the accumulator and
stores a value that is used for data manipulation and I/O operations.

We denote by MEM[i] the content of the memory at address .

Although, most programmers are unfamiliar using ternary digits, the envi-
ronment of Malbolge is one of the minor obstacles.

3.2 Instructions

Similar to brainfuck, Malbolge provides only 8 different operations. However,
some of them inherit the spirit of INTERCAL and are therefore incomprehensible
and difficult to use. Table 1 shows all operators of Malbolge.

The first two operations < and / are simple I/O operations. The operations
j and i are used to set the data pointer D and code pointer C respectively. In
other words, i is an unconditional jump instruction. Malbolge provides two
operations for data manipulation. First, the * operator doing a circular right
shift. Second, the p operator performing a bitwise operation on A and MEM [D]
according to Table 2. For instance, ROTATE_RIGHT(1022001021) = 1102200102
and CRAZY_0P(1022001021,1102200102) = 0101210102. With the operations v
and o Malbolge provides an operator to stop the execution and a no-operation

3.3 Initialisation

operator.

Writing a Hello World program requires to set the correct values in register A.
Unfortunately, we can only use ROTATE_RIGHT and CRAZY 0P, which are quite
uncomfortable to use.

Further, Malbolge only provides an unconditional jump and no operations for
checking conditions. Therefore, looping becomes one of the biggest difficulties.

3.3 Initialisation

To run a Malbolge program, the interpreter first initializes the program and
afterwards executes it. During initialisation the source code is verified and
loaded into memory, and all registers are set to 0.

To illustrate the initialisation phase, we consider the Hello World program
depicted in Listing 3.

(& %:9]!" }|z2Vxwv—,POqponl$HjigheBQQ>}=M: 9w
v6WsU2T |nm—, jeL (1&%$#” ‘CB] V? Tx<uVtT ‘ Rpo3NIF .
Jh++FdbCBAQ@?]! ™ |4 XzyTT43Qsqq (Lnmkj” Fhg$ {z@Q>

Listing 3: Malbolge: “Hello World!”.

Actually, the source code of a Malbolge program is a sequence of encrypted
operators. A Malbolge program that has the initial encoding removed is termed
normalised. Listing 4 shows the normalised version of the Hello World program.

J11ipp <jjii=p<iiipp<<jjij=*p<jjrox<i<io<</<<o
0<*0%<jV00O<<0OPp]<#<<<<<0jjopjp <jio <ovo<<jo<p*
0<*j0<100000<]jj*p<jji <oo<j*jp<jj**p<jjopp<i

Listing 4: Normalised Malbolge: “Hello World!”.

During initialisation the source code is verified. That is, each character is
decoded and compared against the set of operators {</ji*pvo}. If the verifi-
cation fails, the program stops with an error. Let ¢; - -- ¢, be the sequence of
characters of the source code, 7 be a position in the source code and xlatl be a
transition table according to the specification.

xlatl =
+b (29 exj1IVMEKLyC}) 8 &m# WoqxdRpOwkrUo [D7,XTcA\” 11
VI{gTh4G\\—=0@5¢ _3i <?Z’;FNQuY] szf$!BS/|t :Pn6"Ha

We denote by xlat1[j] the symbol returned by index j. The decoding algo-
rithm is then given by following function.
decode(cy -+ ¢p) = dy -+ - dy, where d; = xlat1](¢; — 33 + i) mod 94]

Example 3.1. Consider the first two symbols (’ of the Hello World program
depicted in Listing 3. The ASCII value of (and ’ is 40 and 39. We obtain

decode ((") = 3]

3 The Malbolge Programming Language

performing
xlat1[(40 — 33 + 0) mod 94] = j and xlat1[(39 — 33 + 1) mod 94] = j.

If we reverse these two characters, then the program would terminate with an
error, since 1 is not an operator:

xlat1[(39 — 33 + 0) mod 94] = * and xlat1[(40 — 33 + 1) mod 94] = 1.

The decoding algorithm just verifies the source code. Since the same algo-
rithm takes place during execution, the memory itself is filled with the original
characters. Let ¢; be the character at position ¢ of the source code, we obtain

MEM[i] = c;.

After reading the entire source code, free memory is initialized using the
CRAZY _QP repetitively on the previous two memory words, that is

MEM[i] = CRAZY_OP(MEM[i — 1], MEM[i — 2])

for each uninitialized i. (Recall that the memory contains a fixed amount of
59049 addresses).
At last, the code register C, the data register D and the accumulator A are
initialised with O:
C=D=A=0.

Note that the required encoding provides only a minor obstacle to the pro-
grammer. Let ¢; = (xlat1™ ;] + 33 — i) mod 94. Tt is easy to see that

c if ¢, > 33
decode™Y(dy---d.)) = (¢1---¢,) where ¢; =< J =
h n =l) ! {c; + 94 otherwise

defines the inverse of the decoding function in respect to the domain. In practice
this means that the programmer can write the normalised code, and using the
above function, compute the input for the interpreter.

The main difficulty, caused by the initialization phase, is that the initializa-
tion of the memory is limited to 8 different values represented by the operators.
There is no way to directly set the values of the characters for our HelloWorld
program, nor to set the correct values for branches.

3.4 Execution

After loading the program into memory, the interpreter executes it as follows:
First, the interpreter fetches the instruction pointed by code register C. Then,
the interpreter applies a similar decoding algorithm as introduced in Section 3.3.
The only difference is that the interpreter considers address ¢ instead of source
code position ¢. That is,

decode(MEM[i]) = j where j = xlat1[(MEM[:] — 33 + i) mod 94].

If the decoded character is an operator, actions are taken according to Table 1.
If it is a graphical ASCII character but not an operator, then it is treated like
o, the no-operation operator, otherwise the program terminates with an error.

At first this procedure may seem strange, because it almost does the same
as the initialisation algorithm, and the initialisation algorithm ensures that the
program is effectively a sequence of operators. But during execution the content
of the memory will change. If the code register then points to a value which is
not a graphical character, the program terminates.

After executing the instruction, the memory is modified. Using a second
translation table xlat2

xlat2 =
5z]& gqtyfr$ (wed {WP)H-Zn,[%\ \ 3dL+Q; >U!pJS7T2FhOA1C
B6v'=1_0 /8|jsb9m <.TVac*‘uY+MK X~ xDI }REokN: #£7G\” i@

the memory is modified as follows:
MEM[C] = xlat2[(MEM[C] — 33 mod 94)].
Informally, the interpreter changes the current value dereferenced by register C.

Example 3.2. Consider the execution of the first two symbols (’, represented
by the integer values 40 and 39, of the HelloWorld program depicted in Listing 3.
We obtain,

MEM[0] = xlat2[40 — 33 mod 94] = ¢ and
MEM[1] = xlat2[39 — 33 mod 94] = q.

Due to the definition of xlat2, the modifying algorithm ensures that the new
value is a graphical character and thus a valid instruction.

Afterwards the code and data register will be incremented and the next in-
struction executed.

The program terminates successfully, if the operator v is executed.

During execution Malbolge reveals its biggest difficulty. Each instruction is
modified after executing. Thus, controlling the program flow is almost impos-
sible. Further, the programmer has to ensure that the code register C never
points to a value which is not a graphical ASCII character.

4 Milestones

Although, Malbolge is considered to be really difficult and not suitable for real-
world application, some people have invested much time to develop a program.
We want to mention the most important ones. Moreover, we can show what
kind of programs are possible at all and how programming in Malbolge is like.

4.1 The HEIIO WORId Program

Officially, Andrew Cooke implemented the first program in the Malbolge pro-
gramming language. He wrote a Hello World program in the year 2000, two

4 Milestones

years after Ben Olmstead invented the language. Following listing depicts the
first version published by Cooke. The main difference to Listing 3 is that this

(=<$9]7<5YXZTWT.3,+0/0 'KV%SH” * “D|#z@Qb="{
*Lx8%$Xmrkpohm—kNi ; gsedcba ¢ _ * |\ [ZYXWVUTS
RQPONMLKJIHGFEDCBA@? > = < ;:9876543 s+O<oLm

Listing 5: The 1% Malbolge program.

program writes “HEIIO WORId” to the standard output.

More interesting than the program itself, is the fact that Cooke was not able
to write a proper version and how Cooke was able to produce it. Rather than
writing it, he computed it.

First, he tried a genetic algorithm. His algorithm generated random pro-
grams, scored their output and merged programs with high scores to generate
a new program. Due to the self modifying nature of Malbolge programs as ex-
plained in Section 3, Cooke was not able to divide a program into fragments
that could be put together again so easily.

Instead on merging randomly chosen sections, he tried to generate the “Hello
World” incrementally. That is, merging of programs takes affect only after
generating the same prefix. With this strategy he was able to produce “hello
wor”, however only in mixed cases. But he could not get any further, because
unavoidable jumps within the program executes code fragments which were
already used to print the former letters.

Finally, he was successful at adapting a Best-first search algorithm, scoring
the ratio between memory access and the reward for matching a character.

Surely, we do not want the reader to miss this quote by Andrew Cooke:

Incidentally, I've come to hate Malbolge. mno doubt that was the
author’s intention (I'm not sure if it was also their intention to write
an interpreter whose results can be unpredictable because of memory
access errors, but it adds to the general flavour - grrr.....)S.

4.2 The cat Program

Lou Scheffer published an article “Malbolge as a cryptosystem” on his website”.
He used a different approach than Cooke. His idea is to conceive Malbolge
as a cryptosystem, that is, the programming language is a complex algorithm
transforming input to output. To get the desired result, “weaknesses” in the
algorithm have to be exploited.

We mention the most important “weaknesses”. Recall that Malbolge code
is self modifying in the sense that after an instruction is executed, the value
pointed by code register C is altered. Scheffer discovered that there exist fixed
permutation cycles depending on the position modulo 94. For example the
permutation cycle of an instruction located at position 20 modulo 94 is:

CRAZY_OP — LOAD — NOP — NOP — CRAZY_OP — LOAD — ...

6A. Cooke, http://wuw.acooke.org/malbolge.html
L. Scheffer, Malbolge as Cryptosystem, http://www.lscheffer.com/malbolge.shtml

http://www.acooke.org/malbolge.html
http://www.lscheffer.com/malbolge.shtml

4.3 The 99 bottles of beer Program

There also exist cycles of length 2 for every instruction, where one operation is
the no-operation NOP. This means that every second time the intended instruc-
tion is executed.

Another weakness is that the jump instruction does not modify itself. Ac-
cording to the specification, the actual jump instruction is executed before the
modifying procedure. This means, a jump instructions keeps to be a jump
instruction as long as it is not changed with the data manipulation operators.

Further, there is also a bug in the interpreter. Due to this bug, the inter-
preter writes non-graphical ASCII characters, except whitespace, directly into
memory. This can be used to set the right branch target address in the right
spot in memory, for example.

With this discoveries, Scheffer was able to write the cat program, which
reds from the standard input and writes it back to the standard output. More
information can be found at Scheffer’s website®.

4.3 The 99 bottles of beer Program

The 99 bottles of beer program? has been implemented by Hisashi lizawa
in 2005. We want to emphasize that this version was written using a real
loop. At that time nobody was sure, how conditional jumps or loops can be
implemented, or if they can be implemented at all.

Some additional facts about the 99 bottles of beer program: The program is
22,561 bytes long. That is about 283 lines per 80 characters. Comparing to
the memory size, it is more than one third of the space. Overall, 13,802,606
instructions have to be executed.

lizawa et al. published “Programming Method in Obfuscated Malbolge” [2].
Unfortunately the paper is written in Japanese. However, there is also an
abstract in English available [1]. The paper describes a method for program
obfuscation using the Malbolge language.

Referring to the abstract, the main difficulties are given by following points:

(1) Instructions are limited and unusual for value operations and flow control.
(2) Repetition is difficult because the code is self modifying.
(3) Restrictions to initialize values.

For (1), they implemented a special data structure which provides basic func-
tionalities like incrementation using the operations of Malbolge. For (2), they
use short cycles for repetition, similar to Scheffer’s program. For (3), they de-
veloped a program to generate code which initializes the memory area of the
program. Using this achievements, they were able to compile C-like code into
Malbolge.

8 .
Ibid.
9H. Tizawa, 99 bottles of beer, http://99-bottles—of-beer.net/language-malbolge-995.
html

http://99-bottles-of-beer.net/language-malbolge-995.html
http://99-bottles-of-beer.net/language-malbolge-995.html

5 Conclusion

5 Conclusion

In tis work we introduced the reader to the Malbolge programming language
that is assigned to be the most difficult and incomprehensible programming
language. The kind of programs developed and the amount of work invested
in them shows that Olmstead is quite successful with his goal. During the
research, questions about Malbolge’s computational expressiveness showed up
several times. The fact that the size of memory is fixed, violates the require-
ments for being a Turing complete language. Moreover, the 99 bottles of beer
program shows that Malbolge programs are memory expensive. There also ex-
ist a Malbolge dialect, called Malbolge Unshackled!?, that removes the memory
limitation in an attempt to create a language that is Turing complete. Though,
there is no proof for it.

'®Malbolge Unshackled, http://www.esolangs.org/wiki/Malbolge_Unshackled

10

http://www.esolangs.org/wiki/Malbolge_Unshackled

References

[1] H. lizawa et al. Study on program obfuscation based on esoteric language
Malbolge.

[2] H. Tizawa et al. Programming method in obfuscated language Malbolge.
Technical report, Institute of Electronics, Information and Communication
Engineers, 2005.

[3] D. Woods and J. Lyon. The INTERCAL Programming Language Revised
Reference Manual, 1973.

	Introduction
	Comparison to Other Languages
	The INTERCAL Programming Language
	The brainfuck Programming Language

	The Malbolge Programming Language
	Environment
	Instructions
	Initialisation
	Execution

	Milestones
	The HEllO WORld Program
	The cat Program
	The 99 bottles of beer Program

	Conclusion
	Bibliography

