informatik
institut far
universitat

innsbruck

Seminar Report

Curry - a Combination of Functional
and Logic Programming

Paul Borek
Paul .Borek@student.uibk.ac.at

17 February 2011

Supervisor: DI Andreas Schnabl

Abstract

Declarative languages have become more and more important. This obser-
vation holds not only for the academic world, but also in industry. Functional
languages as Haskell, OCaml, Lisp or Python are very well known in certain ar-
eas of modern computer science such as agents programming, neuronal networks
and automated theorem proving, and Logic languages as Prolog, ALF, Castor
and Alloy are located in databases, artificial intelligence, natural language pro-
cessing and many more. Due to this knowledge, combining these two paradigms
could be a good thing: with lazy evaluation, higher order functions and monadic
data structures from the functional paradigm and non-deterministic evaluation
strategies, logical variables and rule based information modelling from the logic
paradigm, a powerful language could be developed. These thoughts had also
Michael Hanus, Sergio Antoy and the team around them, which modelled the
theory and later the practical elaboration of the programming language Curry,
which is described in this report.

Contents

1 Introduction

2 Common Features
2.1 DataTypes o
2.1.1 Constraints
2.2 Predefined Operations

2.3 Functions

3 Functional Logic Features
3.1 Logical Variables

3.2 Evaluation

strategyo

3.2.1 Non-deterministic Functions

4 Practical Examples
4.1 Regular Expressions

4.2 Merge-Sort
5 Actual Projects
6 Conclusion

Bibliography

ii

10
10
11

12
12

15

1 Introduction

This seminar report describes the programming language Curry, which takes its
name from Haskell Brooks Curry [7], an American mathematician and logician
(1900 - 1982), and was developed at the University of Kiel. It was introduced in
1995 by Michael Hanus and Sergio Antoy [3]. The background of the further de-
velopment of Curry was that declarative languages (functional languages, logic
languages, query languages ...) have a clear correspondence to mathematical
logic, i.e., the programmer should only see what computation should be per-
formed, not how the computation is done. Therefore programs are smaller and
without side effects. Curry takes the two most important declarative paradigms
(functional and logic programming) and combines them to a new programming
language.

Compared to pure functional languages, as Haskell [4], functional logic lan-
guages have more expressive power due to the use of logical variables and built-
in search mechanisms. On the other side compared to pure logical languages, as
Prolog [6], functional logic languages have more efficient evaluation mechanisms
(lazy evaluation) due to the (deterministic) reduction of functional expressions.

This report is divided into 3 sections. Section 2 reviews a selection of fea-
tures which are covered in other languages and are especially important for the
declarative paradigm. Section 3 describes aspects, which are either not typical
for functional languages or build a bridge between the two fore cited paradigms.
Section 4 then describes two examples written in Curry. After describing some
bigger projects which are written in Curry, the last section gives a conclusion
of the topic.

2 Common Features

The syntax of Curry borrows heavily from that of Haskell [4]. Curry introduces
a single syntactic extension (the declaration of free variables) and changes the
underlying evaluation strategy.

Thus, the structure of a Curry program does not differ much from the defi-
nition of a functional program:

Definition 2.1 (Curry program). A Curry program is a set of definitions of
data types and operations on values of these types (functions).

The next subsection introduces the data types in Curry.

2.1 Data Types

A data type is declared by enumerating all of its constructors with the respective
argument types [1]:

data Bool = True | False
data BTree a = Leaf a
| Branch (BTree a) (BTree a)

2 Common Features

’ Type \ Declaration \ Examples
Integer Int ..,-2,-1,0,1,2,...
Float Float ...,3.1415, -0.65,...
Boolean Bool False, True
Character Char ’a’, ’b’, ’c¢c’, ... ’\n’
String String "hello", "world\n"
Unit O O
List of 7 [7] [1, [1,2,31, 0:1:2:[1
Tuple of 74, oo, 7 | (715, .., ™) | Ca’, 12), ("hi", 15),
Success Success success

Table 1: Some of the built in types of Curry.

BTree a and Bool are type constructors (moreover BTree is a polymorphic
type constructor with type variable a), while True, False, Leaf or Branch
(BTree a) (BTree a) are data constructors. Like other languages, Curry has
several built in types (some samples are given in Table 1).

Beside the standard built-in types, which are not different from other lan-
guages, Success is an interesting type: It only has the value success and it
can be interpreted as the type of successful evaluations. Expressions of the type
Success are called constraints.

2.1.1 Constraints

A constraint has, compared to normal expressions, a special role in Curry pro-
grams. Constraints build the bridge between functional and logic programming.

In Curry, each expression which returns success is a constraint. They can
either explicitly return success or they can be built by applying specific op-
erations between other constraints at the body of them. Such operations are
explained in the next subsection. This specific return type leads to the use of
a different evaluation strategy, which can bind values to free variables (also see
Section 3).

Moreover, constraints in Curry are quite similar to queries in Prolog: while
the evaluation of queries finds nodes of the SLD-tree and returns them, con-
straints can be seen as branches in the the SLD-tree. The type Success denotes
then the “successful evaluation” of such a constraint.

Note that Success is something totally different from Bool, since Success
does not have something like False. If the evaluation of a constraint can not
be successful evaluated, the underlying evaluation strategy of Curry searches
for other constraints, which instead are successfully evaluated (narrowing, see
Section 3.2).

The next section introduces the equational constraint, which is used to con-
struct constraints from other expressions by allowing only success if both sides
are evaluable to unifiable data terms.

2.2 Predefined Operations

Some of the built-in operations are introduced in Table 2.

2.3 Functions

’ Description \ Identifier \ Type ‘
Boolean equality == a -> a —-> Bool
Boolean conjunction && Bool -> Bool -> Bool
Boolean disjunction | Bool -> Bool -> Bool
Parallel conjunction & Success —-> Success -> Success
Constrained equality =:= a -> a —-> Success
Constrained expression &> Success -> a -> a

Table 2: Some of the built in operations of Curry.

Boolean equality, Boolean conjunction and Boolean disjunction are commonly
used in other languages, i.e., like the corresponding operators at other languages
as C, Java or OCaml, LISP and no longer explained in detail.

So, the first new operator is constrained equality, which is similar to Boolean
equality except that constraints are evaluated. Therefore the return type is
Success (Section 2.1.1). This type of equality checks whether both sides of the
equality are evaluable to unifiable data terms (Section 3).

Parallel conjunction (a & b) denotes the concurrent evaluation of two con-
straints and returns Success, if both can be evaluated to success and if the
evaluation of both sides implies a conjoint variable binding. Moreover, if a
suspends the computation, the evaluation of b is proceeded which may cause
the reactivation of a at some later time again. The correct synchronization of
shared data is granted.

Constrained expression (a &> b) is an operation, which solves first constraint
a and then evaluates b, where b can be an arbitrary expression (then the return
type is that of b). Since a constraint is also an expression, this operation works
also with two constraints (then Success is returned).

2.3 Functions

Since we are talking about a functional language, we need functions.

The definition of a function in functional languages is that it takes one argu-
ment and returns one value (a -> b). Here the arrow denotes the computation,
which is performed by expressions where the argument is involved.

If we want functions with more than one argument (a -> b -> c), this is
encoded always by a function with one argument, which returns another func-
tion. Thus, the associativity of function types is right (a -> (b -> ¢)). For
example, consider the two following functions, where the (optionally) first line
denotes the type signature:

square :: Int -> Int
square X = X * X

add :: Int -> Int -> Int
add ab=a+b

Higher order functions are a commonly used feature in functional languages,
as Haskell or OCaml, i.e., functions which take other functions as argument,

3 Functional Logic Features

and are therefore also valid in Curry:

(]

f x : map f xs

my_map _ []
my_map f (x:xs)

Like in functional languages, the evaluation is lazy, i.e., the computation of
any expression is delayed until the expression’s value is actually needed. This is
used also in C or Java at the evaluation of Boolean expressions (short circuit).

Moreover, Curry allows the use of potentially infinite data structures. Con-
sider the function:

fromn =n : from (n+1)

The call from 1 would lead to a memory overflow, since the result is infinite.
However, with lazy evaluation, a call of head (from 1) would return 1 as
expected (like in Haskell).

Also pattern matching is supported by Curry: functions are specified by
different equations for different argument values. Hence, a function may be
broken into more rules, depending on conditions by enumerating the different
patterns explicitly. Beside the example of my_map which already used pattern
matching, here another example:

[++ ys =ys
(x:x8) ++ ys = x:(xs ++ ys)

Each rule defining a function can include one or more conditions of type Bool
(guards):

max xy | x <y
| otherwise

non
x <

Here, otherwise is syntactic sugar for True.
But the guards in Curry differ from the ones in Haskell or OCaml: a constraint
instead of a Boolean condition is allowed. In this case, this constraint is checked
for satisfiability in order to apply the rule. Thus, the function call reduces to
the right-hand side, only if the constraint is satisfied, otherwise it fails. Note
that multiple conditions as above are not allowed for constraint conditions.

The next section introduces features which can be seen as a connection be-
tween functional and logic languages.

3 Functional Logic Features

Beside constraints, the type Success and operations on them (=:=, & and &>)
almost everything was a typical instrument for functional languages until here.
At the next two sections, we will see how these instruments can be used to
model mechanisms of logic programming.

3.1 Logical Variables

3.1 Logical Variables

Recall the definition of a logic program, which consists of rules and facts. Every
rule has a head and a body except facts, which have an empty body. Consider
the following Prolog program:

female(doris).
female(eva) .
female(maria).

male(peter) .

father(peter, doris).
father(peter, eva).

mother (maria, eva).

parent(X,Y) :- father(X,Y).
parent (X,Y) :- mother(X,Y).

daughter (X,Y) :- parent(Y,X), female(X).

Next, we can query a specific consequence by typing the query statement
7- daughter (X,peter) . to get all daughters of peter.

Prolog uses unification and resolution to get an answer, where unification is
needed to find a suitable substitution (most general unifier) to find the most
general answer for the query. Resolution takes a set of rules and the query.
Then it selects an applicable rule and a goal and tries to unify them with the
mgu. If possible, this mgu is returned. If not, there are no solutions and Prolog
returns False. In other words, resolution and unification iterate over the result
of applied rules of the program.

Since we heard that in Curry we can model constraints by writing down
expressions with the return type Success, we can now define such functions
and we may observe that these are expressions, which return always success
and are therefore always successful.

For example by defining a rule female Doris = success, we model the in-
formation that the expression female applied on the value Doris (after declar-
ing this data type with data person = Doris) is always successful. In a
similar way, we model then the first seven rules of the recent logic program,
after declaring the data type.

The only remaining rules are the last three: they all have non-empty bodies
and have to be modeled with other rules. To combine multiple rules in Prolog,
we have disjunction (by splitting rules into more or by using ;) and conjunction
(by using ,).

Disjunction is modeled already in the Prolog program by splitting the rules
into multiple ones, so we do the same in Curry. The evaluation strategy searches
then for the first successfully evaluated constraint of the arguments and returns
success if such a constraint could be found.

3 Functional Logic Features

To model conjunction, recall the definition of parallel conjunction from Sec-
tion 2.2. With this operation, we can now model conjunction of two constraints
too.

To illustrate the previous example in Curry, consider the following program.

data person = Doris | Eva | Maria | Peter
female Doris = success

female Eva = success

female Maria = success

male Peter = success

father Peter Doris = success
father Peter Eva

success

mother Maria Eva = success
parent x y = father x y
parent x y = mother x y

daughter x y = parent y x & female x

However, by typing daughter x Peter, in Curry the interpreter answers
with ERROR: Expression contains unknown symbols: x.

The reason is the following: other than in Prolog, not all variables occurring
somewhere in the query are automatically existentially quantified. Thus each
free variable has to be declared explicitly. This is done by adding the construct
where x free at the end of the query statement. Instead of x more variables
separated with commas are allowed here too.

At the end, the interpreter prints also the (first) answer:

Free variables in goal: x
Result: success

Bindings:

x=Doris

By typing again y or a (for all answers), also the second variable binding is
printed and we are finished:

Result: success
Bindings:

x=Eva

No more solutions.

The next section introduces the underlying evaluation strategy, which differs
from the standard evaluation method for functional languages (lazy evaluation).

3.2 Evaluation strategy

3.2 Evaluation strategy

Consider the following example:
zs ++ [2] =:= [1,2] where zs free

This equation states that we are interested in suitable variable bindings for
zs (where ++ denotes list concatenation).

An evaluation strategy based on term reduction would not work here, since
we have to instantiate the free variable. This implies to deal with a mix between
term reduction and variable introduction.

While functional programs return a data term at the end, functional logic
languages deal with a pair, the so called answer expression:

Definition 3.1 (Answer expression). An answer expression a := o || e consists
of a substitution ¢ and an expression e. We say that a is solved if e is a data
term.

Usually more answer expressions can be computed during the evaluation, so
they are combined through a disjunction, since one ore more answers may be
possible:

{o1]e1|...|on]en}

A single computation step performs a reduction in exactly one unsolved ex-
pression (for example from left to right in Prolog-like Curry implementations).

Example 3.2. Consider the following function definition:

f0=2
f1=23
A call of

f x where x free

would be evaluated to the following disjunction:

{r=0}[2{zr=1}[3

In this simple example the result can be seen directly: if we would instantiate
the variable by 0, 2 would be the return value (first disjunct) and if we would
instantiate it with 1, we would get 3 as return value, which corresponds to the
second disjunct.

Usually, functions can support one of the two following evaluation strategies:

Residuation Simply delay the evaluation of the free variables until they are
bound.

Narrowing Perform an instantiation of the values of free variables, such that
the program rules become applicable. To do this, the narrowing strategy
determines the steps, which lead to a useful computation, i.e., it searches
appropriate answer expressions to succeed the computation.

3 Functional Logic Features

Note that narrowing is not a new approach. It is a well known strategy in
automated theorem proving.

Operations which use residuation as evaluation strategy are called rigid. Such
operations are arithmetic operations in general since variable guessing, as nar-
rowing does, is not adequate for arithmetic operations.

Operations which use narrowing are called flexible.

To understand better the behavior of a narrowing mechanism, consider the
following example:

Example 3.3. First of all, recall the standard definition of the append function
on lists:

(1 ++ ys = ys

(x:x8) ++ ys = x : (xs ++ ys)

To perform the evaluation of xs ++ [2] =:= [1,2] where xs free, we first
have to show the evaluation of the =:= operator, considering the Curry Re-
port [5].

First of all, consider the following small example to show the (partially)
computation of the constrained equality:

y [2] =:= [1,2]
y: (@ :[1)==1:(@:[D
y=:=1& (2 : [1) =:=(2: [D

First of all, the syntactic sugar of list-representations are eliminated to un-
derstand the behavior of the operator.

The next step is then to split the equivalence into a conjunction of simpler
constrained equations. In this case this is done by recursively applying the
equivalence on both arguments of the list constructor.

By the definition of constrained equivalence, if one side is a data constructor
(or in this case a number) and the other side a variable, we simply instantiate
this variable with the corresponding value. This procedure is continued until
all sides can evaluate to success (due to the specification of the operations &
and =:=).

On the other side, such instantiations as seen in the third line of the previous
listing form then the substitution-part of the answer expression.

Consider the following example (syntactic sugar was left inside):

{zs=[} [[2] =:= [1,2] |[{zs=y:ys} [y:(ys ++ [2]) =:= [1,2]

—2{zs=1:ys} [1:(ys ++ [2]) =:= [1,2]

—{rs=1:ys,ys=[} [1:[2] =:= [1,2]]
{zs=1:ys,ys =z :zs} [1:(z: (zs++[2])) =:= [1,2]

—2 {xs = [1]}] success

The first disjunct is the substitution of xs by the empty list on the one side
and by the list-constructor at the other side.

3.2 Evaluation strategy

The empty list does not lead to success, because by having an expression
2:[1 =:= 1:(2:[1), the following reduction step would lead to a parallel con-
junction 2 =:= 1 & [] =:= 2:[], where 2 =:= 1 fails. This answer expres-
sion is therefore removed from the disjunction in the first of the following two
steps. Then the y is immediately instantiated to 1, due to specification of =:=
in the Curry Report [5].

At the next step the ys has to be instantiated. Again we have to instantiate
all possible right-hand sides of the append-rules.

Since we assume an evaluation from left to right, we take the first disjunct in
the last two steps and it succeeds immediately, so the binding in the substitution
is simplified to xs=[1].

3.2.1 Non-deterministic Functions

The evaluation strategy in the last subsection showed that we can instantiate
values for free variables. Therefore we can write functions with different re-
turn values, since we allow answer expressions with different return values but
equal bindings (the definition of the answer expression gives no restriction with
respect to this attribute).

So, a function which returns one of its arguments can be written down:

X7y =x
xX?7y=y
This is the choose-operator, which is defined by the standard library of curry.

An application of this operator could be the following (very inefficient, but
demonstrative) sorting algorithm [5].

insert x ys =X : ys
insert x (y:ys) = y : insert x ys

This function is non-deterministic, since both rules can be matched on a non-
empty list.

By applying it on an arbitrary list, either the ordering of the first argument
x is left, or swapped with the head of the second list (y). The most appropriate
application for such a function is the permutation function:

perm [1 = []
perm (x:xs) = insert x (perm xs)

After defining a function to permute a given list we now have to check whether
a given list is sorted or not to complete this sorting algorithm:

sorted [1 = []
sorted [x] = [x]
sorted (x:y:xs) | x<=y = x : sorted (y:xs)

Now a call of sorted (perm xs) would return the sorted version of xs. The
sorted property is checked here, and if it fails, Curry checks an alternative
until the property holds. Moreover, Curry includes a demand-driven strategy,
which does not evaluate the expression completely. For example the call of
sorted (3:1:perm ys), would avoid the remaining call of perm ys.

4 Practical Examples

4 Practical Examples

To outline the practical part of Curry, I will show at first an example for repre-
senting reqular expressions, where it can be seen that the combination of non-
deterministic functions and pattern matching can be useful in a more concrete
example (compared to the permutation-sort example in the last subsection)
too. After this, the merge sort algorithm is implemented in Curry, where we
can start the recursive calls of merge concurrently with the use of the parallel
conjunction (from Section 2.2).

4.1 Regular Expressions

Consider a regular expression. Then in Curry we could define such an expression
with:

data Reg_exp a = Empty_set | Bas a | Alt (Reg_exp a) (Reg_exp a)
| Conc (Reg_exp a) (Reg_exp a)
| Star (Reg_exp a)

Here Bas denotes a basic regular expression in the given alphabet (type) a,
Alt is the choice between two regular expressions, Conc is the concatenation of
two regular expressions and Star denotes zero or more repetitions of a regular
expression. For example, the regular expression a * b * would then be:

astarbstar = Conc (Star (Bas ’a’)) (Star (Bas ’b’)))

Additionally new operators on regular expressions, like the + can be represented
(which denotes one or more repetitions):

plus re = Conc re (Star re)

The next step is the definition of a function, which returns a word inside the
language of a given regular expression. Here we can see the useful application of
non-deterministic functions: the decision of the number of repetitions of Star
and the choice of the regular expressions of Alt is left to the Curry interpreter:

sem (Empty_set) = []

sem (Bas a) = [a]

sem (Alt a b) = sem a ? sem b
sem (Conc a b) = sem a ++ sem b

sem (Star a) [] ? sem (Conc a (Star a))

Now, by typing sem re =:= word the interpreter returns, if the given word is
inside the language of the regular expression re.
To simulate grep from Unix, we could write the following line:

grep re s Xs ys = Xs ++ sem re ++ ys =:= s
This can be tested by typing for example:

grep astarbstar "ab" xs ys where xs,ys free

10

4.2 Merge-Sort

which would print out the following substitutions:

’ xs ‘ sem myregexp ‘ ys ‘ s ‘
i] "ab" | "ab"
] a" B | Tab"
] "ab" 0 | "ab"
"an i "Bt | "ape
Tan " 0 | "ab"
"ab"] 0 | "ab"

4.2 Merge-Sort

The next example is an implementation of the merge-sort algorithm [2]. Since
take and drop are already defined in the Prelude, the functions for dividing a
list into the first and the second half can be defined as follows:

firsthalf xs
secondhalf xs

take (length xs ‘div‘ 2) xs
drop (length xs ‘div‘ 2) xs

Then we need the merge-part. Since we use >, this merge function is poly-
morphic and works for the same types for which > works:

merge [] ys zs = zs =:= ys
merge (x:xs) [] zs = zs =:= x:xs
merge (x:xs) (y:ys) zs = if (x > y)
then merge (x:xs) ys us & zs
else merge xs (y:ys) vs & zs
where us,vs free

y:us

X:ivs

The first two rules catch instances, where the first or the second list is empty.
In this cases the nonempty list is returned.

The third rule has then two nonempty lists as first argument and performs
the real merge operation. Important to notice is the &, which in this case does
not improve any parallelism, but grants the consistent computation of us and
vs respectively. The constrained equality is then used to search for the right
solution of zs. In other words, this implementation does not all the work, but
delegates it to the evaluation strategy of =:= and &. Clearly, the existential
quantification of us and vs has to be ensured.

Now we have to put these two steps together with the sort-function:

sort xs ys =
if length xs < 2 then ys =:= xs
else sort (firsthalf xs) us
& sort (secondhalf xs) vs
& merge us vs ys
where us,vs free

11

6 Conclusion

The case where the given list has one or zero elements is caught by the then-
branch of the if-then-else construct. If not, we recursively divide the list into
two sub lists (firsthalf and secondhalf) and merge it concurrently. Due to
the specification of the parallel conjunction, one side of the evaluation stops, if
a value is demanded and then continued, if it is bound at the other side of the
operation. The result is a sorted list.

5 Actual Projects

The Curry programming language was basically an experiment. Therefore,
many tools for Curry are implemented in Curry (Debugging, IDEs, test envi-
ronments, analysis environments).
Applications are counted among: they are to show, that such software can
be written smarter in Curry and to test the Curry library exhaustively.
However, two exemplary applications and their thoughts are listed here,
which are located in the CurryWiki with many others.!:

Spicey This software is the product of a master-project of Sven Koschnicke
and supports the implementation of web-based systems by generating
a initial implementation from an entity-relationship description of the
underlying data. By reading this thesis one may notice, that the goal
of the thesis was not only to write a software-development program, but
to show the benefits of declarative descriptions inside the development
of web-based applications in general. As major benefit he emphasize the
simple extendability of functional and logic programs, namely by adding
rules. To show this benefits in practice, he developed then the framework
in Curry.

CurryWeb A system for the support of web-based learning. Shows in particular
the practical use of several parts of the Curry library, for example the
module HTML, which was developed to represent HTML tags with data
types and supports the programmer with functions as useful abbreviations
and the incorporation of CGI scripts with the CgiRef module.

As already mentioned: for further projects, visit the CurryWiki (http:
//wwu-ps.informatik.uni-kiel.de/currywiki/applications). Beside the
listed projects on the Wiki, other nameable applications are not present.

6 Conclusion

As we saw in this report, the combination of logic and functional programming
is possible. The benefits of both paradigms were extracted and merged into
a programming language, which uses even concurrent mechanisms to gain a
higher abstraction level.

"http://www-ps.informatik.uni-kiel.de/currywiki/applications

12

http://www-ps.informatik.uni-kiel.de/currywiki/applications
http://www-ps.informatik.uni-kiel.de/currywiki/applications
http://www-ps.informatik.uni-kiel.de/currywiki/applications

However, especially Section 3 showed that a significant knowledge is needed
to understand the behavior of the compiler and the evaluation of such a lan-
guage. Moreover, programming with two paradigms can be obfuscating, since
the example of the logic program in Section 3.2 could be also modeled by using
only functional components.

The real benefit is the use of non-deterministic functions, which showed a
very short implementation of the grep-command of Unix. In purely functional
languages, such a program would lead to a huge number of pattern matching
rules and only with the exhaustive use of list-functions.

Nowadays, Curry has different applications. Anyway, these implementations
are mostly implemented and kept at the University of Kiel, i.e., by Michael
Hanus. By searching for papers concerning this topic, one may conclude that
the boom of Curry is over now: last papers of Curry were from 2001.

Nevertheless, narrowing is still ongoing research, since it takes place at auto-
mated theorem proving, where it has an essential role.

Beside Curry, several approaches were developed to complete such a fusion
too:

e Escher (mid-1990s, J.W. Lloyd)

Oz (1991, Gerd Smolka)

Babel (1988, J. J. Moreno-Navarro et. al.)

LPG (1988, D. Bert et. al.)

SLOG (1991, P. H. Cheong et. al.)

By comparing the years of occurrence, we can observe that this topic has
reached the nuclear winter of research interest in computer science. However
Curry is one of the latest attempts and is still used nowadays (even if rarely).

13

6 Conclusion

14

References

References

1]

2]

[5]

[6]
7]

S. Antoy and M. Hanus. Functional logic programming. Commun. ACM,
53(4):74-85, 2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second FEdition. The MIT Press and McGraw-Hill Book
Company, 2001.

M. Hanus, H. Kuchen, and J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95-107, 1995.

P. Hudak, S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H. Fasel,
M. M. Guzmén, K. Hammond, J. Hughes, T. Johnsson, R. B. Kieburtz,
R. S. Nikhil, W. Partain, and J. Peterson. Report on the programming lan-
guage haskell, a non-strict, purely functional language. SIGPLAN Notices,
27(5):1-, 1992.

J. W. Lloyd. Programming in an Integrated Functional and Logic Language.
Journal of Functional and Logic Programming, 1999(3), 1999.

J. Wielemaker. SWI-Prolog, 1987. http://www.swi-prolog.org/.

Wikimedia Foundation. Haskell Brooks Curry - Wikipedia, the free ency-
clopedia, 2011. http://en.wikipedia.org/wiki/Haskell_Curry.

15

http://www.swi-prolog.org/
http://en.wikipedia.org/wiki/Haskell_Curry

	Introduction
	Common Features
	Data Types
	Constraints

	Predefined Operations
	Functions

	Functional Logic Features
	Logical Variables
	Evaluation strategy
	Non-deterministic Functions

	Practical Examples
	Regular Expressions
	Merge-Sort

	Actual Projects
	Conclusion
	Bibliography

