informatik

institut far

universitat

innsbruck

Seminar Report

Erlang

Thomas Trenkwalder
csag9584Q@uibk.ac.at

15 February 2011

Supervisor: Bertram Felgenhauer

Abstract

This work is concerned with the functional programming language Erlang.
It was developed at Ericsson beginning in the 1980s, and evolved to a language
that is now widely used in the industry. This paper mainly describes the most
useful features of the language, but it does not intend to teach programming in
Erlang. Basic knowledge about functional programming is assumed.

Contents

1 Introduction 1
2 History of Erlang 1
2.1 Experiments.o 1

2.2 BirthofErlang 1
2.3 Breaking out of the Laboratory 2

3 Language Features 2
3.1 Prolog Influence 2
3.2 Variables and Data Types 3
3.3 Concurrency i 4
3.3.1 Creating an Erlang Process 4

3.3.2 Communication between Processes 5

3.4 Distribution 6
3.5 Hot Code Upgrade 6
3.6 Error Handling 7
3.7 BitSyntax. 8

4 Uses of Erlang 8
4.1 AXD301 ATM Switch 9
4.2 YAWS Webserver e 9
4.3 Other Uses e 9

5 Conclusion 9
Bibliography 11

ii

1 Introduction

This paper gives a short Introduction to the Erlang programming language.
Erlang is one of the few functional programming languages that are used in
the industry today. The language provides a number of built-in mechanisms to
create concurrent, distributed and fault-tolerant applications.

First, the history of the Erlang programming language is summarized. In the
next section some of the language’s features are described. At the end, a short
overview of existing projects using Erlang is given.

2 History of Erlang

This section summarizes the history of Erlang.
The Erlang homepage (see [1]) provides a short summary of Erlang’s history?
and a FAQ including answers to historical questions?.

The interested reader can find a detailed history in [4] and [6] and a chronol-
ogy in [5].

2.1 Experiments

The research leading to the development of Erlang began in the Ericsson Com-
puter Science Laboratory during the 1980s. Previously, PLEX? was used to
program Ericsson’s AXE telephone exchange, which was first produced in 1974.
PLEX offered many useful features, but it was specifically designed for the AXE
hardware [6].

Experiments with more than 20 different programming languages were con-
ducted to find out which languages were suitable for programming telecommu-
nications applications. The results showed the need for a high level symbolic
language. Declarative language programs turned out to be shorter and easier
to understand than imperative language programs [4].

The people involved at the start were Joe Armstrong, Robert Virding and
Mike Williams.

2.2 Birth of Erlang

During the experiments, no language with all the desired features for the task
was found. Prolog was chosen as the best fitting language to continue exper-
imenting with. Joe Armstrong then started an experiment to add concurrent
processes to Prolog:

“At this stage I did not intend to design a new programming lan-
guage, I was interested in how to program POTS (Plain Old Tele-
phony Service) — at the time the best method for programming
POTS appeared to be a variant of Prolog augmented with parallel
processes.” — Joe Armstrong [5]

! http://www.erlang.org/course/history.html
2 http://www.erlang.org/faq/academic.html
3 Programming Language for EXchanges

http://www.erlang.org/course/history.html
http://www.erlang.org/faq/academic.html

3 Language Features

The development of the emerging language was driven by programming a
small telephone exchange in the laboratory and solving problems as they were
encountered during this project.

The name “Erlang” was first mentioned in 1987. It was named after the
Danish mathematician Agner Krarup Erlang?®, but can also stand for “Ericsson
Language” °.

2.3 Breaking out of the Laboratory

By the end of the 1980s, a group of Ericsson engineers started work on a proto-
typing project and chose Erlang as programming language. Collaboration with
this team produced many ideas for the language. Performance requirements
of the project led to development of the JAM (Joe’s Abstract Machine) which
was inspired by the Warren Abstract Machine used for Prolog. Erlang was now
regarded as a new programming language, rather than just a dialect of Prolog.
The JAM was later replaced by a new abstract machine to further improve
performance, the BEAM (Bogdan’s Erlang Abstract Machine).

In 1995, the Ericsson AXE-N project collapsed and a decision was made
to start the project again, this time with Erlang. The project resulted in the
development of the successful AXD301 switch (see 4.1), which was first delivered
in 1998. The OTP project (Open Telecoms Platform) was started to consolidate
a number of ideas and libraries created for Erlang.

In 1998, Ericsson banned Erlang for new product development. According
to Joe Armstrong, Ericsson preferred to be a consumer of software technologies
rather than a producer [5].

In 1998, Erlang and the OTP were released subject to an Open Source Li-
cense, and the language continued to spread.

3 Language Features

The Erlang whitepaper® gives an overview of the features in Erlang. After
showing the influence of Prolog on this language, this section will describe
Erlang’s main features in detail.

Note that this section is not a guide to learn programming in Erlang. Basic
knowledge about programming in a functional language is assumed.

3.1 Prolog Influence

As noted in section 2, Erlang started out as a variant of Prolog. The two
languages thus have a similar syntax, as shown in the following code examples.

41878 — 1929, mathematician, statistician and engineer.
® http://wuw.erlang.org/pipermail/erlang-questions/1999-February/000098.html
S http://erlang.org/white_paper.html

http://www.erlang.org/pipermail/erlang-questions/1999-February/000098.html
http://erlang.org/white_paper.html

O U W N

N O U WN

3.2 Variables and Data Types

% Prolog code
:— module (mymodule).
:— export list_length /2.

list_length ([], 0).
list _length ([_.F|R], L) :—
L is 1 + list_length (R).

Listing 1: Prolog code example.

% Erlang code
—module (mymodule) .
—export ([list_-length/1]).

list_length ([]) —> O0;
list_length ([-F|R]) —>
1 + list_length(R).

Listing 2: Erlang code example.

The only major difference in the above example is the way how functions
return values. In Prolog, functions can return values via arguments, whereas in
Erlang, the return value is the result of the last expression in a function.

Erlang has a dynamic type system which was inherited from Prolog. All
types are checked at run-time.

3.2 Variables and Data Types

Variables begin with upper case letters (e.g. Abc, MyVar). An important restric-
tion in Erlang is the single-assignment of variables. This means that a variable
can be assigned (bound) only once, any assignment of an already bound vari-
able will produce an error. Variables are assigned in successful pattern matching
operations.

There is no explicit memory allocation or deallocation. Unused memory is
managed by a garbage collector.

In Erlang, any piece of data is called a term. Some basic data types are:

Numbers: Integers and floats can be used. Character values are also repre-
sented as integers.

Atoms: Atoms are unique identifiers. They start with lower case letters or are
enclosed within quotes (e.g. an_atom, ’Another atom’).

Tuples: Used to store a fixed number of items of any type (e.g. {123, an_atom},
{person, "Joe", "Armstrong"}).

Lists: Used to store a variable number of items of any type. (e.g. [2,3,5,7],
[123,some_atom]).

There is no boolean data type, the atoms true and false are used in-
stead. Strings are represented as lists of integers (e.g. "Hello" is the same
as [72,101,108,108,111]).

3 Language Features

Complex data structures can be created using the above basic types. Erlang
also allows the definition of records, which are treated as tuples internally.

Other data types include:

Funs: Funs are functional objects (anonymous functions) which can be used
like any other piece of data. Created using the fun keyword.

Bit Strings, Binaries: Used to store untyped memory. Erlang offers a bit syntaz
to express and manipulate bit strings (see 4.1).

Pids: Short for Process Identifier. Processes are created using spawn (see 3.3.1).

This paper will not go into detail about some other data types (e.g. Refer-
ences, Ports, ...). A complete overview of all available data types can be found
in the Erlang reference manual’.

3.3 Concurrency

Concurrency has traditionally been made available through threads. Concur-
rently running tasks are allowed to operate on some shared memory, which
introduces the need for locks. Deadlocks and starvation are among the prob-
lems caused by this approach.

Erlang however uses a different model based on the Actor Model, which tries
to avoid these problems[9].

Actors can be seen as independently running processes. Message passing is
the only way for actors to communicate with each other. Received messages
are buffered in a mailbox. Actors do not have shared memory, therefore locks
are unnecessary and problems like deadlocks are effectively avoided.

Erlang processes are not operating system processes or operating system
threads. They are lightweight processes which are part of the language itself
and are managed by the Erlang runtime system.

3.3.1 Creating an Erlang Process

The spawn built-in function can be used to create new Erlang processes. It
expects a module name, a function name, and a list of arguments. It will
return the pid of the new process and the calling function will continue execution
without blocking.

This example shows simple concurrency in Erlang:

" http://www.erlang.org/doc/reference_manual/data_types.html

http://www.erlang.org/doc/reference_manual/data_types.html

0 ~J O O i W N —

=
N = O ©

0~ O O W~

— = e
N = OO

13
14
15
16
17
18
19

3.3 Concurrency

—module (mymodule).
—export([start /0, hello/2]).

hello (-, 0) — ok;

hello (Name, N) —>
io:format (”Hello, “s!"n”, [Name]),
hello (Name, N — 1).

start () —>
spawn (mymodule, hello, [?world”, 5]),
spawn (mymodule, hello, ["user”, 5]),
ok.

Listing 3: Creating a process.

In this program, the hello function is used to print a hello message a given
number of times. The start function is the main function of the program. It
creates two new Erlang processes that use the hello function to print a different
message five times.

There exists another version of the spawn function, which takes only a func-
tional object as argument.

3.3.2 Communication between Processes

As noted above, Erlang processes do not have shared memory. They commu-
nicate via message passing.

Using the send operator (!), any Erlang term can be sent to another process.
Writing A ! B sends the message B to the process A.

A receive block is used to retrieve a message from the mailbox of the current
process, different patterns can be specified to selectively retrieve messages.

This example shows message passing:

—module (mymodule) .
—export([start /0, pingpong/0]).
pingpong () —>
receive
{From, ping} —>
io:format (” Received ping™n”),
From ! pong
end,
pingpong ().
start () —
Process = spawn(mymodule, pingpong, []),
Process ! {self(), ping},
receive
pong —>
io:format (” Received pong™n”)
end,
ok.

Listing 4: Passing messages between processes.

The pingpong function simply waits for a tuple containing a pid and the

S O W N

3 Language Features

ping atom, and sends the pong atom back to the received pid. The built-in
function self is used to get the pid of the current process.

Messages are sent asynchronously, sending a message with the ! operator
will not block the current process. In contrast, receive will block, until there
is a message in the mailbox that matches a pattern in the receive block. This
behaviour can be changed with the after keyword, which can be used to specify
a timeout value:

receive

after 5000 —> % Timeout in milliseconds
true
end,

Listing 5: Retrieving messages from the mailbox.

3.4 Distribution

A running Erlang runtime system is called a node. A distributed Erlang system
has a number of nodes communicating with each other.

Nodes have a name, which is an atom consisting of the node name and the
host where it runs, separated by @ (e.g. mynode@homepc). The Erlang Port
Mapper Daemon (epmd) maps the node names to machine addresses. It is
started automatically on every host where an Erlang node is started.

To create processes on remote nodes, another version of the spawn function
can be used, which takes the name of a remote node as an extra argument at
the beginning:

Pid = spawn(mynode@homepc, mymodule, pingpong, []),
Pid ! {self(), ping},

Listing 6: Creating a process on a remote node.

The pid data type contains information about which node a process is running
on. Communication between processes is therefore transparent, as shown in the
above example.

3.5 Hot Code Upgrade

A requirement for telecommunications applications is being able to run virtually
forever, without interruption. Erlang provides a simple mechanism to upgrade
the code of a system while it is running.

The Erlang runtime system always keeps two versions of compiled code for
each module. A simple function call (e.g. myfunction()) always refers to the
current version of the code. Adding the module name to the function call (e.g.
mymodule:myfunction()) always refers to the newest version of the code.

Consider the following piece of code:

—_

—_

— O © 00~ O Ok Wi

— O © 00~ O Ok Wi

3.6 Error Handling

—module (echo).
—export ([loop/0]).

loop () —
receive
{From, Message} —>
From ! {self(), Message},
loop () ;
code_switch —>
echo:loop ()
end.

Listing 7: An echo process.

This piece of code shows a simple echo process. A running echo process
can be upgraded by compiling the module echo and then sending the atom
code_switch to the process.

There exists another solution to upgrade the code of running systems, because
functions are first-class objects and can also be sent as messages. Consider the
following piece of code:

—module(server).
—export([loop/1]).

loop (F) —
receive
{newFunction, F2} —>
loop (F2);
X —=>
F(X),
loop (F)
end.

Listing 8: A generic processing server.

This piece of code shows a simple generic server, which has a processing
function. The processing function can be changed by sending a tuple containing
the newFunction atom and a new function to the process. Any other message
will be passed as argument to the current processing function.

3.6 Error Handling

Handling errors in Erlang is different than in most other languages. In single-
threaded applications, not correcting an error might cause the entire application
to fail. Erlang however follows a “let it fail” philosophy: Because Erlang pro-
grams generally consist of many processes, the failure of a single process is not
so important. To build reliable systems, it is more important to detect the
failure of processes and let other processes correct these problems.

Erlang processes can be linked together: 1ink(Pid) creates a link between
the current process and the process Pid. The links are bidirectional and
are used to propagate errors. If a process dies, an error signal is sent to
all processes linked to it. By default, a process that receives an error sig-
nal also dies and sends out error signals. This can be changed by calling
process_flag(trap_exit, true), which allows the current process to receive

© 00 3O Ui W N~

O~ O O W N~

=== e
=W N = OO

4 Uses of Erlang

error signals as ordinary messages instead of exiting.

Using these mechanisms, a system can be organized in worker processes doing
the actual computation, and supervisor processes which monitor the system and
restore it to a safe state upon detecting errors.

3.7 Bit Syntax

Erlang provides a special syntax to manipulate bit strings®. A bit string is a
sequence of bits, its length does not need to be divisible by 8. If it is divisible
by 8, it is also called a binary.

This simple example shows construction of a binary and pattern matching
with binaries:

A=1,B=2,C=3,

Bin = <<A, B, C:16>>, % construct a binary
% A and B are 8 bits long
% C is 16 bits long

<<D:16, E, F/binary>>, % pattern matching
% D is 16 bits long, E is 8 bits long
% F is the rest of the binary (8 bits)

Listing 9: Constructing and matching binaries.

A more elaborate example shows how pattern matching can be used to extract
the fields of a IPv4 datagram?:

—define (IP.VERSION, 4).
—define (IP.MIN_HDR_LEN, 5).

DgramSize = size (Dgram),
case Dgram of
<<7IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
ID:16, Flgs:3, FragOff:13,
TTL:8, Proto:8, HdrChkSum:16 ,
SrcIP:32, DestIP:32, RestDgram/binary>>
when HLen>=5, 4xHLen=<DgramSize —>
OptsLen = 4x(HLen — ?7IP_MIN_HDR_LEN) ,
<<Opts: OptsLen/binary ,Data/binary>> = RestDgram,

end.

Listing 10: Matching an IPv4 datagram.

4 Uses of Erlang

This section gives a short overview about a number of different projects that
use Erlang.

8 http://www.erlang.org/documentation/doc-5.6/doc/programming_examples/bit_

syntax.html
% taken from http://www.erlang.org/doc/programming_examples/bit_syntax.html

http://www.erlang.org/documentation/doc-5.6/doc/programming_examples/bit_syntax.html
http://www.erlang.org/documentation/doc-5.6/doc/programming_examples/bit_syntax.html
http://www.erlang.org/doc/programming_examples/bit_syntax.html

4.1 AXD301 ATM Switch

4.1 AXD301 ATM Switch

Ericsson’s AXD301 ATM Switch was created by a large programming team and
has more than 1.6 million lines of Erlang code. It exceeded its original reliability
requirements and has a downtime of only 31 ms per year, which makes it one
of the most reliable switches ever madel[3].

4.2 YAWS Webserver

The YAWS Webserver!? is entirely written in Erlang and uses one Erlang pro-
cess to handle each client.

An experiment measuring the performance of YAWS compared to the Apache
web server'! shows that while Apache dies at about 4000 parallel sessions,
YAWS is still working at over 80000 parallel connections. Joe Armstrong spec-
ulates that the poor performance of Apache is a result of the way the underlying
operating system implements concurrency, and the problem is not related to the
code of Apache itself. For details about the experiment, see [2].

4.3 Other Uses

Erlang is used for many other projects in different areas, mostly in communi-
cations and reliable data storage[7].

Instant Messaging is an area where Erlang has found success, because these
systems and telephone exchanges have similar requirements. The Facebook chat
system uses the XMPP protocol, using a customized version of ejabberd|[8].

Erlang is also well suited to implement schema-free databases. There exist a
number of such databases, e.g. Apache CouchDB'? and Amazon SimpleDB'3,
among others.

Erlang has also been used in other areas it was not specifically designed for.
Examples include Wings3D', a 3D graphics modelling program and Nitrogen'®,
a web development framework.

5 Conclusion

This paper has summarized how Erlang developed and became a practical lan-
guage that is successfully used in the industry. An overview about the most
important features of the language was given. A number of projects using the
language were mentioned, showing that Erlang is not only useful for the ar-
eas it was specifically designed for, but has also been successfully used as a
general-purpose language.

10 http://yaws.hyber.org/

" http://httpd.apache.org/

12 http://couchdb.apache.org/

13 http://aws.amazon.com/de/simpledb/
" http://www.wings3d.com/

15 http://nitrogenproject.com/

http://yaws.hyber.org/
http://httpd.apache.org/
http://couchdb.apache.org/
http://aws.amazon.com/de/simpledb/
http://www.wings3d.com/
http://nitrogenproject.com/

5 Conclusion

10

References

References

1]
2]

3]

Erlang programming language, official website. http://www.erlang.org/.

J. Armstrong. Apache vs. yaws. http://www.sics.se/" joe/
apachevsyaws.html.

J. Armstrong. Concurrency oriented programming in erlang. http://112.
ai.mit.edu/talks/armstrong.pdf.

J. Armstrong. The development of erlang. Proceedings of the second ACM
SIGPLAN international conference on Functional programming, 1997.

J. Armstrong. Making reliable distributed systems in the presence of software
errors. PhD thesis, The Royal Institute of Technology, Stockholm, Sweden,
December 2003.

J. Armstrong. A history of erlang. Proceedings of the third ACM SIGPLAN
conference on History of programming languages, 2007.

J. Armstrong. Erlang. Communications of the ACM, 53, September 2010.

D. Reiss. Using facebook chat via jabber. http://developers.facebook.
com/blog/post/110.

R. Vermeersch. Concurrency in erlang & scala: The actor model. http://
ruben.savanne.be/articles/concurrency-in-erlang-scala, January
2009.

11

http://www.erlang.org/
http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/~joe/apachevsyaws.html
http://ll2.ai.mit.edu/talks/armstrong.pdf
http://ll2.ai.mit.edu/talks/armstrong.pdf
http://developers.facebook.com/blog/post/110
http://developers.facebook.com/blog/post/110
http://ruben.savanne.be/articles/concurrency-in-erlang-scala
http://ruben.savanne.be/articles/concurrency-in-erlang-scala

	Introduction
	History of Erlang
	Experiments
	Birth of Erlang
	Breaking out of the Laboratory

	Language Features
	Prolog Influence
	Variables and Data Types
	Concurrency
	Creating an Erlang Process
	Communication between Processes

	Distribution
	Hot Code Upgrade
	Error Handling
	Bit Syntax

	Uses of Erlang
	AXD301 ATM Switch
	YAWS Webserver
	Other Uses

	Conclusion
	Bibliography

