
Seminar Report

Kayak

Christoph Klotz

19 February 2013

Supervisor: Dr. Stéphane Gimenez

Abstract

This document is about Kayak an esoteric reversible programming language.
It shows on which operations it is build, the problems that might occur and
some code snippets for explanation.

mailto:

Contents

1 Introduction 1

2 Motivation 1

3 The History of Reversible Programming 1
3.1 Landauer's principle . 1
3.2 Reversible Turing Machine . 1
3.3 Reversible Gates . 1

4 The Language 2
4.1 Identi�ers . 2
4.2 Data Types . 2
4.3 Comments . 2
4.4 Variables . 2
4.5 Operating with Variables . 3
4.6 Procedures . 3

4.6.1 Name(s) . 3
4.6.2 Arguments . 3
4.6.3 Calling . 4
4.6.4 Calling in Reverse . 4

4.7 Conditional Execution . 4
4.8 The Main Procedure . 5
4.9 Input and Output Encoding . 5
4.10 The Interpreter . 5

5 Di�culties 6
5.1 Debugging . 6
5.2 No Character/String Support . 6
5.3 No Integer Support . 7
5.4 Coding Reversibly . 7

6 Turing Completeness 8

7 Conclusion 8

ii

1 Introduction

Kayak is a programming language in which every operation and therefore every
program is invertible. Any Kayak procedure can be run either forwards or
backwards, or even both in the same program. The syntax of Kayak itself is
providing the capability of reversing procedures.
After the explanation what all the fuzz is about, there will be a short overview
of the history of reversible computing. In Section 4 the operating principles
of kayak is shown. Additionally there are illustrated some problems you might
stumble upon if you are programming in this language.

2 Motivation

Although reversible programming may seem unnecessary or unimportant, some
people are convinced that this type of programming may be the future of com-
puting. The laws of physics are presumed to be reversible, which means that
no information can be destroyed, only shu�ed. Computing on the other hand
is usually thought of an irreversible process because it can involve Many-to-
One procedures.[3] The information the computer lost in these procedures are
converted to heat and gets emitted to the environment.

�The von Neumann architecture is a physically unrealistic model
which requires hardware garbage collection (in the form of a heat
sink) to support it. Microprocessors which are reversible at the level
of their fundamental logic gates can potentially emit radically less
heat than irreversible processors, and someday that may make them
more economical than irreversible processors.�[1]

3 The History of Reversible Programming

3.1 Landauer's principle

In 1961 Rolf Landauer argued that any logically irreversible manipulation of
information will gain heat which a computer can't use to reproduce the infor-
mation again. His principle is widely accepted as a physical law but also was
challenged for the last twenty years.

3.2 Reversible Turing Machine

Charles H. Bennett described a reversible Turing machine which had an addi-
tional tape. This tape keeps the history of the computations the machine made
and if the output get computed backwards, the machine got back in its initial
state without performing any irreversible operation.

3.3 Reversible Gates

The most common logical gates have numerous inputs but only one output, here
we are back at the Many-to-One problem mentioned in Section 2. To make the

1

4 The Language

gate invertible we have to consider gates with an equal amount of inputs and
outputs. Since not all 2-in/2-out gates can be inverted, Edward Fredkin and
Tommaso To�oli described 3-in/3-out gates which could be inverted and are
universal logic elements. But if not every output signal is going to be processed
or saved, these gates would not be better than any irreversible gate. So they
used Bennetts method from Section 3.2 to save the additional, "garbage" signals,
and it was possible to compute the gate backwards and get to the initial state.

4 The Language

Kayak is an esoteric programming language which complement that it is quite
hard to read and write code. By the implementation of this language it is
only possible to invert and juggle bits around and you are expected to compute
serious stu� with this afterwards.

4.1 Identi�ers

Except for the nine operators of this language, (i.e. <, >, (,), [,], {, } and
|) and white-spaces, every symbol or a combination of these are identi�ers.
White-spaces are only used to delimit identi�ers and make the code more read-
able. So there are no reserved words either and for example "!�$%&/()=?" is a
valid identi�er.

4.2 Data Types

Kayak only has one data type which is the in�nite stacks of bits. These stack
only can hold bits (i.e. ones an zeros) and are initialized as a stack of in�nite
zeros. So because they are in�nite they can be popped without under�ow and
in every program/procedure there can be an arbitrary number of these in�nite
stacks. If you wish, you can count the scoped temporary one-bit-register as a
data type too, but it is only one bit. This register is empty or contains a boolean
value and is scoped to the current procedure.

4.3 Comments

Comments begin with a "<", end with a ">" and can be nested. You may be
careful with expressions like " if a >= b then...." because here the comment
would end halfway.

4.4 Variables

If you call a variable which has not been initialized yet, it gets initialized as
a stack consisting of in�nitely many zeros. A variable is only visible in the
procedure it is initialized and also there is no such thing as a global variable.
Unless they are passed out with the end parameters (see Section 4.6.2), they
will not exist any further. At this point any untransmitted variables must have
their initial state, which would be a stack with in�nitely many zeros, to prevent
the interpreter from complaining. This is the interpreter's way of preventing

2

4.5 Operating with Variables

information loss and encourage the programmer to implement his code (more)
recursively.

4.5 Operating with Variables

If the variable already exists and the temporary bit-register is empty, the top
element of the stack is popped and is put into the register (Figure 1a). But if
the register is occupied the bit in the register is pushed on the called variable
(Figure 1b). For example if we assume an empty register, var1 var2 would
transfer the top bit from var1 to var2.
The "|" operator complements the value in the one-bit-register. And if we
assume an empty register again, var1|var2 would pop the top bit of var1 to
the register, complements this one bit and pushes it on the stack var2. If "|" is
called while the temporary one-bit-register is empty the interpreter throws an
error.

4.6 Procedures

Every Kayak program consists of one or more procedures. Procedure de�nitions
look like in Figure 2.

4.6.1 Name(s)

Every procedure name has two parts. One half is at the beginning of the de�-
nition (name1 in Figure 2) and the other half is at the end (name2 in Figure 2).
To call a procedure you have to provide both parts of the name, so it is also
possible that two or more procedures have the same name at the beginning if
they have di�erent names at the end. Both parts must not be empty, except for
the main procedure (see Section 4.8).

4.6.2 Arguments

A procedure takes any amount of arguments but should have at least one to be
useful. These arguments are named twice in the de�nition and are separated

(a) A variable is called with an
empty register

(b) A variable is called with an oc-
cupied register

Figure 1: Operations on variables

3

4 The Language

name1(arg1|arg2) {body} (arg3|arg4)name2

Figure 2: The looks of a procedure de�nition

by the normally otherwise used operator "|", once at the beginning, like arg1

and arg2, and once at the end of the de�nition, like arg3 and arg4 in Fig-
ure 2. When a procedure is called, the argument names at the beginning of the
procedure are bound to the arguments of the procedure call, then the proce-
dure computes something with these variables and when the procedure exits, it
updates the content of the variables named at that end of the procedure de�-
nition. For example, swap(a|b) {} (b|a)paws is a procedure which swaps its
two arguments, while noth(a|b) {} (a|b)hton is a do-nothing procedure of
two arguments.

4.6.3 Calling

Calling a procedure looks like name1(arg1|arg2)name2. It performs a call to
the procedure name1()name2 where the arguments arg1 and arg2 are names
of variables in the calling procedure. These variables will be modi�ed by the
called procedure except you have a do-nothing procedure like in Section 4.6.2.
Recursion is allowed and is the only looping mechanism implemented.

4.6.4 Calling in Reverse

If you want to call a procedure backwards, you have to write its procedure name
in reverse which would be 2eman(arg2|arg1)1eman in the case of the procedure
in Section 4.6.3. This is for example very useful for arithmetic functions, because
the reverse of an addition procedure is a subtraction procedure. You can give
procedures palindromic names (like in Section 4.6.2), but it is recommended to
do so only if the procedure is self-inverse, because there is no way you could
execute them backwards and so executing the whole program backwards would
fail.

4.7 Conditional Execution

To break out of recursion you need something that tells the interpreter to do
something else than calling the recursive procedure again. This is the job of
the last two operators "[" and "]" which are used like in Figure 3. The code
enclosed by these two parentheses is only executed if there is a one in the
temporary on-bit register. If not it is skipped and the procedure moves on. The
register which lead the procedure into the conditional procedure is not visible in
this procedure any more. It is an error if you use "[" if the temporary register
is empty or "]" when the register is occupied. In the �rst case the interpreter
can not determine if the bit is one or zero because its empty and in the second
case it would be the same if the procedure was called backwards. For example
a[b|b]a pops the �rst bit of a into the the �rst register, if in the register is a
one, b will be popped to a new (second) temporary register, get complemented,

4

4.8 The Main Procedure

[body]

Figure 3: The looks of conditional code

will be pushed back on the stack b, the procedure will be exited and the bit in
the �rst temporary register will be pushed back on the stack a. You can also
complement the �rst register after the �rst "[" and "]" combination to make a
if-then-else like procedure (e.g. a[b|b]|[c d]a).

4.8 The Main Procedure

The main procedure is the top-level procedure executed by the interpreter. It
can distinguish this procedure from the others by its unique name, it is the empty
name. So it begins and ends with an argument section. The main procedure
can be declared with only one or two arguments. The top-level procedure with
one argument contains the standard-input at the beginning and the standard-
output at the end. If there are two arguments, one of the these is a bit bucket,
which contains random bits at the beginning and a modi�ed version of this bit
bucket at the end. This is the way of information disposal of this language.
This "garbage" information was created by many-to-one transformations, and
since kayak does not save this information, we must get rid of it after executing
a program. The standard input and output are always innermost and the bit
bucket is always outermost.

4.9 Input and Output Encoding

The standard input and output are encoded as 9 bit per byte on a stack. The
top bit validates the following byte encoding an ASCII character with the least
signi�cant bit right under the validation bit. This is repeated for every byte and
the �rst byte of standard input as well as standard output are the one closest
to the top of the stack. Below the standard input and output there is again a
stack with in�nitely many zeros, so you can check the End-Of-Input by checking
every ninth bit, the validation bit.

4.10 The Interpreter

Rudiak-Gould describes his interpreter as an �hastily-written utility�[1], that
is because he wrote it only a few hours before the deadline of his essay, but
except for the error reporting it works very well. The interpreter takes only
one argument, (e.g. 99bottles.kayak). If there is a �le with this name, in the
same directory as the interpreter is executed in, the program will be run in
forward direction. Else the interpreter is looking for a �le which is matches
with the arguments character wise reversal (e.g. kayak.selttob99) and if it is
found, the program will be run in backward direction. Like in the procedures
mentioned in Section4.6.4 the programs can have palindromic names, but it is
recommended to do so only if the program is self-inverse. Running a program
in reverse is a simple task for the interpreter because the only additional step it

5

5 Di�culties

a(o){z o z|o z|o z o z o z o z o z|o z|o}(o).

Figure 4: Procedure which adds the character "a" to the stack which was bound
to o

has to do is to read the program backwards or reverse the whole string of the
code character-wise.

5 Di�culties

There were several di�culties learning and programming in kayak. Although the
author of this language wanted to give a good introduction of the programming
paradigms, operations and coding approaches, I learned more by reading his
samples, making my own little programs and and the attempts to combine
them.

5.1 Debugging

Like I mentioned in Section 4.10 the interpreter was created in a rash way, and
the error reporting system was implemented very poorly. You will not get any
line numbers or other hints where your code is faulty. If you are lucky the
interpreter gives you a stack with some procedure calls but that is about it. So
the interpreter tells what is the error (e.g. �nonempty stack on function exit� or
�can't use | operator with no value in the register�) but if I don't know where I
made that mistake it can happen that I have to search the whole program for
it. It is possible to test every procedure one by one, but this also can consume
a lot of time.

5.2 No Character/String Support

I mentioned in Section 4.2 that in kayak only exist one major data type, the
in�nite bit stack. So there is no character support. To get the programming
language to generate usable output I had to implement every single character I
used for the song. Figure 4 is an example of such an implementation. The calling
procedure has to call the procedure with the output stack as the argument to
bind it to o. Afterwards the procedure puts the bits of the characters ASCII
code onto this output stack beginning with the most signi�cant bit. To validate
this character an additional 1 is added to the top of the stack and the program
returns to the calling procedure with a new output stack. Since z is called in
this procedure the �rst time and is not an argument of the calling procedure, it
gets initialized as a stack with in�nitely many zeros, so it will alway pop a zero
and you can push it on o complemented or not. To make the code more readable
you can combine some procedures in another one. So you get the possibility to
add words or phrases to the output. Due to the fact that the bytes on the top
are read �rst, you have to put the characters in reverse order on the output
stack as you want them to be put out.

6

5.3 No Integer Support

div10(r|a|dump){

r[r[r[r[r[r[r[r[r[r[i|i div10(r|a|dump).]r]r]r]r]r]r]r]r]r]r

i[sub10(r). z|a]dump

}(r|a|dump).

Figure 5: Divide by 10 and Modulo 10 procedure (not reversible)

multi10(in){

in[multi10(in). z|in z|in z|in z|in z|in z|in z|in z|in z|in]in

}(in).

Figure 6: Multiply a number by 10

5.3 No Integer Support

Because this language lacks of integer support it was necessary to implement
procedures with which the interpreter is able to count down from an arbitrary
number and also to output the right numbers in each verse. It would have been
a possibility to implement some integer support with some simple arithmetic
operations, but it was much easier to put as much ones on a stack as an integer
value. On every iteration one one gets put away, and the next loop computes the
recursive procedure with one one less. By looping I also was able to successively
determine the individual digits of such a stack of ones. I created a procedure
(Figure 5) which divided the stack, representing an integer with ones, by ten
and put out the result and the remainder. The remainder instantly can be put
onto the output stack (procedure in Figure 7) because the output is generated
backwards like mentioned in Section 5.2. At �rst I implemented it as a long-
winded procedure which checked one for one and put out the whole number at
once. Saying there were nested about 100 conditional executions and now it
takes only 9 of them. As a little feature I implemented a parser which looks at
the input of the user and starts the song at an arbitrary number. To do so i
had to implement a loop which takes the �rst character, parse it to an "integer"
(represented by a stack of ones) and multiplies it by 10 (Figure 6) if there is
another character on the input stack which would be put onto the multiplied
stack and maybe multiplied again, and so on. I only had to do this because my
divide by 10 procedure is not reversible.

5.4 Coding Reversibly

It is not always that easy to program reversible code, but it is possible to code
non reversible procedures and get away with it. If you are very lucky, the code
you generated runs in both direction, if you are not so lucky the code runs in
one direction and if you have bad luck you have to use the bit-bucket to dump
unwanted information, to prevent "nonempty stack" errors. In Figure 6 i don't
need the bit-bucket and can run it forwards (but not backwards), and in Figure 5
i need such a dump stack, to get rid of a one i wasn't able to dispose in another

7

References

append(in|a){

a[a[a[a[a[a[a[a[a[

9(in).]|[

8(in).]|a]|[

7(in).]|a]|[

6(in).]|a]|[

5(in).]|a]|[

4(in).]|a]|[

3(in).]|a]|[

2(in).]|a]|[

1(in).]|a]|[

0(in).]|a

}(in|a).

Figure 7: Appends a digit to the output stack according to the ones in "a"

way.

6 Turing Completeness

To prove the Turing completeness of a programming language, you only have
to show that you can emulate a Turing machine or another Turing complete
language or calculus with it. The inventor of kayak already did this by making a
converter from brainfuck to kayak in perl. He implemented for every brainfuck
operator a small reversible kayak procedure and let the converter put them
together according to the brainfuck program to get an equivalent kayak program.

7 Conclusion

This paper give a short overview, what reversible computing is good for, what
was already achieved and that there is a way of reversible programming. It
mentions whole operations-pool, what you can achieve with it and in which
problems you might run creating a program in kayak.

References

[1] http://esoteric.voxelperfect.net/files/kayak/doc/kayak.html

[2] http://esolangs.org/wiki/Kayak

[3] http://mathworld.wolfram.com/Many-to-One.html

[4] http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-151.
pdf

[5] http://arxiv.org/pdf/physics/0210005v2.pdf

8

http://esoteric.voxelperfect.net/files/kayak/doc/kayak.html
http://esolangs.org/wiki/Kayak
http://mathworld.wolfram.com/Many-to-One.html
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-151.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-151.pdf
http://arxiv.org/pdf/physics/0210005v2.pdf

	Introduction
	Motivation
	The History of Reversible Programming
	Landauer's principle
	Reversible Turing Machine
	Reversible Gates

	The Language
	Identifiers
	Data Types
	Comments
	Variables
	Operating with Variables
	Procedures
	Name(s)
	Arguments
	Calling
	Calling in Reverse

	Conditional Execution
	The Main Procedure
	Input and Output Encoding
	The Interpreter

	Difficulties
	Debugging
	No Character/String Support
	No Integer Support
	Coding Reversibly

	Turing Completeness
	Conclusion

