
Seminar Report

Unlambda

Franziska Rapp
franziska.rapp@student.uibk.ac.at

15 February 2013

Supervisor: Cynthia Kop

Abstract

This report gives an introduction to the esoteric programming language
Unlambda. The focus is on outlining the similarities to more well-known lan-
guages. In order to understand the language, some example programs are an-
alyzed. Furthermore, it is described how to transform programs from lambda

calculus into Unlambda.

mailto:franziska.rapp@student.uibk.ac.at

Contents

1 Introduction 1

2 Syntax and Properties 1

3 Combinators 2
3.1 Currying . 2
3.2 Combinator Semantics . 3

4 Examples 4

5 Transforming Lambda Calculus into Unlambda 7

6 Similarities to other Languages 10

7 Unlambda 2 11

8 Conclusion 12

ii

1 Introduction

Unlambda is a functional and esoteric programming language invented by David
Madore in 1999. It is an implementation of the lambda calculus without any
λ; therefore the name Unlambda. The following two quotations give a good
insight into what you can expect with the programming language Unlambda.

“Unlambda is meant as a demonstration of very pure functional
programming rather than for practical use.”

Author unknown

“Debugging or reading Unlambda programs is just about impossible.”

Madore

So Unlambda is not the language to develop new software with. However, it
is still an interesting language in terms of functionality and expressive power.
The language uses solely functions and function application; not even variables
are allowed. As the inventor of the language states: even an expert has trouble
understanding Unlambda code. Although it is possible to evaluate an Unlambda

program manually this requires a lot of patience and time. There are many
interpreters1 for this purpose written in highly diverse languages like C, Java,
Haskell, OCaml, Scheme, INTERCAL and even one in Unlambda.

Coming back to the expressive power Unlambda, is a “Turing tarpit”. This
term is used differently in literature but they all have in common that a Turing
tarpit is a programming language or system that is Turing complete. Moreover
some sources demand for a minimal set of operations (so no syntactic sugar
is tolerated) whereas others state that such a language or system is extremely
slow calculating common tasks. The latter can be caused by a very small set
of operations as well as unusual behaviour of functions which makes it really
difficult to program with such a language. “Beware of the Turing tar-pit in
which everything is possible but nothing of interest is easy.” [5] I will use the
latter definition below because in terms of the first one, Unlambda would not
be a Turing tarpit as there are functions which can be represented by others as
described in section 3. The term “esoteric” is often used equivalently even if
the Turing completeness is not officially required.

2 Syntax and Properties

Unlambda is based on combinatory logic which was invented by Moses Schön-
finkel 1924 and later revisited by Haskell Curry. The combinatory logic operates
with so called combinators and does not need any variables just as Unlambda.
For evaluation strategy the eager evaluation is applied meaning that the argu-
ments of a function are evaluated before applying the function to them.

1This is probably the smartest one: http://inazz.jp/unlambda/

It accepts also Unlambda 2 programs.

1

http://inazz.jp/unlambda/

3 Combinators

Example 2.1. Eager evaluation:

(2 + 3) ∗ (4 + 7)
→ 5 ∗ (4 + 7)
→ 5 ∗ 11
→ 55

There is one additional rule for evaluation strategy described in section 3.

Moreover Unlambda provides neither data structures nor code structures, so
writing your own functions is the only possibility. This requires some creativity
because naturally there is more than one way to express things like booleans
or numbers and the operations based on them. But it is not that easy to reuse
user-defined functions because they can be neither saved nor named, since there
are no variables.

Unlambda uses prefix notation, which means an operator is written in front
of its operands. Infix notation cannot work because all operators are unary.
Applying an operator to its operand is done by the apply operator 8, which is
used instead of parentheses and works as follows:

8fx

This has the effect that the function f is applied to its argument x.

Every Unlambda program is a function, where functions are defined as follows:

� Every combinator is a function.
(combinators will be explained in the next section)

� If X and Y are functions, then 8XY is also a function.

3 Combinators

A combinator is a higher order function which takes exactly one function as
argument and returns a potentially different function. The combinators s, k and
i are inherited from the combinatory logic and most frequently used. Although
the i combinator can be expressed by the s and k combinators like 88skk, using
i shortens programs and their evaluation.

3.1 Currying

As mentioned above, a combinator takes exactly one argument which is applied
by the apply operator. Since the restriction on only one argument is too hard,
Moses Schönfinkel invented a technique, later called currying, which makes
it possible to define functions with more than one argument. Therefore the
function is applied consecutively to each of its arguments, returning always
another function waiting for the rest of the needed arguments until they are all
applied.

2

3.2 Combinator Semantics

3.2 Combinator Semantics

The easiest combinator is probably the i which is nothing more than the identity
function. It takes one argument and returns it.

8ix→ x

The k combinator can ignore an argument, which could be very helpful. It
takes two arguments and returns the first one.

8kxy → x

The last combinator of the combinatory logic is the s combinator which takes
three arguments, returning the first applied to the third and the result of that
applied to the result of the second applied to the third. Whereas in combinatory
logic this rule could be written as follows

(((Sx)y)z)→ ((xz)(yz))

Transforming it into Unlambda, the opening parentheses are replaced by the
apply operator and the closing ones are dropped. This yields

888sxyz → 88xz8yz

Making use of the left associativity in combinatory logic almost every pair of
parentheses can be dropped. Equivalently almost every apply operator could
be dropped in Unlambda, which yields

sxyz → xz8yz

However this is not common and so the left associativity is not used below.
A very useful combinator for implementing booleans, especially false, is the v
combinator. It takes one argument and returns v, so this is also an ignoring
combinator like k.

8vx→ v

So far, printing characters is not possible. For this purpose there is the .x
combinator which works just as the identity function printing the character x
as side effect. Here x could be any character.

8.xy → y

Very similar to this combinator works the r combinator which is in fact just
an abbreviation for .〈newline〉.

The d combinator does not seem to be very interesting. It takes two argu-
ments and returns the first applied to the second.

88dfx→ 8fx

3

4 Examples

Nevertheless there is a special rule for this combinator. The second argument
will be evaluated before the first. In particular, if there is no second argument,
the first one would not be evaluated at all.

The following two combinators are strongly related to each other. The c
combinator takes one argument and returns the application of this argument
to the programs current state represented by the 〈cont〉 combinator.

8cx→ 8x〈cont〉

The 〈cont〉 combinator also takes one argument and when applied to that
argument it sets the program to the state where the specific 〈cont〉 was created
and replaces the creating term with the current argument of 〈cont〉. This be-
haviour probably becomes clearer with the first Example 4.1 of the next section.

Although it seems just about impossible the combinators s and k suffice for
the Turing completeness of Unlambda.

4 Examples

Example 4.1. This shows the c and the 〈cont〉 combinator working together:

88cik
→ 88i〈cont〉k
→ 8〈cont〉k
→ 8kk

(c creates a 〈cont〉 applying i to this 〈cont〉)
(i returns 〈cont〉 as normal)
(applying 〈cont〉 takes us “back in time” . . .)
(. . . and changes the original 8ci to k)

The term 8kk is already in normal form because k needs two arguments.

Example 4.2. The count2 program of the Unlambda distribution prints n stars
in each line, starting with 0 and looping forever. The terms evaluated next are
in red boxes.

0. 88r8cd 8. ∗8 cd
→ Save 88r[] 8. ∗8 cd for this 〈cont〉, where [] stands for a hole. [1]

1. 88r 8d 〈cont〉 8. ∗8 cd
→ Nothing can be done here; d is waiting for the second argument

2. 8 8r8d 〈cont〉 8. ∗8 cd
→ Print newline and return the argument 8d〈cont〉

3. 88d 〈cont〉 8.∗ 8cd
→ Save 88d〈cont〉8. ∗ [] for this 〈cont〉[2]

4. 88d 〈cont〉 8.∗ 8d 〈cont〉
→ Nothing can be done here

5. 88d 〈cont〉 8. ∗8 d 〈cont〉
→ Print ∗

4

6. 88d 〈cont〉 8d 〈cont〉
→ d applies 〈cont〉 to 8d〈cont〉

7. 8 〈cont〉 8d 〈cont〉
→ Let Y be the current 8d〈cont〉. Now the yellow 〈cont〉
is applied to Y . So we go back to step 0, putting Y in the hole.

8. 8 8r8d 〈cont〉 8. ∗8 cd
→ Print newline

9. 88d 〈cont〉 8.∗ 8cd
→ Save 88d〈cont〉8. ∗ [] for this 〈cont〉[3]

10. 88d 〈cont〉 8.∗ 8d 〈cont〉

11. 88d 〈cont〉 8. ∗8 d 〈cont〉
→ Print ∗

12. 88d 〈cont〉 8d 〈cont〉

13. 8 〈cont〉 8d 〈cont〉
→ Now we go back to step 3, putting the 8d〈cont〉
(which was created in step 9) in the hole.

14. 88d 〈cont〉 8. ∗ d 〈cont〉
→ Print ∗

15. 88d 〈cont〉 8d 〈cont〉

16. 8 〈cont〉 8d 〈cont〉
→ Now we go back to step 0, putting the 8d〈cont〉
(which was created in step 9) in the hole.

17. 8 8r8d 〈cont〉 8. ∗8 cd
→ Print newline

18. 88d 〈cont〉 8.∗ 8cd
→ Save 88d〈cont〉8. ∗ [] for this 〈cont〉[4]

19. 88d 〈cont〉 8.∗ 8d 〈cont〉

20. 88d 〈cont〉 8. ∗8 d 〈cont〉
→ Print ∗

21. 88d 〈cont〉 8d 〈cont〉

5

4 Examples

22. 8 〈cont〉 8d 〈cont〉
→ Now we go back to step 9, putting the 8d〈cont〉
(which was created in step 18) in the hole.

23. 88d 〈cont〉 8. ∗8 d 〈cont〉
→ Print ∗

24. 88d 〈cont〉 8d 〈cont〉

25. 8 〈cont〉 8d 〈cont〉
→ Now we go back to step 3, putting the 8d〈cont〉
(which was created in step 18) in the hole.

26. 88d 〈cont〉 8. ∗8 d 〈cont〉
→ Print ∗

27. 88d 〈cont〉 8d 〈cont〉

28. 8 〈cont〉 8d 〈cont〉
→ Now we go back to step 0, putting the 8d〈cont〉
(which was created in step 18) in the hole.

29. 8 8r8d 〈cont〉 8. ∗8 cd
→ Print newline

At this point we have printed the first four lines. So the output is:

∗
∗∗
∗∗∗

Example 4.3. There are some really good possibilities to represent booleans.
The choice given by:

� i for true

� v for false

is probably the smartest way because i and v are built-in functions in Unlambda.
The internal implementation of the input functions of Unlambda 2 (see section
7) uses also this approach. As a consequence, the function AND can be written
as i !

Proof. There are only 4 cases:

1. 88iii→ 8ii→ i (true AND true ≈ true)

2. 88iiv → 8iv → v (true AND false ≈ false)

6

3. 88ivi→ 8vi→ v (false AND true ≈ false)

4. 88ivv → 8vv → v (false AND false ≈ false)

Another advantage is, that a boolean can be simply applied to an argument
which should only be evaluated if the boolean is true. This is correct because
v returns v (so the argument will be rejected), whereas i returns the argument
which will be evaluated later on.

Apart from these advantages this choice for the booleans carries only dis-
advantages. The problem is that testing if a function is equal to v is almost
impossible because of returning always itself. The only way to get along is to
use continuations. For the functions NOT, OR and IF-THEN-ELSE is always a
continuation needed. To show one example, the IF-THEN-ELSE function can be
written as follows:

88s8kc88s8k8s8k8k8ki 88ss8k8kk

With this function the code snippet “if x then y else z” can be written as
follows:

88888s8kc88s8k8s8k8k8ki 88ss8k8kkxyz

where x, y and z are arbitrary terms.

In order to get an easier representation of the above mentioned functions
the choice of k (as true) and 8ki (as false) would be the best one. With this
approach the IF-THEN-ELSE function can simply be written as i, because k is
a function returning the first argument whereas 8ki is a function returning the
second argument. So if the boolean of IF-THEN-ELSE is true, the first argument
is returned, otherwise the second argument is returned as it should be.

5 Transforming Lambda Calculus into Unlambda

There is one relatively simple way to write Unlambda programs. Even though it
is not innovative, transforming code similar to lambda calculus into Unlambda

can be done systematically. This method is called “abstraction elimination” [4]
since the lambda abstractions (not supported in Unlambda) get eliminated. This
approach enables the use of variables, which makes programming much easier.
Nevertheless, first of all such a code has to be written to make this transforma-
tion possible. Therefore a form of the lambda calculus without free variables
is used which can also contain combinators. But normally they are not used
because it is easier to write programs in pure lambda calculus. The special
lambda terms used below are defined as follows:

� Every combinator is a lambda term.

� If x is a variable and Y is a lambda term, then λxY is a lambda term.
The abstraction operator, λ, binds the variable x in the body of the
abstraction.

7

5 Transforming Lambda Calculus into Unlambda

� If x is a bound variable, then $x is a lambda term.

� If X and Y are lambda terms, then 8XY is also a lambda term.

Where 8 is equivalent to an opening parenthesis in lambda calculus and the
closing ones are dropped as explained in section 2. Because of the risk of
confusion with the .x combinator the point after λx is dropped. The $ symbol
indicates that the following symbol is a variable. Since this is just slightly
modified lambda calculus code it is also possible to use existing programs as
long as the functionality suffices.

Let F be an expression. There is always a lambda term λxF from which
the λ should be removed. The process of “abstraction elimination” can be
defined by induction on the structure of F . The following three cases have to
be considered:

1. F is $x. Then λxx has to be expressed which is exactly the identity
function i.

2. F is a combinator or a variable other than $x. Then F is a constant
function which can be expressed as 8kF because applying an argument
to 8kF the argument will be ignored as it is in lambda calculus if an
argument is applied to a free variable.

3. F is an application of the form 8GH where the abstraction eliminations
of λxG and λxH are already defined by induction. If an argument has
to be applied to such an application in lambda calculus, the argument
has to be applied to G and to H getting H ′ and G′, respectively. The
application of H ′ to G′ would be the final result. In Unlambda this can
be done via the s combinator. So 8GH can be rewritten as 88s λxGλxH
where λxG and λxH have to be simplified next. Applying an argument
Z to this construct (leaving the lambda terms λxG and λxH as they are)
yields

888s λxGλxHZ → 88λxGZ 8λxHZ

which is equivalent to what happens in lambda calculus.

Scanning a lambda term λxF from left to right, it suffice to consider the
following three rules for “abstraction elimination” which can be derived from
the the above explained cases (for the last one it suffice to write 88s because the
arguments will be considered later on):

1. 8 → 88s

2. $x → i

3. otherwise there is a combinator or a variable other than $x
→ write 8k in front of the specific combinator/variable

8

Example 5.1. Consider the function λx8$xk, taking a function x and applying
that function to k.

λx8$xk
λ−elimination−−−−−−−−−→ 88si 8kk

Here the first case applies for 8, the second one for $x and the third one for k.
The resulting function can be used applying it to an argument (in the following
called z):

888si 8kkz → 88iz88kkz

→ 8z88kkz

→ 8zk

As intended the argument z is now in the place of $x so the use of variables
was successful.

If there are several lambdas in front of one expression, they could be elimi-
nated incrementally, starting with the innermost and going outwards.

Example 5.2. Consider the function λxλyλz88zy$x eliminating the lambda
abstractions incrementally like that

λxλyλz88zy$x
λ−elim.−−−−−→ λxλy88s88si 8k$y8k$x

λ−elim.−−−−−→ λx88s88s8ks88s88s8ks8ki 88s8kki 88s8kk8k$x

λ−elim.−−−−−→ 88s88s8ks88s88s8ks88s8kk8ks88s88s8ks88s88s8ks88s8kk8ks
88s8kk8ki88s88s8ks88s8kk8kk8ki88s88s8ks88s8kk8kk88s8kki

Splitting the first step into smaller steps yields (terms that still have to be
simplified are underlined):

λxλyλz88zy$x → λxλy88sλz8$zyx

→ λxλy88s88sλzzy$x

→ λxλy88s88siλzyx

→ λxλy88s88si 8k$yλz$x

→ λxλy88s88si 8k$y8k$x

Obviously the length of the Unlambda term grows exponentially with factor
3 for each λ because of the 8 operator which becomes 88s, and also because
each combinator and variable (except the variable captured by the current λ)
is transformed into three symbols.

The method described above suffices for abstraction elimination. However,
there are some tricks (also described in [4]) which make this technique much
more efficient and counteracts the above described growth of the length. It can
easily be seen that instead of rewriting v to 8kv the v can be left as it is. No

9

6 Similarities to other Languages

matter which argument 8kv or v, respectively, is applied to, the argument is
evaluated and v is returned either way. It gets already more complex with the
modification of rule 3 which can be applied more often. In fact it can be applied
to any sub-expression F ′ of F in the term λxF (so not only for single symbols)
if F ′ satisfies the following conditions:

1. F ′ does not involve x

2. The evaluation of F ′ terminates

3. No side effects during the evaluation of F ′

The first condition is obvious. For the second and the third one it is necessary to
know that if replacing F ′ by 8kF ′ the expression F ′ would be evaluated as soon
as it is encountered, but this does not take into account that F ′ is eventually not
applied to any argument. As a lambda term should only be evaluated if applied
to an argument, this has to be considered also for the transformation. So this
rule cannot be applied if F ′ does not terminate or has side effects like printing
characters. Fortunately there is a workaround for the case of non-termination
or side effects. Instead of going into F ′, it can be replaced by 8d 8kF ′ delaying
the evaluation of F ′ until the expression is applied to an argument.

Another shortcut can only be applied if the above mentioned conditions are
satisfied. The lambda term λx 8F ′ $x can be rewritten as F ′ considering the
η-reduction of the lambda calculus [1]. If F ′ does not terminate or produces
side effects during evaluation it has to be replaced with 8dF ′ instead, with the
same reasons as above.

6 Similarities to other Languages

As argued in the last section, Unlambda and lambda calculus are closely re-
lated. However the lambda calculus is not a real programming language but
rather used in proof theory and theory of computation. It is equivalent to
Turing machines, probably the most important computational model.
Unlambda combines the functionality of functional programming languages

with the complications of esoteric programming languages. Representatives of
this category are for example INTERCAL, Befunge and brainfuck. Whereas
INTERCAL was the first and still canonical example of esoteric programming
languages, brainfuck is currently one of the most famous representatives of
this class.

The class of functional programming languages contains for example Scheme

(a Lisp dialect), OCaml, Haskell and Clojure. Scheme has a function called
“call-to-current-continuation” (abbreviated as call/cc). “When the continua-
tion procedure is invoked, it returns its argument to the continuation of the
call to call/cc that created it.” [3] So the “continuation” is similar to 〈cont〉 in
Unlambda and the call/cc function is similar to the c combinator. Therefore
Scheme is in the most interesting part similar to Unlambda. There is also a
Scheme to Unlambda compiler2.

2E.g. available at http://www.complang.tuwien.ac.at/schani/oldstuff/index.html

10

http://www.complang.tuwien.ac.at/schani/oldstuff/index.html

There exists also a programming style used by some functional programming
languages called “Continuation Passing Style” (CPS) which allows users to im-
plement the call/cc function. Every function has an additional argument called
continuation to which the result of the function is passed. Therefore a function
will never return but invoke a continuation which will possibly invoke another
function with another continuation later on terminating by a final continuation
which can be the identity function. CPS enables also the implementation of
exceptions, co-routines, threads and some other constructs. Haskell is one
of the functional programming languages supporting directly CPS with Con-
trol.Monad.Cont [2].

The technique of currying is used in lambda calculus as well as in several
functional programming languages like Scheme or Haskell.

Very similar to Unlambda are the languages Iota (its successor Jot) and
Lazy K as they are both Turing tarpits and based on combinatory logic, like
Unlambda. Moreover they are also esoteric programming languages as actually
every language based on combinatory logic is. Lazy K was designed in order to
get a programming language that does not touch the purity of the SKI com-
binators. Ben Rudiak-Gould, the inventor of Lazy K, states “Unlambda isn’t
even close to being purely functional, because its I/O system depends crucially
on side effects” [6]. Lazy K uses input and output streams represented as lists
of natural numbers as I/O system. Iota and Jot allow only two symbols, re-
spectively. This is probably also the minimum number of symbols needed to get
an unambiguous Turing complete programming language. Because if there was
only one symbol, the “prefix property”3 would not be satisfied and therefore
the language is ambiguous.

7 Unlambda 2

The probably largest disadvantage of Unlambda is the lack of user interaction.
This gap has been closed with Unlambda 2 which introduces four new combina-
tors. Three of them for user interaction and the last one for exiting a program.

� @ takes one argument (let it be x). A character is read from STDIN, stored
as the “current character” and x is applied to i. If there are no characters
available on STDIN, the current character remains undefined and 8xv is
returned.

� ?u takes one argument (let it be x). The function returns 8xi if the current
character is u, otherwise 8xv is returned.

� | takes one argument (let it be x). It returns 8x.u where u is the current
character. If there is no current character because the last application of
@ was not successful, 8xv is returned.

� e takes one argument and exits the program with this argument as code.

3No code word is prefix of another code word.

11

References

8 Conclusion

As Unlambda is an esoteric programming language it is not sensible for present-
day software development. Even though the continuation feature is very in-
teresting, I do not think it will become standard, because it is very hard to
program with more than one continuation and so the continuation is not sen-
sible for “real languages”. Also in Scheme it is very rarely used. The goal
of unreadable code has been achieved. However, in minimalism or functional
purity other languages like Iota or Lazy K are preferable. Even so, creative
minds will get their money’s worth because of the freedom of implementing
data structures and code structures.

References

[1] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae (Proceedings), 75(5):381 – 392, 1972.
ISSN 1385-7258. doi: 10.1016/1385-7258(72)90034-0. URL http://www.

sciencedirect.com/science/article/pii/1385725872900340.

[2] Andy Gill. Control.Monad.Cont. Technical Report 2.0.1.0, The Univer-
sity of Glasgow, nov 2010. URL http://hackage.haskell.org/packages/

archive/mtl/2.0.1.0/doc/html/Control-Monad-Cont.html.

[3] R. Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in
the presence of first-class continuations. SIGPLAN Not., 25(6):66–77, jun
1990. ISSN 0362-1340. doi: 10.1145/93548.93554. URL http://doi.acm.

org/10.1145/93548.93554.

[4] David Madore. The Unlambda Programming Language, aug 2001. URL
http://www.madore.org/~david/programs/unlambda/.

[5] Alan J. Perlis. Epigrams on Programming. SIGPLAN Notices, 17(9):7–13,
1982.

[6] Ben Rudiak-Gould. Lazy K, 2002. URL http://homepages.cwi.nl/

~tromp/cl/lazy-k.html.

12

http://www.sciencedirect.com/science/article/pii/1385725872900340
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://hackage.haskell.org/packages/archive/mtl/2.0.1.0/doc/html/Control-Monad-Cont.html
http://hackage.haskell.org/packages/archive/mtl/2.0.1.0/doc/html/Control-Monad-Cont.html
http://doi.acm.org/10.1145/93548.93554
http://doi.acm.org/10.1145/93548.93554
http://www.madore.org/~ david/programs/unlambda/
http://homepages.cwi.nl/~ tromp/cl/lazy-k.html
http://homepages.cwi.nl/~ tromp/cl/lazy-k.html

	Introduction
	Syntax and Properties
	Combinators
	Currying
	Combinator Semantics

	Examples
	Transforming Lambda Calculus into Unlambda
	Similarities to other Languages
	Unlambda 2
	Conclusion

