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FixaneN

Vf:N— N3xy...3x,

X1 < Xo<...<Xp
f(x9) < f(xe) <...<f(xpn)
Ix; Vy f(xq) < f(y)

xe > x4 Vy > x2 f(x2) < f(y)
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Vi, g:N— Ndxq;...3x,

M = {x|Vy > x. f(x) < f(y)}
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FixaneN

Vi, g:N— Ndxq;...3x,

M = {x|Vy > x. f(x) < f(y)}

Xy :=min(g, M)
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FixaneN

Vi, g:N— Ndxq;...3x,

M ={x|Vy = x.f(x) < f(y)}
X1 := min(g, M)
X :=min(g,{x € M | x > x1})
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Conservation Results

SK := VX", IyNA(X, y) — AR, d(X))
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Conservation Results

SK := VX", IyNA(X, y) — AR, d(X))

Theorem (Avigad)

PA + SK+ Vx"3y" P(x,y) = PAEVYX"Iy"P(x,y)

v

Theorem (Godel-Friedman)

PA I VX"Iy" P(x,y) = HAVX"Iy" P(x,y)

o’

Theorem (Kleene-Gddel-Kreisel)

HA F vx"3y" P(x,y) = thereis a program A Vx" P(x, A(x))

v
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Avigad’s Forcing

@ Conditions: N —~ N:
VXN € dom(s). IyNA(X, y) — A(X, s(X))
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Avigad’s Forcing

@ Conditions: N —~ N:
VXN € dom(s). IyNA(X, y) — A(X, s(X))

@ sk P(ty,...,1t,) for some atomic P if and only if
Vs’ >s3s" > t,...,t, are defined in s” with values
ny,...,mpand P(my,...,mp) = True

slFAABifandonlyifsiFAand sl B

slFAv Bifandonlyifvs >sds” > s s I Aors’ I-FB
slFA— Bifandonly if Vs’ > s, if s’ I A, then s’ IF B

s - VxNAif and only if for all n, s I+ A[n/x]
slF3IxYAifand only if Vs’ > s 3s” > s'3n  §" Ik A[n/x]
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Avigad’s Forcing

@ Conditions: N —~ N:
VXN € dom(s). IyNA(X, y) — A(X, s(X))

@ sk P(ty,...,1t,) for some atomic P if and only if
Vs’ >s3s" > t,...,t, are defined in s” with values
ny,...,mpand P(my,...,mp) = True

slFAABifandonlyifsiFAand sl B

slFAv Bifandonlyifvs >sds” > s s I Aors’ I-FB
slFA— Bifandonly if Vs’ > s, if s’ I A, then s’ IF B

s - VxNAif and only if for all n, s I+ A[n/x]
slF3IxYAifand only if Vs’ > s 3s” > s'3n  §" Ik A[n/x]

PA+SKFA — PAt (sl A)
PAE (slFA)«~ A
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Interactive Classical Realizability

A computational semantics for Peano Arithmetic with Skolem
axioms:

VXY IYNA(X, y) — AR, (X))
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Interactive Classical Realizability

A computational semantics for Peano Arithmetic with Skolem
axioms:

VX, YNA(K, y) — AX, (X))

A way of making oracle computations effective, through the use
of approximations and learning by counterexamples
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Learning Based Realizability (2)

@ Oracles
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@ Oracles
© Approximations

© Learning
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Learning Based Realizability (3)

@ AN IDEAL PROGRAM:
- It is non recursive, uses oracles
- It obeys the laws of Heyting semantics
© CLASSICAL AXIOMS = LEARNING

- An efficient method to approximate the ideal program
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Oracles: Programming with Non-Computable

Functions

@ A classical version Tg,s Of Godel's system T
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@ For every formula A, add to 7 a Skolem constant
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Oracles: Programming with Non-Computable

Functions

@ A classical version Tg,s Of Godel's system T

@ For every formula A, add to 7 a Skolem constant
&4 : N — N such that:

VXY IYNA(X, y) — AKX, Da(X))

@ We assume to have an enumeration &g, ¢4, o5, ... of all
Skolem constants.
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Approximations: States of Knowledge

@ State: any term s : N — (N — N) of Godel’'s System 7.
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Approximations: States of Knowledge

@ State: any term s : N — (N — N) of Godel’'s System 7.

@ Approximation at state s of a term t of T t[S] results
from t by replacing each Skolem function ¢, with s,.
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Involutive Negation

For each arithmetical formula F, its involutive negation Ftis
defined by induction on F.

(—8001 P)* = P (if P positive) P+ = =501 P (if P positive)
(AnB)t = At v Bt (Av Bt = At ABt

(A— Bt =A-B (ANB)*t=A-8B
(VXNA)E = IxNAL (XA = vxVAL
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Truth Value of a Formula in a State

Let F be a formula. We define a term [F] : Bool of System
%Iass:
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Let F be a formula. We define a term [F] : Bool of System

Tctass:
[P] = P, P atomic
[AV B] = [A] Vo1 [B] [A~ B] = [A] Asoor [B]
[A A B] = [A] Asoo. [B] [A — B] = [A] =5001 [B]
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Truth Value of a Formula in a State

Let F be a formula. We define a term [F] : Bool of System

Tctass:
[P] = P, P atomic
[AV B] = [A] Vo1 [B] [A~ B] = [A] Asoor [B]
[A A B] = [A] Asoo. [B] [A — B] = [A] =5001 [B]

By AX, )] = [AX, Y)Yy := ®a(X)]

[y AX, y)l = [AX, Y)Y = 41 (X)]

We define F° := [F][s] and call it the truth value of F in the
state s.
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Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of T¢.e. We define tliFs F for any s € S.

tiF P(ty, ... t)iff P(ty,... t)) = True
ti- A Biff mot IF Aand mt - B

o tli- AV Biff either mgt = True and w1t lIl- A or ot = False
and mot I B

tiiF A— Biff for all u, if ull- A, then tull- B
t lI- VxA iff for all numerals n, tn lIF A[n/x]
tl- XA iff mot = nand w1t lIF Aln/x]
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Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of Tg,.e. We define t i F for any s € S.

@ tlFs P(ty,..., 1) iff t[s] € Pgpn(N x N x N) and

@ tliFs AV Biff either mgt[s] = True and 71t ll-s A or
mot[s] = False and mot IIFs B
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Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of Tg.s- We define t ik F for any s € S.

@ ftliFs P(ty,. .., ty) iff t[s] € Prp(N x N x N) and

1) (n,m,I) € t[s] and &, = P4, then:
A*(m, ) = True N A°(m, sp(m)) = False
@ tl-s AABiff mot s Aand it ks B

@ tli-s AV Biff either mpt[s] = True and 1t lI-s A or
mot[s| = False and mot I B

o tlks A— Bifffor all u, if ull-s A, then tu ll-s B
@ tlis VXA iff for all numerals n, tnliFs Aln/x]
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Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of 7g... We define t i F for any s € S.
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Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of 7g... We define t i F for any s € S.

@ tlks P(ty, ..., tn)iff t{[s] € Prp(N x N x N) and

1) (n,m,[) € t[s] and &, = ®4, then:
A*(m, ) = True N A3(m, sp(m)) = False
2) t[s] = @ implies P(ty,...,t)[s] = True
@ tllFs AN Biff mot IIFs Aand mqt -5 B
tliFs AV B iff either mpt[s] = True and 7t -5 A or
mot[s] = False and mat lI-5s B
tiFs A— Biff for all u, if ullks A, then tull-s B
t -5 VXA iff for all numerals n, inliks Aln/x]
t - XA iff mot[s] = nand w1t lIFs A[n/x]
tiF FiffvseStlks F
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Skolem Axiom

AXAY. if (Txy N =T x®y(x)) then {(k, x,y)} else &
lIFs
vxnv' g(X,y) — y(X,q)k(X))

Federico Aschieri Mathematical Proofs as Learning Programs



Skolem Axiom

AXAY. if (Txy N =T x®y(x)) then {(k, x,y)} else &
lIFs
vxnv' g(X,y) — y(X,q)k(X))

X:=ny:=m
if (7 nm A -7 nsk(n)) then {(k,n,m)} else &
I
T (n,m) — 7 (n, sg(n))

Federico Aschieri Mathematical Proofs as Learning Programs



Example: Excluded Middle for Simply existential
formulas

E = MXM(P(x, ®ax), (Pax, @), \y" if P(x,y) then (a,x,y) else &)

E II-vx". 3y™ P(x,y) vV Vy"= P(x,Y)
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Conservativity of PA + SK over PA for arithmetical
formulas
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Conservativity of PA + SK over PA for arithmetical
formulas

For every arithmetical formula A

PA+SK-FA — PAFA
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Conservativity of PA + SK over PA for arithmetical
formulas

For every arithmetical formula A
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Proof.
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formulas

For every arithmetical formula A

PA+SK-FA — PAFA

Proof.
PA+-SKFA — HAF!tIFA

Federico Aschieri Mathematical Proofs as Learning Programs



Conservativity of PA + SK over PA for arithmetical
formulas

For every arithmetical formula A

PA+SK-FA — PAFA

Proof.
PA+-SKFA — HAF!tIFA
PAE (tIIFA) — A
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Conservativity of PA + SK over PA for arithmetical
formulas

For every arithmetical formula A

PA+SK-FA — PAFA

Proof.
PA+SKFA — HALKtIFA
PAE (tIIFA) — A
therefore

PAFA
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Witness Extraction

tlIF 3IxP(x)
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Witness Extraction

tlIF 3IxP(x)
=
tliFs 3xP(x)
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Witness Extraction

tlIF 3IxP(x)
—
tliFs 3xP(x)
—
mot[s] = nand w1t lIFs P(n)
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Witness Extraction

tlIF 3IxP(x)
—
tliFs 3xP(x)
—
mot[s] = nand w1t lIFs P(n)
—
mt[s] =2 = P(n)
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Witness Extraction

tlIF 3IxP(x)
—
tliFs 3xP(x)
—
mot[s] = nand w1t lIFs P(n)
—
mt[s] =2 = P(n)

I'o = f

Choose (n,m, 1) € myt[rp]

/ fa=nb=m
rny1 = (a,b) — ¢ rp(a, b) if complexity(®z) < complexity($p,)
0 otherwise
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Computability: Classical vs Constructive Forcing

Computability for terms t : N of Tgpes, i-€. functions s — N
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Computability: Classical VS Constructive Forcing (2)

@ Classical Forcing
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Computability: Classical VS Constructive Forcing (2)

@ Classical Forcing

@ t:wis computable if Vs 38’ > sVs” > s'. t[s'] = t[s"]
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Computability: Classical VS Constructive Forcing (2)

@ Classical Forcing

@ t:wis computable if Vs 38’ > sVs” > s'. t[s'] = t[s"]

@ Constructively false
@ Constructive Forcing

@ ¢ :Nis computable if

k575 Vs 3s' > sVs'. s <" < k(s') — t[s'] = t[s"]
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Computability: Classical VS Constructive Forcing (2)

@ Classical Forcing

@ t:wis computable if Vs 38’ > sVs” > s'. t[s'] = t[s"]

@ Constructively false
@ Constructive Forcing

@ ¢ :Nis computable if

k575 Vs 3s' > sVs'. s <" < k(s') — t[s'] = t[s"]

@ Constructively true:

MIFteN=Vk*7°Vs. Mks =5 — t|[s k(s')]
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Constructive Forcing

M of T forces t of To.ss t0 be a computable functional of type o

MIFt: o
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Constructive Forcing

M of T forces t of To.ss t0 be a computable functional of type o

MIFt: o

MIFt:Ne M= (ASSHS|,N)AN IFteN
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Constructive Forcing

M of T forces t of To.ss t0 be a computable functional of type o

MIFt: o

MIFt:Ne M= (ASSHS|,N)AN IFteN
MIFt:o— 7 forevery NIFu:o,then MN IFtu: T

MIFt:oxTeagMIEmgt :o AmyMIEmit: 7
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SECPS Translation

Negative Translation < CPS translation:

-

t:o = t':0o
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SECPS Translation

Negative Translation < CPS translation:
t:oc = t':0 "
Constructive Forcing < SECPS translation

t:o = t'lFt:o
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Model Theoretic Interpretation

Define a non-standard model M of Godel’'s system 7gjass:
IN] = {(fAN)|f:S > NANIFfeN}

[o — 7] =] — 7]

[o x 7] :==[o] x [7]
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Model Theoretic Interpretation

Define a non-standard model M of Godel’'s system 7gjass:
IN] = {(fAN)|f:S > NANIFfeN}

[o — 7] =] — 7]

[o x 7] :==[o] x [7]

Then the SECPS t* defines in Godel's T the interpretation of t
in the model M.
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