
Mathematical Proofs as Learning Programs

Federico Aschieri

Vienna University of Technology

Innsbruck, 5 June 2015

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

∃x1 ∀y f (x1) ≤ f (y)

∃x2 > x1 ∀y ≥ x2 f (x2) ≤ f (y)

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

∃x1 ∀y f (x1) ≤ f (y)

∃x2 > x1 ∀y ≥ x2 f (x2) ≤ f (y)

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

∃x1 ∀y f (x1) ≤ f (y)

∃x2 > x1 ∀y ≥ x2 f (x2) ≤ f (y)

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

∃x1 ∀y f (x1) ≤ f (y)

∃x2 > x1 ∀y ≥ x2 f (x2) ≤ f (y)

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

∃x1 ∀y f (x1) ≤ f (y)

∃x2 > x1 ∀y ≥ x2 f (x2) ≤ f (y)

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f ,g : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

g(x1) ≤ g(x2) ≤ . . . ≤ g(xn)

M = {x | ∀y ≥ x . f (x) ≤ f (y)}

x1 := min(g,M)

x2 := min(g, {x ∈M | x > x1})

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f ,g : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

g(x1) ≤ g(x2) ≤ . . . ≤ g(xn)

M = {x | ∀y ≥ x . f (x) ≤ f (y)}

x1 := min(g,M)

x2 := min(g, {x ∈M | x > x1})

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f ,g : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

g(x1) ≤ g(x2) ≤ . . . ≤ g(xn)

M = {x | ∀y ≥ x . f (x) ≤ f (y)}

x1 := min(g,M)

x2 := min(g, {x ∈M | x > x1})

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f ,g : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

g(x1) ≤ g(x2) ≤ . . . ≤ g(xn)

M = {x | ∀y ≥ x . f (x) ≤ f (y)}

x1 := min(g,M)

x2 := min(g, {x ∈M | x > x1})

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f ,g : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

g(x1) ≤ g(x2) ≤ . . . ≤ g(xn)

M = {x | ∀y ≥ x . f (x) ≤ f (y)}

x1 := min(g,M)

x2 := min(g, {x ∈M | x > x1})

Federico Aschieri Mathematical Proofs as Learning Programs

Example

Fix a n ∈ N

∀f ,g : N→ N ∃x1 . . . ∃xn

x1 < x2 < . . . < xn

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn)

g(x1) ≤ g(x2) ≤ . . . ≤ g(xn)

M = {x | ∀y ≥ x . f (x) ≤ f (y)}

x1 := min(g,M)

x2 := min(g, {x ∈M | x > x1})

Federico Aschieri Mathematical Proofs as Learning Programs

Conservation Results

SK := ∀~xN. ∃yNA(~x , y)→ A(~x ,Φ〈~x〉)

Theorem (Avigad)

PA + SK ` ∀xN∃yN P(x , y) =⇒ PA ` ∀xN∃yN P(x , y)

Theorem (Gödel-Friedman)

PA ` ∀xN∃yN P(x , y) =⇒ HA ` ∀xN∃yN P(x , y)

Theorem (Kleene-Gödel-Kreisel)

HA ` ∀xN∃yN P(x , y) =⇒ there is a program A ∀xN P(x ,A(x))

Federico Aschieri Mathematical Proofs as Learning Programs

Conservation Results

SK := ∀~xN. ∃yNA(~x , y)→ A(~x ,Φ〈~x〉)

Theorem (Avigad)

PA + SK ` ∀xN∃yN P(x , y) =⇒ PA ` ∀xN∃yN P(x , y)

Theorem (Gödel-Friedman)

PA ` ∀xN∃yN P(x , y) =⇒ HA ` ∀xN∃yN P(x , y)

Theorem (Kleene-Gödel-Kreisel)

HA ` ∀xN∃yN P(x , y) =⇒ there is a program A ∀xN P(x ,A(x))

Federico Aschieri Mathematical Proofs as Learning Programs

Conservation Results

SK := ∀~xN. ∃yNA(~x , y)→ A(~x ,Φ〈~x〉)

Theorem (Avigad)

PA + SK ` ∀xN∃yN P(x , y) =⇒ PA ` ∀xN∃yN P(x , y)

Theorem (Gödel-Friedman)

PA ` ∀xN∃yN P(x , y) =⇒ HA ` ∀xN∃yN P(x , y)

Theorem (Kleene-Gödel-Kreisel)

HA ` ∀xN∃yN P(x , y) =⇒ there is a program A ∀xN P(x ,A(x))

Federico Aschieri Mathematical Proofs as Learning Programs

Conservation Results

SK := ∀~xN. ∃yNA(~x , y)→ A(~x ,Φ〈~x〉)

Theorem (Avigad)

PA + SK ` ∀xN∃yN P(x , y) =⇒ PA ` ∀xN∃yN P(x , y)

Theorem (Gödel-Friedman)

PA ` ∀xN∃yN P(x , y) =⇒ HA ` ∀xN∃yN P(x , y)

Theorem (Kleene-Gödel-Kreisel)

HA ` ∀xN∃yN P(x , y) =⇒ there is a program A ∀xN P(x ,A(x))

Federico Aschieri Mathematical Proofs as Learning Programs

Avigad’s Forcing

Condition s : N⇀ N:
∀~xN ∈ dom(s). ∃yNA(~x , y)→ A(~x , s(~x))

s P(t1, . . . , tn) for some atomic P if and only if
∀s′ ≥ s ∃s′′ ≥ s′ t1, . . . , tn are defined in s′′ with values
n1, . . . ,mn and P(m1, . . . ,mn) = True

s A ∧ B if and only if s A and s B

s A ∨ B if and only if ∀s′ ≥ s ∃s′′ ≥ s′ s′′ A or s′′ B

s A→ B if and only if ∀s′ ≥ s, if s′ A, then s′ B

s ∀xNA if and only if for all n, s A[n/x]

s ∃xNA if and only if ∀s′ ≥ s ∃s′′ ≥ s′∃n s′′ A[n/x]

PA + SK ` A =⇒ PA ` (s A)

PA ` (s A)↔ A

Federico Aschieri Mathematical Proofs as Learning Programs

Avigad’s Forcing

Condition s : N⇀ N:
∀~xN ∈ dom(s). ∃yNA(~x , y)→ A(~x , s(~x))

s P(t1, . . . , tn) for some atomic P if and only if
∀s′ ≥ s ∃s′′ ≥ s′ t1, . . . , tn are defined in s′′ with values
n1, . . . ,mn and P(m1, . . . ,mn) = True

s A ∧ B if and only if s A and s B

s A ∨ B if and only if ∀s′ ≥ s ∃s′′ ≥ s′ s′′ A or s′′ B

s A→ B if and only if ∀s′ ≥ s, if s′ A, then s′ B

s ∀xNA if and only if for all n, s A[n/x]

s ∃xNA if and only if ∀s′ ≥ s ∃s′′ ≥ s′∃n s′′ A[n/x]

PA + SK ` A =⇒ PA ` (s A)

PA ` (s A)↔ A

Federico Aschieri Mathematical Proofs as Learning Programs

Avigad’s Forcing

Condition s : N⇀ N:
∀~xN ∈ dom(s). ∃yNA(~x , y)→ A(~x , s(~x))

s P(t1, . . . , tn) for some atomic P if and only if
∀s′ ≥ s ∃s′′ ≥ s′ t1, . . . , tn are defined in s′′ with values
n1, . . . ,mn and P(m1, . . . ,mn) = True

s A ∧ B if and only if s A and s B

s A ∨ B if and only if ∀s′ ≥ s ∃s′′ ≥ s′ s′′ A or s′′ B

s A→ B if and only if ∀s′ ≥ s, if s′ A, then s′ B

s ∀xNA if and only if for all n, s A[n/x]

s ∃xNA if and only if ∀s′ ≥ s ∃s′′ ≥ s′∃n s′′ A[n/x]

PA + SK ` A =⇒ PA ` (s A)

PA ` (s A)↔ A

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Classical Realizability

A computational semantics for Peano Arithmetic with Skolem
axioms:

∀~xN. ∃yNA(~x , y)→ A(~x ,Φ〈~x〉)

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Classical Realizability

A computational semantics for Peano Arithmetic with Skolem
axioms:

∀~xN. ∃yNA(~x , y)→ A(~x ,Φ〈~x〉)

A way of making oracle computations effective, through the use
of approximations and learning by counterexamples

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (2)

1 Oracles

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (2)

1 Oracles

2 Approximations

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (2)

1 Oracles

2 Approximations

3 Learning

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (3)

1 AN IDEAL PROGRAM:

- It is non recursive, uses oracles

- It obeys the laws of Heyting semantics

2 CLASSICAL AXIOMS =⇒ LEARNING

- An efficient method to approximate the ideal program

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (3)

1 AN IDEAL PROGRAM:

- It is non recursive, uses oracles

- It obeys the laws of Heyting semantics

2 CLASSICAL AXIOMS =⇒ LEARNING

- An efficient method to approximate the ideal program

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (3)

1 AN IDEAL PROGRAM:

- It is non recursive, uses oracles

- It obeys the laws of Heyting semantics

2 CLASSICAL AXIOMS =⇒ LEARNING

- An efficient method to approximate the ideal program

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (3)

1 AN IDEAL PROGRAM:

- It is non recursive, uses oracles

- It obeys the laws of Heyting semantics

2 CLASSICAL AXIOMS =⇒ LEARNING

- An efficient method to approximate the ideal program

Federico Aschieri Mathematical Proofs as Learning Programs

Learning Based Realizability (3)

1 AN IDEAL PROGRAM:

- It is non recursive, uses oracles

- It obeys the laws of Heyting semantics

2 CLASSICAL AXIOMS =⇒ LEARNING

- An efficient method to approximate the ideal program

Federico Aschieri Mathematical Proofs as Learning Programs

Oracles: Programming with Non-Computable
Functions

A classical version TClass of Gödel’s system T

For every formula A, add to T a Skolem constant
ΦA : N→ N such that:

∀~x N. ∃yNA(~x , y)→ A(~x ,ΦA〈~x〉)

We assume to have an enumeration Φ0,Φ1,Φ2, . . . of all
Skolem constants.

Federico Aschieri Mathematical Proofs as Learning Programs

Oracles: Programming with Non-Computable
Functions

A classical version TClass of Gödel’s system T
For every formula A, add to T a Skolem constant
ΦA : N→ N such that:

∀~x N. ∃yNA(~x , y)→ A(~x ,ΦA〈~x〉)

We assume to have an enumeration Φ0,Φ1,Φ2, . . . of all
Skolem constants.

Federico Aschieri Mathematical Proofs as Learning Programs

Oracles: Programming with Non-Computable
Functions

A classical version TClass of Gödel’s system T
For every formula A, add to T a Skolem constant
ΦA : N→ N such that:

∀~x N. ∃yNA(~x , y)→ A(~x ,ΦA〈~x〉)

We assume to have an enumeration Φ0,Φ1,Φ2, . . . of all
Skolem constants.

Federico Aschieri Mathematical Proofs as Learning Programs

Approximations: States of Knowledge

1 State: any term s : N→ (N→ N) of Gödel’s System T .

2 Approximation at state s of a term t of TClass: t [s] results
from t by replacing each Skolem function Φn with sn.

Federico Aschieri Mathematical Proofs as Learning Programs

Approximations: States of Knowledge

1 State: any term s : N→ (N→ N) of Gödel’s System T .

2 Approximation at state s of a term t of TClass: t [s] results
from t by replacing each Skolem function Φn with sn.

Federico Aschieri Mathematical Proofs as Learning Programs

Involutive Negation

For each arithmetical formula F , its involutive negation F⊥ is
defined by induction on F .

(¬BoolP)⊥ = P (if P positive) P⊥ = ¬BoolP (if P positive)

(A ∧ B)⊥ = A⊥ ∨ B⊥ (A ∨ B)⊥ = A⊥ ∧ B⊥

(A→ B)⊥ = ArB (ArB)⊥ = A→ B

(∀xNA)⊥ = ∃xNA⊥ (∃xNA)⊥ = ∀xNA⊥

Federico Aschieri Mathematical Proofs as Learning Programs

Truth Value of a Formula in a State

Definition
Let F be a formula. We define a term [[F]] : Bool of System
TClass:

[[P]] = P, P atomic

[[A ∨ B]] = [[A]] ∨Bool [[B]] [[ArB]] = [[A]] ∧Bool [[B⊥]]

[[A ∧ B]] = [[A]] ∧Bool [[B]] [[A→ B]] = [[A]]⇒Bool [[B]]

[[∃yNA(~x , y)]] = [[A(~x , y)]][y := ΦA〈~x〉]

[[∀yNA(~x , y)]] = [[A(~x , y)]][y := ΦA⊥〈~x〉]

We define F s := [[F]][s] and call it the truth value of F in the
state s.

Federico Aschieri Mathematical Proofs as Learning Programs

Truth Value of a Formula in a State

Definition
Let F be a formula. We define a term [[F]] : Bool of System
TClass:

[[P]] = P, P atomic

[[A ∨ B]] = [[A]] ∨Bool [[B]] [[ArB]] = [[A]] ∧Bool [[B⊥]]

[[A ∧ B]] = [[A]] ∧Bool [[B]] [[A→ B]] = [[A]]⇒Bool [[B]]

[[∃yNA(~x , y)]] = [[A(~x , y)]][y := ΦA〈~x〉]

[[∀yNA(~x , y)]] = [[A(~x , y)]][y := ΦA⊥〈~x〉]

We define F s := [[F]][s] and call it the truth value of F in the
state s.

Federico Aschieri Mathematical Proofs as Learning Programs

Truth Value of a Formula in a State

Definition
Let F be a formula. We define a term [[F]] : Bool of System
TClass:

[[P]] = P, P atomic

[[A ∨ B]] = [[A]] ∨Bool [[B]] [[ArB]] = [[A]] ∧Bool [[B⊥]]

[[A ∧ B]] = [[A]] ∧Bool [[B]] [[A→ B]] = [[A]]⇒Bool [[B]]

[[∃yNA(~x , y)]] = [[A(~x , y)]][y := ΦA〈~x〉]

[[∀yNA(~x , y)]] = [[A(~x , y)]][y := ΦA⊥〈~x〉]

We define F s := [[F]][s] and call it the truth value of F in the
state s.

Federico Aschieri Mathematical Proofs as Learning Programs

Truth Value of a Formula in a State

Definition
Let F be a formula. We define a term [[F]] : Bool of System
TClass:

[[P]] = P, P atomic

[[A ∨ B]] = [[A]] ∨Bool [[B]] [[ArB]] = [[A]] ∧Bool [[B⊥]]

[[A ∧ B]] = [[A]] ∧Bool [[B]] [[A→ B]] = [[A]]⇒Bool [[B]]

[[∃yNA(~x , y)]] = [[A(~x , y)]][y := ΦA〈~x〉]

[[∀yNA(~x , y)]] = [[A(~x , y)]][y := ΦA⊥〈~x〉]

We define F s := [[F]][s] and call it the truth value of F in the
state s.

Federico Aschieri Mathematical Proofs as Learning Programs

Truth Value of a Formula in a State

Definition
Let F be a formula. We define a term [[F]] : Bool of System
TClass:

[[P]] = P, P atomic

[[A ∨ B]] = [[A]] ∨Bool [[B]] [[ArB]] = [[A]] ∧Bool [[B⊥]]

[[A ∧ B]] = [[A]] ∧Bool [[B]] [[A→ B]] = [[A]]⇒Bool [[B]]

[[∃yNA(~x , y)]] = [[A(~x , y)]][y := ΦA〈~x〉]

[[∀yNA(~x , y)]] = [[A(~x , y)]][y := ΦA⊥〈~x〉]

We define F s := [[F]][s] and call it the truth value of F in the
state s.

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t � P(t1, . . . , tn) iff P(t1, . . . , tn) = True
t � A ∧ B iff π0t � A and π1t � B
t � A ∨ B iff either π0t = True and π1t � A or π0t = False
and π2t � B
t � A→ B iff for all u, if u � A, then tu � B
t � ∀xA iff for all numerals n, tn � A[n/x]

t � ∃xA iff π0t = n and π1t � A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t � P(t1, . . . , tn) iff P(t1, . . . , tn) = True
t � A ∧ B iff π0t � A and π1t � B
t � A ∨ B iff either π0t = True and π1t � A or π0t = False
and π2t � B
t � A→ B iff for all u, if u � A, then tu � B
t � ∀xA iff for all numerals n, tn � A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t � P(t1, . . . , tn) iff P(t1, . . . , tn) = True
t � A ∧ B iff π0t � A and π1t � B
t � A ∨ B iff either π0t = True and π1t � A or π0t = False
and π2t � B
t � A→ B iff for all u, if u � A, then tu � B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t � P(t1, . . . , tn) iff P(t1, . . . , tn) = True
t � A ∧ B iff π0t � A and π1t � B
t � A ∨ B iff either π0t = True and π1t � A or π0t = False
and π2t � B
t �s A→ B iff for all u, if u �s A, then tu �s B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t � P(t1, . . . , tn) iff P(t1, . . . , tn) = True
t � A ∧ B iff π0t � A and π1t � B
t �s A ∨ B iff either π0t [s] = True and π1t �s A or
π0t [s] = False and π2t �s B
t �s A→ B iff for all u, if u �s A, then tu �s B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t � P(t1, . . . , tn) iff P(t1, . . . , tn) = True
t �s A ∧ B iff π0t �s A and π1t �s B
t �s A ∨ B iff either π0t [s] = True and π1t �s A or
π0t [s] = False and π2t �s B
t �s A→ B iff for all u, if u �s A, then tu �s B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t �s P(t1, . . . , tn) iff t [s] ∈ PFin(N× N× N) and

t �s A ∧ B iff π0t �s A and π1t �s B
t �s A ∨ B iff either π0t [s] = True and π1t �s A or
π0t [s] = False and π2t �s B
t �s A→ B iff for all u, if u �s A, then tu �s B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t �s P(t1, . . . , tn) iff t [s] ∈ PFin(N× N× N) and

1) (n,m, l) ∈ t [s] and Φn = ΦA, then:
As(m, l) = True ∧ As(m, sn(m)) = False

t �s A ∧ B iff π0t �s A and π1t �s B
t �s A ∨ B iff either π0t [s] = True and π1t �s A or
π0t [s] = False and π2t �s B
t �s A→ B iff for all u, if u �s A, then tu �s B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t �s P(t1, . . . , tn) iff t [s] ∈ PFin(N× N× N) and

1) (n,m, l) ∈ t [s] and Φn = ΦA, then:
As(m, l) = True ∧ As(m, sn(m)) = False

2) t [s] = ∅ implies P(t1, . . . , tn)[s] = True
t �s A ∧ B iff π0t �s A and π1t �s B
t �s A ∨ B iff either π0t [s] = True and π1t �s A or
π0t [s] = False and π2t �s B
t �s A→ B iff for all u, if u �s A, then tu �s B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Interactive Realizability for PA + SK

Definition (The new parts will appear in red)
Let t be a term of TClass. We define t �s F for any s ∈ S.

t �s P(t1, . . . , tn) iff t [s] ∈ PFin(N× N× N) and

1) (n,m, l) ∈ t [s] and Φn = ΦA, then:
As(m, l) = True ∧ As(m, sn(m)) = False

2) t [s] = ∅ implies P(t1, . . . , tn)[s] = True
t �s A ∧ B iff π0t �s A and π1t �s B
t �s A ∨ B iff either π0t [s] = True and π1t �s A or
π0t [s] = False and π2t �s B
t �s A→ B iff for all u, if u �s A, then tu �s B
t �s ∀xA iff for all numerals n, tn �s A[n/x]

t �s ∃xA iff π0t [s] = n and π1t �s A[n/x]

t � F iff ∀s ∈ S t �s F

Federico Aschieri Mathematical Proofs as Learning Programs

Skolem Axiom

λxλy . if (T xy ∧ ¬T xΦk (x)) then {(k , x , y)} else ∅

�s

∀x , y . T (x , y)→ T (x ,Φk (x))

x := n, y := m

if (T nm ∧ ¬T nsk (n)) then {(k ,n,m)} else ∅

�s

T (n,m)→ T (n, sk (n))

Federico Aschieri Mathematical Proofs as Learning Programs

Skolem Axiom

λxλy . if (T xy ∧ ¬T xΦk (x)) then {(k , x , y)} else ∅

�s

∀x , y . T (x , y)→ T (x ,Φk (x))

x := n, y := m

if (T nm ∧ ¬T nsk (n)) then {(k ,n,m)} else ∅

�s

T (n,m)→ T (n, sk (n))

Federico Aschieri Mathematical Proofs as Learning Programs

Example: Excluded Middle for Simply existential
formulas

E := λxN〈P(x ,Φax), 〈Φax , ∅〉, λyN if P(x , y) then (a, x , y) else ∅〉

E � ∀xN. ∃yN P(x , y) ∨ ∀yN¬ P(x , y)

Federico Aschieri Mathematical Proofs as Learning Programs

Conservativity of PA + SK over PA for arithmetical
formulas

Theorem

For every arithmetical formula A

PA + SK ` A =⇒ PA ` A

Proof.
PA + SK ` A =⇒ HA ` t � A

PA ` (t � A)→ A
therefore

PA ` A

Federico Aschieri Mathematical Proofs as Learning Programs

Conservativity of PA + SK over PA for arithmetical
formulas

Theorem
For every arithmetical formula A

PA + SK ` A =⇒ PA ` A

Proof.
PA + SK ` A =⇒ HA ` t � A

PA ` (t � A)→ A
therefore

PA ` A

Federico Aschieri Mathematical Proofs as Learning Programs

Conservativity of PA + SK over PA for arithmetical
formulas

Theorem
For every arithmetical formula A

PA + SK ` A =⇒ PA ` A

Proof.

PA + SK ` A =⇒ HA ` t � A
PA ` (t � A)→ A

therefore

PA ` A

Federico Aschieri Mathematical Proofs as Learning Programs

Conservativity of PA + SK over PA for arithmetical
formulas

Theorem
For every arithmetical formula A

PA + SK ` A =⇒ PA ` A

Proof.
PA + SK ` A =⇒ HA ` t � A

PA ` (t � A)→ A
therefore

PA ` A

Federico Aschieri Mathematical Proofs as Learning Programs

Conservativity of PA + SK over PA for arithmetical
formulas

Theorem
For every arithmetical formula A

PA + SK ` A =⇒ PA ` A

Proof.
PA + SK ` A =⇒ HA ` t � A

PA ` (t � A)→ A

therefore

PA ` A

Federico Aschieri Mathematical Proofs as Learning Programs

Conservativity of PA + SK over PA for arithmetical
formulas

Theorem
For every arithmetical formula A

PA + SK ` A =⇒ PA ` A

Proof.
PA + SK ` A =⇒ HA ` t � A

PA ` (t � A)→ A
therefore

PA ` A

Federico Aschieri Mathematical Proofs as Learning Programs

Witness Extraction

t � ∃xP(x)

=⇒
t �s ∃xP(x)

=⇒
π0t [s] = n and π1t �s P(n)

=⇒
π1t [s] = ∅ =⇒ P(n)

r0 := f

Choose (n,m, l) ∈ π1t [rn]

rn+1 := (a,b) 7→

l if a = n,b = m
rn(a,b) if complexity(Φa) ≤ complexity(Φn)

0 otherwise

∃n. π1t [rn] = ∅
.

Federico Aschieri Mathematical Proofs as Learning Programs

Witness Extraction

t � ∃xP(x)
=⇒

t �s ∃xP(x)

=⇒
π0t [s] = n and π1t �s P(n)

=⇒
π1t [s] = ∅ =⇒ P(n)

r0 := f

Choose (n,m, l) ∈ π1t [rn]

rn+1 := (a,b) 7→

l if a = n,b = m
rn(a,b) if complexity(Φa) ≤ complexity(Φn)

0 otherwise

∃n. π1t [rn] = ∅
.

Federico Aschieri Mathematical Proofs as Learning Programs

Witness Extraction

t � ∃xP(x)
=⇒

t �s ∃xP(x)
=⇒

π0t [s] = n and π1t �s P(n)

=⇒
π1t [s] = ∅ =⇒ P(n)

r0 := f

Choose (n,m, l) ∈ π1t [rn]

rn+1 := (a,b) 7→

l if a = n,b = m
rn(a,b) if complexity(Φa) ≤ complexity(Φn)

0 otherwise

∃n. π1t [rn] = ∅
.

Federico Aschieri Mathematical Proofs as Learning Programs

Witness Extraction

t � ∃xP(x)
=⇒

t �s ∃xP(x)
=⇒

π0t [s] = n and π1t �s P(n)
=⇒

π1t [s] = ∅ =⇒ P(n)

r0 := f

Choose (n,m, l) ∈ π1t [rn]

rn+1 := (a,b) 7→

l if a = n,b = m
rn(a,b) if complexity(Φa) ≤ complexity(Φn)

0 otherwise

∃n. π1t [rn] = ∅
.

Federico Aschieri Mathematical Proofs as Learning Programs

Witness Extraction

t � ∃xP(x)
=⇒

t �s ∃xP(x)
=⇒

π0t [s] = n and π1t �s P(n)
=⇒

π1t [s] = ∅ =⇒ P(n)

r0 := f

Choose (n,m, l) ∈ π1t [rn]

rn+1 := (a,b) 7→

l if a = n,b = m
rn(a,b) if complexity(Φa) ≤ complexity(Φn)

0 otherwise

∃n. π1t [rn] = ∅
.

Federico Aschieri Mathematical Proofs as Learning Programs

Witness Extraction

t � ∃xP(x)
=⇒

t �s ∃xP(x)
=⇒

π0t [s] = n and π1t �s P(n)
=⇒

π1t [s] = ∅ =⇒ P(n)

r0 := f

Choose (n,m, l) ∈ π1t [rn]

rn+1 := (a,b) 7→

l if a = n,b = m
rn(a,b) if complexity(Φa) ≤ complexity(Φn)

0 otherwise

∃n. π1t [rn] = ∅
. Federico Aschieri Mathematical Proofs as Learning Programs

Computability: Classical vs Constructive Forcing

Computability for terms t : N of TClass, i.e. functions S→ N

Federico Aschieri Mathematical Proofs as Learning Programs

Computability: Classical VS Constructive Forcing (2)

Classical Forcing

1 t : N is computable if ∀s ∃s′ ≥ s ∀s′′ ≥ s′. t [s′] = t [s′′]

2 Constructively false

Constructive Forcing

1 t : N is computable if

∀kS→S ∀s ∃s′ ≥ s ∀s′′. s′ ≤ s′′ ≤ k(s′)→ t [s′] = t [s′′]

2 Constructively true:

M t ∈ N ≡ ∀kS→S ∀s.Mks = s′ → t ↓ [s′, k(s′)]

Federico Aschieri Mathematical Proofs as Learning Programs

Computability: Classical VS Constructive Forcing (2)

Classical Forcing

1 t : N is computable if ∀s ∃s′ ≥ s ∀s′′ ≥ s′. t [s′] = t [s′′]

2 Constructively false

Constructive Forcing

1 t : N is computable if

∀kS→S ∀s ∃s′ ≥ s ∀s′′. s′ ≤ s′′ ≤ k(s′)→ t [s′] = t [s′′]

2 Constructively true:

M t ∈ N ≡ ∀kS→S ∀s.Mks = s′ → t ↓ [s′, k(s′)]

Federico Aschieri Mathematical Proofs as Learning Programs

Computability: Classical VS Constructive Forcing (2)

Classical Forcing

1 t : N is computable if ∀s ∃s′ ≥ s ∀s′′ ≥ s′. t [s′] = t [s′′]

2 Constructively false

Constructive Forcing

1 t : N is computable if

∀kS→S ∀s ∃s′ ≥ s ∀s′′. s′ ≤ s′′ ≤ k(s′)→ t [s′] = t [s′′]

2 Constructively true:

M t ∈ N ≡ ∀kS→S ∀s.Mks = s′ → t ↓ [s′, k(s′)]

Federico Aschieri Mathematical Proofs as Learning Programs

Computability: Classical VS Constructive Forcing (2)

Classical Forcing

1 t : N is computable if ∀s ∃s′ ≥ s ∀s′′ ≥ s′. t [s′] = t [s′′]

2 Constructively false

Constructive Forcing

1 t : N is computable if

∀kS→S ∀s ∃s′ ≥ s ∀s′′. s′ ≤ s′′ ≤ k(s′)→ t [s′] = t [s′′]

2 Constructively true:

M t ∈ N ≡ ∀kS→S ∀s.Mks = s′ → t ↓ [s′, k(s′)]

Federico Aschieri Mathematical Proofs as Learning Programs

Computability: Classical VS Constructive Forcing (2)

Classical Forcing

1 t : N is computable if ∀s ∃s′ ≥ s ∀s′′ ≥ s′. t [s′] = t [s′′]

2 Constructively false

Constructive Forcing

1 t : N is computable if

∀kS→S ∀s ∃s′ ≥ s ∀s′′. s′ ≤ s′′ ≤ k(s′)→ t [s′] = t [s′′]

2 Constructively true:

M t ∈ N ≡ ∀kS→S ∀s.Mks = s′ → t ↓ [s′, k(s′)]

Federico Aschieri Mathematical Proofs as Learning Programs

Computability: Classical VS Constructive Forcing (2)

Classical Forcing

1 t : N is computable if ∀s ∃s′ ≥ s ∀s′′ ≥ s′. t [s′] = t [s′′]

2 Constructively false

Constructive Forcing

1 t : N is computable if

∀kS→S ∀s ∃s′ ≥ s ∀s′′. s′ ≤ s′′ ≤ k(s′)→ t [s′] = t [s′′]

2 Constructively true:

M t ∈ N ≡ ∀kS→S ∀s.Mks = s′ → t ↓ [s′, k(s′)]

Federico Aschieri Mathematical Proofs as Learning Programs

Constructive Forcing

M of T forces t of TClass to be a computable functional of type σ:

M t : σ

M t : N⇔M = 〈λsS.t [s],N〉 ∧ N t ∈ N

M t : σ → τ ⇔ for every N u : σ, thenMN tu : τ

M t : σ × τ ⇔ π0M π0t : σ ∧ π1M π1t : τ

Federico Aschieri Mathematical Proofs as Learning Programs

Constructive Forcing

M of T forces t of TClass to be a computable functional of type σ:

M t : σ

M t : N⇔M = 〈λsS.t [s],N〉 ∧ N t ∈ N

M t : σ → τ ⇔ for every N u : σ, thenMN tu : τ

M t : σ × τ ⇔ π0M π0t : σ ∧ π1M π1t : τ

Federico Aschieri Mathematical Proofs as Learning Programs

Constructive Forcing

M of T forces t of TClass to be a computable functional of type σ:

M t : σ

M t : N⇔M = 〈λsS.t [s],N〉 ∧ N t ∈ N

M t : σ → τ ⇔ for every N u : σ, thenMN tu : τ

M t : σ × τ ⇔ π0M π0t : σ ∧ π1M π1t : τ

Federico Aschieri Mathematical Proofs as Learning Programs

Constructive Forcing

M of T forces t of TClass to be a computable functional of type σ:

M t : σ

M t : N⇔M = 〈λsS.t [s],N〉 ∧ N t ∈ N

M t : σ → τ ⇔ for every N u : σ, thenMN tu : τ

M t : σ × τ ⇔ π0M π0t : σ ∧ π1M π1t : τ

Federico Aschieri Mathematical Proofs as Learning Programs

SECPS Translation

Negative Translation⇔ CPS translation:

t : σ =⇒ t∗ : σ¬¬

Constructive Forcing⇔ SECPS translation

t : σ =⇒ t∗ t : σ

Federico Aschieri Mathematical Proofs as Learning Programs

SECPS Translation

Negative Translation⇔ CPS translation:

t : σ =⇒ t∗ : σ¬¬

Constructive Forcing⇔ SECPS translation

t : σ =⇒ t∗ t : σ

Federico Aschieri Mathematical Proofs as Learning Programs

Model Theoretic Interpretation

Define a non-standard model M of Gödel’s system TClass:

[[N]] := {(f ,N) | f : S→ N ∧N f ∈ N}

[[σ → τ]] := [[σ]]→ [[τ]]

[[σ × τ]] := [[σ]]× [[τ]]

Then the SECPS t∗ defines in Gödel’s T the interpretation of t
in the model M.

Federico Aschieri Mathematical Proofs as Learning Programs

Model Theoretic Interpretation

Define a non-standard model M of Gödel’s system TClass:

[[N]] := {(f ,N) | f : S→ N ∧N f ∈ N}

[[σ → τ]] := [[σ]]→ [[τ]]

[[σ × τ]] := [[σ]]× [[τ]]

Then the SECPS t∗ defines in Gödel’s T the interpretation of t
in the model M.

Federico Aschieri Mathematical Proofs as Learning Programs

