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What is the Epsilon Calculus?

The ε-calculus is a formalization of logic without
quantifiers but with the ε-operator.

If A(x) is a formula, then εxA(x) is an ε-term.

Intuitively, εxA(x) is an indefinite description: εxA(x) is
some x for which A(x) is true.

ε can replace ∃: ∃xA(x)⇔ A(εxA(x))

Axioms of ε-calculus:

• Propositional tautologies
• (Equality schemata)
• A(t)→ A(εxA(x))

Predicate logic can be embedded in ε-calculus.
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Why Should You Care?

• Epsilon calculus is of significant historical interest.
– Origins of proof theory
– Hilbert’s Program

• Alternative basis for fruitful proof-theoretic research.
– Epsilon Theorems and Herbrand’s Theorem: proof

theory without sequents
– Epsilon Substitution Method: yields functionals, e.g.,

` ∀x∃yA(x,y) ∀n : ` A(n, f (n))

• Interesting Logical Formalism
– Trade logical structure for term structure.
– Suitable for proof formalization.
– Choice in logic.
– Inherently classical (but see work of Bell, DeVidi,

Fitting, Mostowski).
– Expressive power?

• Other Applications:
– Use of choice functions in provers (e.g., HOL,

Isabelle).
– Applications in linguistics (choice functions, anaphora).
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Historical Remarks

The epsilon calculus was first introduced by Hilbert in
1922, as the basis for his formulation of mathematics for
which Hilbert’s Program was supposed to be carried out.

Motivation: Logical choice function; ε-terms represent
“ideal elements” in proofs.

Original work in proof theory (pre-Gentzen) concentrated
on ε-calculus and ε-substitution method (Ackermann, von
Neumann, Bernays)

First correct proof of Herbrand’s Theorem via Epsilon
Calculus

Epsilon substitution method used by Kreisel for no-
counterexample interpretation leading to work on analysis
of proofs by Kreisel, Luckhardt, Kohlenbach.

Recent work on ordinal analysis of subsystems of
analysis by Arai, Avigad, Buchholz, Mints, Tupailo, Tait.
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The Epsilon Calculus: Syntax

Language of the Elementary Calculus LEC:

• Free variables: a, b, c, . . .
• Bound variables: x, y, z, . . .
• Constant and function symbols: f , g, h, . . . with arities

ar( f ), . . .
• Predicate symbols: P, Q, R, . . . with arities ar(P), . . .
• Equality: =
• Propositional connectives: ∧, ∨,→, ¬

Language of the Predicate Calculus LPC:
• Quantifiers: ∀, ∃

Language of the Epsilon Calculus Lε:
• Epsilon: ε
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The Epsilon Calculus: Syntax (cont’d)

Semi-formulas and Semi-terms:

1. Any free variable a is a semi-term.
2. Any bound variable x is a semi-term.
3. If f is a function symbol with ar( f ) = 0, then f is a semi-

term.
4. If f is a function symbol with ar( f ) = n > 0, and t1, . . . , tn

are semi-terms, then f (t1, . . . , tn) is a semi-term.
5. If P is a predicate symbol with ar(P) = n > 0, and t1, . . . ,

tn are terms, then P(t1, . . . , tn) is an (atomic) semi-formula.
6. If A and B are semi-formulas, then ¬A, A∧B, A∨B and

A→ B are semi-formulas.
7. If A(a) is a semi-formula containing the free variable a

and x is a bound variable not occurring in A(a), then
∀xA(x) and ∃xA(x) are semi-formulas.

8. If A is a semi-formula containing the free variable a and
x is a bound variable not occurring in A(a), then εxA(x) is
a semi-term (an ε-expression).
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The Epsilon Calculus: Syntax (cont’d)

Terms and formulas:

Terms and formulas are defined exactly as above except
that clause (2) is dropped. In other words: a semi-term is
a term and a semi-formula a formula if it contains no bound
variables without a matching ∀, ∃, or ε.

Subterms and sub-semi-terms:

1. The only sub(semi)terms of a free variable a is a itself. It
has no immediate sub(semi)terms.

2. A bound variable x has no subterms or immediate sub-
semi-terms. Its only subsemiterm is x itself.

3. If f (t1, . . . tn) is a semi-term, then its immediate sub-
semi-terms are t1, . . . , tn, and its immediate subterms
are those among t1, . . . , tn which are terms, plus the
immediate subterms of those among t1, . . . , tn which
aren’t terms. Its sub-semi-terms are f (t1, . . . , tn) and the
sub-semi-terms of t1, . . . , tn; its subterms are those of its
sub-semi-terms which are terms.

4. If P(t1, . . . , tn) is an atomic semi-formula, then its
immediate sub-semi-terms are t1, . . . , tn. Its immediate
subterms are those among t1, . . . , tn which are terms,
plus the immediate subterms of those among t1, . . . ,
tn which aren’t terms. Its sub(semi)terms are the
sub(semi)terms of t1, . . . , tn.
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5. If A is a semi-formula of the form B∧C, B∨C, B→C, ¬B,
∀xB or ∃xB, then its immediate sub(semi) formulas and
its sub(semi)formulas are those of B and C.

6. If εxA(x) is an ε-expression then its immediate sub(semi)
formulas and its sub(semi)formulas are those of A(x).
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The Epsilon Calculus: Syntax (cont’d)

Epsilon matrices

An ε-term εxA(x) is an ε-matrix—or simply, a matrix—
if all terms occurring in A are free variables, each of which
occurs exactly once.

Denote ε-matrices as εxA(x;a1, . . . ,ak) where the
variables a1, . . . ,ak displayed are all the free variables
occurring in it.

Two matrices εxA(x;a1, . . . ,ak), εxA(x;b1, . . . ,bk) that
differ only in the indicated tuples of variables a and b,
respectively, are considered to be equal. The set of all
matrices is denoted Mat.

Corresponding to each ε-term εxA(x) there exists a
unique matrix εxA(x;a1, . . . ,ak) and a unique sequence
t1, . . . , tk of terms such that εxA(x, t1, . . . , tk) = εxA(x).

Example: εxA(s,εyB(y)︸ ︷︷ ︸
e

,εzC(x, t))

Its matrix is: εxA(a,b,εzC(x,c))

The matrix of εxA(x) is obtained by replacing all
immediate subterms of εxA(x) by distinct new free variables.
In this newly obtained term we replace distinct occurrences
of the same variable by different variables.
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The Epsilon Calculus: Intensional Semantics

An intensional choice function Φ for a set X is
a function Φ : 2X × Mat × X<ω → X so that for S ⊆
X , a matrix εxA(x;a1, . . . ,an) and d1, . . . , dn ∈ S,
Φ(S,εxA(x;a1, . . . ,an),〈d1, . . . ,dn〉) ∈ S if S 6= /0.

An intensional ε-structure M = 〈|M|,(·)M,ΦM〉 consist
of a domain |M| 6= /0, an interpretation function (·)M, and an
intensional choice function ΦM for |M|, where

1. If ar( f ) = 0, then fM ∈ |M|
2. If ar( f ) = n > 0, then fM : |M|n→ |M|
3. If ar(P) = n > 0, then PM ⊆ |M|n

A variable assignment s for M is a function s : FV→|M|.
We write s∼c s′ if s(a)= s′(a) for all free variables a other than
c.
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The Epsilon Calculus: Intensional Semantics
(cont’d)

The value tM,s of a term t and the satisfaction relation
M,s |= A is defined by:

1. If a is a free variable, then aM,s = s(a).
2. If f is a constant symbol, then fM,s = fM.
3. If f (t1, . . . , tn) is a term, then ( f (t1, . . . , tn))M,s = fM(tM,s

1 , . . . , tM,s
n ).

4. If P(t1, . . . , tn) is an atomic formula, then M,s |=P(t1, . . . , tn)
iff 〈tM,s

1 , . . . , tM,s
n 〉 ∈ PM.

5. If A and B are formulas, then:
• M,s |= A∧B iff M,s |= A and M,s |= B.
• M,s |= A∨B iff M,s |= A or M,s |= B.
• M,s |= A→ B iff M,s 6|= A or M,s |= B.
• M,s |= ¬A iff M,s 6|= A.

6. If ∃xA(x) is a formula and c a free variable not in A(x),
then M,s |= ∃xA(x) iff M,s′ |= A(c) for some s′ ∼c s.

7. If ∀xA(x) is a formula and c a free variable not in A(x),
then M,s |= ∀xA(x) iff M,s′ |= A(c) for all s′ ∼c s.

8. If e is an ε-term with matrix εxA(x;a1, . . . ,an) so that e =

εxA(x; t1, . . . , tn), and

X = {d ∈ |M| : M,s′ |= A(c; t1, . . . , tn),s′ ∼c s,s′(c) = d},

then

eM,s = ΦM(X ,εxA(x;a1, . . . ,an),〈tM,s
1 , . . . , tM,s

n 〉).
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Axiomatization of the Epsilon Calculus:
Axioms

Let AxEC be the set of formulas containing all formulas
which are either substitution instances of propositional
tautologies, or substitution instances of

a = a

a = b → (A(a)→ A(b)).

AxPC is AxEC together with all substitution instances of

A(a) → ∃xA(x)

∀xA(x) → A(a).

Any substitution instance of

A(a)→ A(εxA(x))

is called a critical formula.

We obtain Axε

EC and Axε

PC by adding the critical
formulas to AxEC and AxPC, respectively.
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Axiomatization of the Epsilon Calculus:
Deductions

A deduction in EC or ECε is a sequence A1, . . . , An

of formulas such that each Ai is either in AxEC or Axε

EC or
follows from A j, Ak with j,k < i by modus ponens:

B,B→C `C

A deduction in PC or PCε is a sequence A1, . . . , An

of formulas such that each Ai is either in AxPC or Axε

PC or
follows from A j, Ak with j,k < i by modus ponens: B,B→C `
C, or follows from A j with j < i by generalization:

B→ A(a) ` B→∀xA(x)

A(a)→ B ` ∃xA(x)→ B

A formulas A is called deducible (in EC, ECε, PC, PCε),
` A, if there is a deduction (in AxEC, Axε

EC, AxPC, Axε

PC,
respectively) which has A as its last formula.
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Extensional Epsilon Calculus

Alternative semantics: Choice function maps just sets
to elements:

ΦM(S) ∈ S

Then if e = εxA(x, t1, . . . , tn)

eM,s = ΦM({d ∈ |M| : M,s′ |= A(c; t1, . . . , tn),s′ ∼c s′,s′(c) = d})

In extensional ε-semantics, equivalent ε-terms have same
value, i.e., it makes valid the ε-extensionality axiom

∀x(A(x)↔ B(x))→ εxA(x) = εxB(x)
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Embedding PC in ECε

The epsilon operator allows the treatment of quantifiers
in a quantifier-free system: using ε terms it is possible to
define ∃x and ∀x as follows:

∃xA(x) ⇔ A(εxA(x))

∀xA(x) ⇔ A(εx¬A(x))

Define Aε by:

1. xε = x, aε = a
2. [εxA(x)]ε = εxA(x)ε

3. f (t1, . . . , tn)ε = f (tε

1, . . . , t
ε
n), P(t1, . . . , tn)ε = P(tε

1, . . . , t
ε
n).

4. (A∧B)ε = Aε∧Bε, (A∨B)ε = Aε∨ Bε, (A→ B)ε = Aε→ Bε,
(¬A)ε = ¬Aε.

5. (∃xA(x))ε = Aε(εxAε(x)′).
6. (∀xA(x))ε = Aε(εx¬Aε(x)′).

where Aε(x)′ is Aε(x) with all variables bound by quantifiers
or ε’s in Aε(x) renamed by new bound variables (to avoid
collision of bound variables when εxAε(x) is substituted into
Aε(x) where x may be in the scope of a quantifier or epsilon
binding a variable occurring in Aε(x).
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Embedding PC in ECε: Examples

∃x(P(x) ∨ ∀yQ(y))ε =

= [P(x)∨∀yQ(y)]ε {x← εx [P(x)∨∀yQ(y)]ε}

[P(x)∨∀yQ(y)]ε = P(x)∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)

= P(x)∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

) {x← εx [P(x)∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]︸ ︷︷ ︸
e2

}

= P(εx [P(x)∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]︸ ︷︷ ︸
e2

)∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)

[∃x ∃y A(x,y)]ε =

= [∃yA(x,y)]ε {x← εx [∃yA(x,y)]ε}

[∃yA(x,y)]ε = A(x,εyA(x,y)︸ ︷︷ ︸
e1(x)

)

= A(x,εyA(x,y)︸ ︷︷ ︸
e1(x)

){x← εxA(x,εzA(x,z))︸ ︷︷ ︸
e2

}

= A(εxA(x,εzA(x,z))︸ ︷︷ ︸
e2

,εyA(εxA(x,εzA(x,z))︸ ︷︷ ︸
e2

,y)︸ ︷︷ ︸
e1(e2)

)
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Embedding PC in ECε (cont’d)

Prop. If PCε ` A then ECε ` Aε.

Translations of quantifier axioms provable from critical
formulas:

[A(t)→∃xA(x)]ε = Aε(t)→ Aε(εxA(x)ε)

Suppose PCε ` B→ A(a), and a does not occur in B. By
IH, we have a proof π in ECε of Bε → A(a)ε. Replacing a
everywhere in π by εx¬A(x) results in a proof of

[B→∀xA(x)]ε = Bε→ Aε(εx¬A(x)ε).
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The Epsilon Theorems

First Epsilon Theorem. If A is a formula without
bound variables (no quantifiers, no epsilons) and PCε ` A
then EC ` A.

Extended First Epsilon Theorem. If ∃x1 . . .∃xnA(x1, . . . ,xn)

is a purely existential formula containing only the bound
variables x1, . . . , xn, and

PCε ` ∃x1 . . .∃xnA(x1, . . . ,xn),

then there are terms ti j such that

EC `
∨

i

A(ti1, . . . , tin).

Second Epsilon Theorem. If A is an ε-free formula
and PCε ` A then PC ` A.
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Degree and Rank

Degree of an ε-Term

• deg(εxA(x)) = 1 if A(x) contains no ε-subterms.
• If e1, . . . , en are all immediate ε-subterms of A(x), then

deg(εxA(x)) = max{deg(e1), . . . ,deg(en)}+1.

Rank of an ε-Expression

An ε-expression e is subordinate to εxA if e is a proper
sub-expression of A and contains x.

• rk(e) = 1 if no sub-ε-expression of e is subordinate to e.
• If e1, . . . , en are all the ε-expressions subordinate to e,

then rk(e) = max{rk(e1), . . . ,rk(en)}+1
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Examples

P(εx [P(x)∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]︸ ︷︷ ︸
e2

)∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)

deg(e1) = 1, deg(e2) = 2

rk(e1) = rk(e2) = 1

A(εxA(x,εzA(x,z))︸ ︷︷ ︸
e2

,εyA(εxA(x,εzA(x,z))︸ ︷︷ ︸
e2

,y)︸ ︷︷ ︸
e1(e2)

)

deg(e2) = 1, deg(e1(e2)) = 2

rk(e2) = 2, rk(e1(e2)) = 1
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Rank of Critical Formulas and Derivations

Rank of a critical formula A(t)→ A(εxA(x)) is rk(εxA(x)).

Rank of a derivation rk(π): maximum rank of its critical
formulas.

Critical ε-term of a derivation: ε-term e so that A(t)→
A(e) is a critical formula.

Order of a derivation o(π,r) wrt. rank r: number of
different critical ε-terms of rank r.
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The First Epsilon Theorem

(Proof for case without =)

Suppose PCε `π E and E contains no bound variables.
We show that EC ` E by induction on the rank and degree
of π.

First, w.l.o.g. we assume π is actually a derivation in ECε

. Since E contains no bound variables, Eε = E.

Second, w.l.o.g. we assume π doesn’t contain any free
variables (replace free variables by new constants—may be
resubstituted later).

Lemma. Let e be a critical ε-term of π of maximal degree
among the critical ε-terms of maximal rank. Then there is πe

with end formula A so that rk(πe) ≤ rk(π), deg(πe) ≤ deg(π)

and o(πe,rk(e)) = o(π,rk(e))−1.
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The First Epsilon Theorem: Main Lemma

Proof. Construct πe as follows:

1. Suppose A(t1)→ A(e), . . . , A(tn)→ A(e) are all the critical
formulas belonging to e. For each critical formula

A(ti)→ A(e),

we obtain a derivation

πi ` A(ti)→ E :

• Replace e everywhere it occurs by ti. Every critical
formula A(t)→ A(e) belonging to e turns into a formula
of the form B→ A(ti).

• Add A(ti) to the axioms. Now every such formula is
derivable using the propositional tautology

A(ti)→ (B→ A(ti)) ,

and modus ponens.
• Apply the deduction theorem for the propositional

calculus to obtain πi.
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The First Epsilon Theorem: Main Lemma

2. Obtain a derivation π′ of
∧
¬A(ti)→ E by:

• Add
∧
¬A(ti) to the axioms. Now every critical formula

A(ti) → A(e) belonging to e is derivable using the
propositional tautology ¬A(ti)→ (A(ti)→ A(e)).

• Apply the deduction theorem.
3. Combine the proofs

πi ` A(ti)→ E ,

and
π
′ `

∧
¬A(ti)→ E ,

to get πe ` E (case distinction)
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Why is this correct?

Verify that the resulting derivation is indeed a derivation
in ECε with the required properties.

We started with critical formulas of the form

A(ti)→ A(e) .

Facts:

• The proof π′ does not contain any critical formulas
belonging to e. Hence e is no longer a critical ε-term
in π′. All other critical formulas (and the critical ε-terms
they belong to) remain unchanged. Thus o(π′,rk(e)) =
o(π,rk(e))−1.

• In the construction of πi, we substituted e by t throughout
the proof. Such uniform substitutions of a term by
another are proof-preserving.

• Replacing e by ti in A(e) indeed results in A(ti), since e
cannot occur in A(x)—else e = εxA(x) would be a proper
subterm of itself, which is impossible.

• If e appears in another critical formula B(s)→ B(εyB(y)),
we have three cases.
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Case I

Case: e occurs only in s.

Replacing e by ti results in a critical formula B(s′) →
B(εyB(y)).

The new critical critical formula belongs to the same ε-
term as the original formula.

Hence o(πi,rk(e)) = o(π,rk(e))−1.
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Case II

Case: e may occur in B(y) and perhaps also in s, but
contains neither s nor εyB(y).

In other words, the critical formula has the form

B′(s′(e),e)→ B′(εyB′(y,e),e).

But then the ε-term belonging to this critical formula

e′ = εyB′(y,e) ,

is of higher degree than e.

By our assumptions, this implies that rk(εyB′(y,e)) <
rk(e).

Replacing e by ti results in a different critical formula

B′(s′(ti), ti)→ B′(εyB′(y, ti), ti) ,

belonging to the ε-term εyB′(y, ti) which has the same rank
as e′ and hence a lower rank than e itself.

Hence again o(πi,rk(e)) = o(π,rk(e))−1.
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Case III

Case: e does contain s or εyB(y).

Then e is of the form e′(s) or e′(εyB(y)), and

B(a) is really of the form B′(e′(a)) where e′(a) is an ε-term
of the same rank as e.

Then εyB(y) has the form εyB′(e′(y)), to which the ε-
expression e′(y) is subordinated.

But then εyB′(e′(y)) has higher rank than e′(y), which has
the same rank as e. This cannot happen.

Finally the proof of the lemma follows: In all of the
cases considered one ε-critical term of rk(e) was removed
and other ε-critical terms of rk(e) remained equal. Thus
o(πe,rk(e)) = o(π,rk(e))−1 holds.
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The First Epsilon Theorem: Proof

By induction on rk(π).

If rk(π) = 0, there is nothing to prove (no critical
formulas).

If rk(π)> 0 and the order of π wrt. rk(π) is m, then m-fold
application of the lemma results in a derivation π′ of rank
< rk(π).
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The Extended First Epsilon Theorem

Theorem. If ∃x1 . . .∃xkA(x1, . . . ,xk) is a purely
existential formula containing only the bound variables x1,
. . . , xk, and

PCε ` ∃x1 . . .∃xkA(x1, . . . ,xk),

then there are terms ti j such that

EC `
∨

i

A(ti1, . . . , tik).

Consider proofs in PCε of ∃x1 . . .∃xk A(x1, . . . ,xk), where
A(a1, . . . ,ak) contains no bound variables.

Employing embedding we obtain a derivation π of
A(s1, . . . ,sk), where s1, . . . , sk are terms (containing ε’s).

Proof Sketch. We employ the same sequence of
elimination steps as in the proof of the First Epsilon
Theorem. The difference being that now the end-formula
A(s1, . . . ,sk) may contain ε-terms.

Hence the first elimination step transform the end-
formula into a disjunction.

A(s01, . . . ,s0k)∨ . . .∨A(sn1, . . . ,snk) .
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The Second Epsilon Theorem

Theorem. If A is an ε-free formula and PCε ` A then
PC ` A.

Assume A has the form

∃x∀y∃zB(x,y,z) ,

with B(x,y,z) quantifier-free and no other than the indicated
variables occur in A.

Herbrand Normal Form. Suppose A = ∃x∀y∃zB(x,y,z).
If f is a new function symbol, then the Herbrand normal form
AH of A is ∃x∃zB(x, f (x),z).

Lemma. Suppose PCε ` A. Then PCε ` AH.
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Second Epsilon Theorem: Proof

The Strong First Epsilon Theorem yields:

There are ε-free terms ri,si so that

EC `
∨

i

B(ri, f (ri),si) (1)

We now can replace the ti by new free variables ai and
obtain from (1), that ∨

i

B(ri,ai,si) , (2)

is deducible in EC.

Then the original prenex formula A can be obtained
from (5) if we employ the following rules (deducible in PC)

(µ) : F ∨G(t) ` F ∨∃yG(y)

(ν) : F ∨G(a) ` F ∨∀zG(z), provided a appears only in
G(a) at the displayed occurrences.
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Corollaries

Conservative Extension. Due to the Second
Epsilon Theorem the Epsilon Calculus (with equality) is a
conservative extension of pure predicate logic.

Equivalence. Due to the Embedding Lemma we
have PCε ` A implies ECε ` Aε. Due to the Second Epsilon
Theorem we obtain ECε ` Aε implies PCε ` A.

Herbrand’s Theorem. Assume A = ∃x∀y∃zB(x,y,z).
Iff PCε ` A, then there are terms ri,si such that EC `∨

i B(ri, f (ri),si).
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Generalizations

First Epsilon Theorem. Let A be a formula without
bound variables (no quantifiers, no epsilons) but possible
including =. Then

PCε∪Ax ` A implies EC∪Ax ` A ,

where Ax includes instances of quantifier-free (and ε-free)
axioms.

Extended First Epsilon Theorem. Let ∃xA(x) be a
purely existential formula (possibly containing =). Then

PCε∪Ax ` ∃xA(x) implies

EC∪Ax `
∨

i

A(ti1, . . . , tin) ,

where Ax is defined as above.
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Generalizations (cont’d)

Second Epsilon Theorem. If A is an ε-free formula
(possibly containing =) and

PCε∪ Ax ` A implies PC∪Ax ` A ,

where Ax includes instances of ε-free axioms.
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(Intermediate) Conclusion

Some facts in favour of the Epsilon Calculus:

• The input parameter for the proof of Herbrand’s Theorem
is the collection of critical formulas C used in the
derivation. E.g. this gives a bound depending only on
C .

• The Epsilon Calculus allows a condensed representation
of proofs.
Why : Assume ECε ` Aε. Then there exists a tautology of
the form ∧

i, j

(Bi(t j)→ Bi(εxBi(x)))→ Aε . (3)

Thus as soon as the critical formulas Bi(t j)→ Bi(εxBi(x))
are known, we only need to verify that (3) is a tautology
to infer that Aε is provable in ECε.

• Formalization of proofs should be simpler in the Epsilon
Calculus.
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A bluffer’s guide to Hilbert’s “Ansatz”

Assume we work within number theory and let N denote
the standard model of number theory.

(For conciseness we ignore induction.)

• The initial substitution S0: Assign the constant function 0
to all ε-terms (by assigning the constant function 0 to all
ε-matrices).

• Assume the substitution Sn has already been defined.
Define Sn+1: Pick a false critical axiom, e.g.

P(t)→ P(εxP(x)) .

(False means wrt. to N and the current substitution Sn.)
• Let z ∈ N denote the value of t under Sn. Then the next

substitution Sn+1 is obtained by assigning the value z to
εxP(x).

Note that the critical axiom P(t)→ P(εxP(x)) is true wrt. to
N and the current substitution Sn+1.
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Peano Arithmetic: Results

1-consistency. Every purely existential formula
derivable in PAε is true.

Provable Recursive Functions. The numerical content
of proofs of purely existential formulas in PAε is extractable.

Put differently: The provable recursive functions of PAε

are exactly the < ε0-recursive functions.

Assume PAε ` ∀x∃yA(x,y) with A(a,b) quantifier-free and
without free variables other than the shown. Then we can
find a < ε0-recursive function f such that ∀xA(x, f (x)) holds.
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Peano Arithmetic: Results (cont’d)

Non-counter example interpretation. Let

∃x∀y∃zA(a,x,y,z)

be deducible in PAε such that only the indicated free variable
a occurs. Let ∃x∃zA(a,x, f (x),z) denote the Herbrand normal
form of A.

Then there exists < ε0-recursive functionals G and H
such that for all functions f ,

A(n,G( f ,n), f (G),H( f ,n)) ,
holds.

The transformation ()ε : Lε→ LPC defined yesterday, can
be employed to show that Peano Arithmetic embeds into
PAε:

Then if PA ` A, then PAε ` Aε.
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The Substitution Method

An ε-expression is canonical iff it does not contain
proper ε-subterms.

That is an ε-term e is canonical if it can be obtained by
instantiating the ε-matrix of e by ε-free terms.

Epsilon Substitution:

A finite list of equations

εxF1(x) = t1 · · · εxFk(x) = tk , (4)

such that εxF1(x) are canonical ε-terms and ti are ε-free
terms. The εxF1(x) are the main terms of the corresponding
equations; the ti are their values.

The ε-substitution (4) is finite, but it is extended to all ε-
terms by assigning a default value to all ε-terms outside the
domain of (4). This default value is set equal to a constant
(or variable) of LPC and denoted as 0.
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Definitions

Let S denote an ε-substitution.

S-value of an expression:

• |e|S := e if e is a variable or a constant.
• | f (t1, . . . , tn)|S := f (|t1|S, . . . , |tn|S).
• |¬A|S := |A|S.
• |A�B|S := |A|S�|B|S if �;∈ {∧,∨,→}.
• |e|S = t if e is a main term of S and t its value.
• |e|S = 0 if e is a canonical ε-expression not in the domain

of S.
• If e is an ε-expression which is not canonical, let t1, . . . , tn

be its immediate subterms, and let e′ results from e by
replacing ti by |ti|S. Then |e|S = |e′|S.

For any expression e its value |e|S exists and is unique.
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Definitions (cont’d)

We fix a term model M of LPC. Assume v is a variable
assignment for M.

An ε-substitution S is correct under (M,v) iff for every
equation εxF(x) = t occurring in S we have M,s |= |F(t)|S.

Suppose PCε `π E and E contains no bound variables.
Let C denote the collection of all critical formulas in π.

Employing M, the substitution method successively
defines ε-substitutions. The substitution S is solving if for
all critical formulas C ∈ C ; M,v |= |C|S.
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Approximation Steps

Initial Substitution:

S0 := /0 .

Approximation Step:

Assume Sn has already been defined.

Pick an arbitrary false critical formula form C (if there
exists any):

A(t;u1, . . . ,un)→ A(εxA(x;u);u1, . . . ,un) ,

where the ui are immediate subterms of A.

Sn+1 is obtained by adding

εxA(x; |u1|S, . . . , |un|S) = |t|S .

Furthermore all equations in Sn+1 such that its main term
has higher rank than εxA(x; |u|S) are removed.
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Correctness and Termination

Correctness. In all approximation steps the ε-
substitutions are correct.

Termination. All approximation steps for C (with
respect to M,v) terminate with a solving substitution.

Extended First Epsilon Theorem. If ∃xA(x1, . . . ,xn)

is a purely existential formula containing only the bound
variables x, and PCε `π ∃xA(x) so that C collects all critical
axioms in π. Then there is a finite set of ε-substitutions

S1, . . . ,Sp ,

such that
S1(

∧
C )∨·· ·∨Sp(

∧
C ) ,

is a tautology.
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Peano Arithmetic

To formalize number theory in the ε-calculus we add the
following axiom.

A(t)→ εxA(x)≤ t ,
called minimality axiom or critical axiom of 2nd kind.

The presence of this critical axioms requires some
changes in the definition of the substitution method.

The method assigns finite functions to ε-matrices.
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Peano Arithmetic: Approximation Steps

The initial substitution S0: Assign the constant function 0
to all ε-matrices.

The substitution step Sn → Sn+1: Pick a false (in the
standard model N) critical axiom, e.g.

A(t,u(t),v)→ A(εxA(x,u(x),v),u(εxA(x,u(x),v)),v)

Let |t|S = z and |v|S = m. Consider the first formula
A(k,u(k),m) in the sequence

A(1,u(1),m), . . . ,A(z,u(z),m) ,

such that N |= A(k,u(k),m).

With respect to Sn some function φ was assigned to
εxA(x,u(x),a). We define a new function ψ as follows:

ψ(a) :=

{
φ(a) a 6= m

k a = m
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Correctness and Termination

Correctness has to be changed.

The ε-substitution is correct, if for the matrix
εxA(x,u(x),a) and the assignment εxA(x,u(x),m) = k we
have

N |= |A(k,u(k),m)|S ,
and for all `≤ k N 6|= |A(k,u(k),m)|S.

Correctness. In all approximation steps the ε-
substitutions are correct.

Termination. All approximation steps for C (with
respect to M) terminate with a solving substitution.

The transformation ()ε : Lε→ LPC defined yesterday can
be employed to show that Peano Arithmetic embeds into
PAε:

PAε ` A iff PA ` Aε.

47



The Extended First Epsilon Theorem: Lemma

Lemma. Let e be a critical ε-term of π of of maximal
degree among the critical ε-terms of maximal rank, and let
m be the number of critical formulas belonging to e. Then
there are terms si j (1 ≤ i ≤ n, 0 ≤ j ≤ m) and a derivation πe

with end formula

E(s01, . . . ,s0m)∨ . . .∨E(sn1, . . . ,snm)

so that

rk(πe)≤ rk(π), deg(πe)≤deg(π), o(πe,rk(e))= o(π,rk(e))−1.

Employing the lemma the Extended First Epsilon
Theorem follows as before my an induction on the rank of
the derivation.

Once all critical formulas have been eliminated, we can
replace all outermost ε-terms by new free variables.

Note that this already yields Herbrand’s Theorem for
purely existential, equality-free formulas.

Obviously we can derive ∃x1 . . .∃xm E(x1, . . . ,xm) from∨
m E(si1, . . . ,sim).
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Proof of Extended First Epsilon Theorem

By induction on rk(π).

If rk(π) = 0, we have a proof of E(s1, . . . ,sm) without
critical formulas.

If rk(π)> 0 and the order of π wrt. rk(π) is m, then m-fold
application of the lemma results in a derivation π′ of rank
< rk(π) with end-formula

∨n
i=0 E(si1, . . . ,sim).

But this again is a formula

E ′(s01, . . . ,s0m, . . . ,sn1, . . . ,snm)

to which the Lemma applies.

And a disjunction of instances of E ′ is itself a disjunction
of instances of E.
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Preparations (cont’d)

Let u1, . . . ,up denote terms occurring in the disjunction (1).

Let pi be the number of occurrences of f in ui. By
possibly reordering and leaving out terms, we may assume
that the sequence

u1, . . . ,up ,
is ordered such that pi ≤ pi+1.

Now let ai be new free variables. Replace each
occurrence of ti which does not occur as a subterm of
another ti′ by ai.

Then (1) becomes ∨
i

B(ri,ahi,si) , (5)

where the hi are indices from [1, p].
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Preparations (cont’d)

Facts:

Property (A): hi = hi′ iff ri = r′i.

Proof. If: obvious.

Only if: W.l.o.g. we assume i < i′. We show that hi

and hi′ must be different. Assume hi = hi′. This implies the
terms ti is equal to ti′ in (1) i.e., f (ri) = f (ri′). Hence ri = ri′.
Contradiction.

Property (B): If ai is equal to or a subterm of ri′, then
hi < hi′.

Proof. ri′ occurs in ti′. Hence, if ai is equal to or a
subterm of ri′, the term ti is a subterm of ti′ in(1).

Thus the number of occurrences of f ’s in ti′ is larger than
that in ti.
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Main Part

It is easy to see that (5) is tautology: Pairs of equal
atomic formulas remain pairs of equal atomic formulas.

Because of property (B), ahi does not occur in ri′ for i′ ≤
i.

I.e.,ahi appears only in the designated positions in the
i-th disjunct or anywhere else in disjuncts to the right of the
i-th.
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Main Part (cont’d)

Thus from (5) we obtain that∨
i

∃zB(ri,ai,z) , (6)

is derivable in PC.

We consider those ahi occurring in terms ri in (6).

Assume am is the variable among these with highest
index m. Suppose am occurs in a disjunct

∃zB(r j,ah j,z) .

Then ah j does not occur elsewhere in (6), due to property
(A).

Thus rule (ν) is applicable to prove (in PC)∨
i

∃zB(ri,ai,z)∨∀y∃zB(ri,y,z)

Iterating these steps we eventually obtain a deduction
of A in PC.
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Remarks on Proof Lengths

The length of a deduction is the number of steps in the
deduction.

A deduction in PCε

0 is defined similarly to a deduction
in PCε

0 but instead of identity schemas, identity axioms plus
formulas of ε-equality are employed.

The Herbrand Complexity:

Let A be a valid prenex formula. If AH denotes the
Herbrand Normal form of A. Then HC(A) denotes the
minimal length, i.e. the minimal number of disjunctions of
Herbrand disjunctions of AH.

Proposition Let A be a prenex formula. No function f
can exist, depending only on the length k of the deduction
and the logical complexity d of the endformula, such that
f (k,d) limits HC(A).
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Main Lemmas

We employ Yukami’s trick [?].

Set 0× k := 0+(0+ · · ·(0+0))︸ ︷︷ ︸
k times 0

.

Yukami’s trick. Using two instances of the following
restricted scheme of identity

s = 0→ g(s) = g(0) (7)

we can derive 0×k = 0 from (i) 0+0 = 0, (ii) ∀x,y,z x = y∧y =
z→ x = z, and (iii) ∀x,y x+ y = y→ x = 0 in constant length
for any k.
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Main Lemmas (cont’d)

Lemma. The restricted scheme of identity (7) is
derivable in PCε

0 .

Proposition. Hence PCε

0 ` 0× k = 0 from (i) 0+0 = 0
and (ii) ∀x,y (x+ y = y→ x = 0) in constant number of steps
for any k.
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Main Lemmas: Proof

Assume g is an arbitrary term.

From g(a) = g(a) and

g(a) = g(a)→ εx(x = g(a)) = g(a) .

we derive
εx(x = g(a)) = g(a) ,

Using

s = t→ εx(x = g(s)) = εx(x = g(t)) ,

together with reflexivity and transitivity, we obtain

s = t→ g(s) = g(t) ,

and hence
0 = t→ g(0) = g(t) ,

is derivable.
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Main Part

Proof. Assume the existence of a bound on HC(A) in
the length of these proofs N and the complexity D of the
end-formula.

Hence the term-depth of the Herbrand disjunction of A
is bounded in N and D. To see this we employ unification.

Hence, the formula

∀x(x = x)∧ (i)∧ (ii)∧ (iii)→ 0+(0+ · · ·a · · ·) = 0 ,

for some free variable has to be provable, too. Contradiction.
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Relation to PC

Note that cut-elimination implies the existence of a
bound on HC(A) in the length of the proof of A and the
complexity of A.

Thus the restricted scheme of identity (7) is not fast
provable in PC0.
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