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Abstract. The course introduces the elementary notion of ordinals, fol-
lowing the classical (set-theoretical) foot steps. Our emphasis lies on the
applicability of ordinals as ‘universal scales’ of wellfounded orderings.
We aim at a canonical measure of termination orderings. In particular a
precise characterization of the ‘strength’ of well-known orderings such as
‘lexicographic path orders’ and ‘multiset path orders’ is given.
We present the surprising result that these orderings cover an impres-
sively large segment of ordinals. Based on this result, we cover recent re-
search into simple termination: We construct simply terminating rewrite
systems that admit derivation sequences whose lengths easily capture
the dimensions of the universe. This comes about by the hidden com-
plexity of the lexicographic path ordering. Furthermore we exploit the
slow-growing hierarchy to optimally characterize the derivation length of
rewrite systems. In particular we study this approach in the context of
rewrite system shown to be terminating by by ‘lexicographic path orders’
or ‘multiset path orders’, respectively.
The course provides an alternative approach to ordinals that directly
addresses one of the most important topics of computer science: Termi-
nation orderings.

1 Introduction

The general aim of this course is to define a canonical measure of termination
orders. One of the most important topics of computer science is termination.
Whenever we are given a concrete computer program P , we are not only in need
to verify that this program meets its specification, but also to verify that P will
terminate on all (legal) inputs as defined in the specification.

Instead of directly studying the termination behaviour of arbitrary programs
P, we will base our study on a suitable abstract model of computation. A suitable
choice for such an abstract model would be any universal machine model, such
as for example (well-known) Turing machines. We believe that Turing machines
provide an almost perfect notion of (universal) computation. However, Turing
machines are not precisely the best environment to study for example the termi-
nation behaviour of a given Java-applet. Thus we will employ below another, yet

? Partially supported by DFG grant WE 2178/2–1
?? Supported by a Marie Curie fellowship, grant number HPMF-CT-2002-015777



2 Ingo Lepper and Georg Moser

equivalent universal, abstract model of computation: term rewrite system (TRS).
It is easy to see that any Turing machine M can be coded as a rewrite system.
Thus the halting problem for M on all inputs is reducible to termination of
rewrite systems.

Hence the underlying model of computation of this course are TRSs and we
want to define and study a “canonical measure of termination orders” in the
realm of TRSs. It should already have become clear what is meant by“termination
order’. In the context of term rewriting we can make this notion precise. Suppose
R is a finite rewrite system. We write →R for the rewrite relation induced by R.
Now by termination order we understand a well-founded rewrite order (P,≺),
that is compatible with the set of rules R (s→R t implies s � t). A rewrite order
is a partial order that is closed under contexts and substitutions. (Alternatively
we say that a rewrite order is monotone and stable.) Unfortunately it is not so
easy to define the notion “canonical measure” as easy as “termination order”.
For one this is due to the fact that the concept of being a canonical or uniform
measure cannot be described precisely in mathematical terms.

We introduces the elementary notion of ordinals, well-known from set theory.
As a (rather naive) starting point into the realm of ordinals we say that ordinals
extend the natural numbers into the transfinite. Consider as sequence of natural
numbers 0, 1, 2, 3, . . . , then one introduces the first infinite ordinal, called ω,
which represents the supremum of 0, 1, 2, 3, . . . . Now we allow ω to appear in
the domain of well-known functions such as +, ·, and exponentiation. That is we
introduce for example the function ω·. Then we consider ω-towers:

ω, ωω, ωω
ω

, ωω
ωω

, . . . . (1)

Recall that ω is defined as the limit of the (infinite) sequence 0, 1, 2, 3, . . . . In
a similar spirit one introduces ε0 as the limit of the sequence (1). We claim that
the thus generated objects are a nice tool to measure the “strength” of a given
termination order.

To make this connection clear, we introduce ordinals as order types. Instead of
following the usual set-theoretic footsteps, we introduce ordinals as order types.
That is a countable ordinal is defined as a class of equivalent linear, and well-
founded partial orders. This suits our purpose, the emphasis of the applicability
of ordinals as “universal scales” of well-founded orders, nicely. Together with the
introduction of the class of ordinals On we will define a linear, well-founded order
< on On. Below we show that the ordinal ε0 mentioned above only comprises rel-
atively weak linear, well-founded ordinals. Actually the order <, when restricted
to ordinals < ε0 is (sloppily speaking) less expressive than a prominent instance
of the recursive path orders, the multiset path order (MPO). This triggers the
question how far up in the realm of ordinals we have to travel, until we reach
a class α such that the restriction of < to α is of equal strength as for example
the lexicographic path order (LPO) on some ground term algebra T (Σ).

We show the surprising result that actually this α is an impressively large
ordinal, which is in proof theory referred to as small Veblen ordinal, and hence-
forth denoted as Λ. On the other hand we show that MPO on some ground term
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algebra T (Σ) is of equal strength as the ordinal ϕ(ω, 0), where ϕ denotes the
binary Veblen function. To relate this to object to the possible better known
ordinal ε0 note that ε0 can be represented as ϕ(1, 0) and is thus strictly smaller
than ϕ(ω, 0). (For a formal definition of Λ and the binary Veblen function ϕ, see
Section 3.4 in Section 3 below.)

Let us collect this result in a theorem. (We have not yet give a precise definition
the notion of“strength”used in the formulation below. Actually we can give such
a precise (re-)formulation, and will do so below, cf. Theorem 21.)

Theorem 1 (Dershowitz and Okada 1988). The “strength” of the class of
lexicographic path orders is equivalent to the “strength” of the ordinal Λ. The
“strength” of the class of multiset path orders is equivalent to the “strength” of
the ordinal ϕ(ω, 0). As ϕ(ω, 0) ≪ Λ, it is safe to say that lexicographic path
orders are strictly “stronger” than multiset path orders.

Furthermore the class of all simplification orders is also connected to Λ.

Theorem 2 (Schmidt 1979). The “strength” of the class of all simplification
orders is equivalent to the “strength” of the ordinal Λ.

These result are not new, neither in proof theory, nor in term rewriting theory.
Dershowitz and Okada [1988] were the first to observe the strong ties between
term rewriting theory and proof theory which underlie (the proof of) this result.
(Note that we use a different way to denote ordinals, hence our formulation
of this Theorem is different form the formulation of in Dershowitz and Okada
[1988].) We prove this Theorem in Section 3. By establishing this we believe that
the course provides an alternative approach to ordinals that directly addresses
one of the most important topics of computer science: Termination orders.

As soon as we have accomplished the quest for a “uniform measure” of the
strength of termination orders we turn to the question of complexity of a given
program P. In our setting this amounts to a characterization of the complexity
of a given TRS R. More precisely we will study upper and lower bounds for
the derivation length of R, the longest possible sequence of rewrite steps until a
normal form is reached.

We construct terminating rewrite systems R that admit derivation sequences
whose lengths easily capture the dimensions of the universe. This happens in
Section 5. Before we can state this result we introduce so-called Hardy functions
Hα : N → N. These functions form a hierarchy

⋃
α<Λ Hα of very fast growing

functions. Indeed they grow so fast that it is safe to say that for some α < Λ,
Hα(m) for small m already bounds the dimensions of the universe. (The formal
definition of the Hardy hierarchy is given in Section 4.2 in Section 4.)

Theorem 3 (Weiermann 1994). For every simply terminating TRS there ex-
ists α < Λ such that the complexity of the rewrite system is dominated by Hα.

Theorem 4 (Lepper 2003). For every α < Λ there exists a simply (and even
totally) terminating TRS whose complexity eventually dominates Hα (and thus
all Hβ with β 6 α).
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(For a definition of simple and total termination see Section 2 below.)
To some extent this result is bad news, as it implies that there exist rewrite

systems R, whose termination can be shown by termination orders of strength
comparable to the class of lexicographic path orders, such that the complexity
of R is beyond comprehension. This sheds light on the hidden complexity of the
lexicographic path order.

However, there are some good news, too.

Theorem 5 (Hofbauer 1992). Termination via MPO implies the existence of
a primitive recursive bound on the complexity of the rewrite system. This result
is essentially optimal.

Theorem 6 (Weiermann 1995). Termination via LPO implies the existence
of a multiple recursive bound on the complexity of the rewrite system. This result
is essentially optimal.

Theorem 7 (Lepper 2001a). Suppose R is a TRS terminating via the Knuth–
Bendix order (KBO). Then the maximal number of rewrite steps possible in R
starting with s is bound by Ack(2O(n), 0), where dp(s) ≤ n holds and Ack denotes
the binary Ackermann function. (We write dp(s) to denote the term depth of s.
)

In this course material we will only establish the first theorem, using a different
proof method than employed in Hofbauer [1992], see Section 6. Our approach
rests on the so-called slow growing hierarchy

⋃
α<Λ Gα, defined in Section 4.2

below. This proof method allows a uniform treatment of all three propositions.
However, we will only hint on the necessary alternations in the proof.

This course material is organized as follows. In Section 2 definitions and re-
sults which will serve as a basis for everything we will consider later are fixed.
Section 3 provides the basis and the proof of the Main Theorem. Building on
the notions introduced in Section 3 we introduce the reader in Section 4 to the
subrecursive trade. These two sections provide the basis for the investigations
into the complexity of rewrite systems in Section 5 and Section 6.

Remark 1. We assume some familiarity with basic concepts from the realms of
theoretical computer science (in particular term rewriting), logic, and mathe-
matics. No prior knowledge of the theory of ordinals is required.

2 Terms, Rewriting, and such Stuff

This section contains definitions and results which will serve as a basis for every-
thing we will consider later. We assume familiarity with basic concepts from the
realms of theoretical computer science (in particular term rewriting), logic, and
mathematics. However, we fix some notations. In the following we will frequently
use logical symbols such as ∧,∨,¬,→,∀,∃ in definitions and on the meta-level.
As usual the binary logical operators ∧,∨,→ are written in infix notation. We
suppose that these notions (and our sloppy use of it) are familiar.
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2.1 Basic definitions

We write A ⊆ B if A is a subset of B, while A ( B indicates that A is a proper
subset of B. The set theoretic difference A\B of A and B is {x ∈ A : x /∈ B}. By
card(W ) we denote the cardinality (number of elements) of a set W . Nonnegative
integers are called natural numbers and get collected in N. For {n, n+ 1, . . . ,m}
we also write [n,m]. The (finite ordered) tuple of a1, . . . , an is (a1, . . . , an), its
length |(a1, . . . , an)| is n. If all ai are located in a set A, then (a1, . . . , an) is a
tuple over A. The Cartesian product of the sets A1, . . . , An is

A1 × · · · ×An := {(a1, . . . , an) : (∀i∈ [1, n])(ai ∈ Ai)} .

If all the Ai coincide with A, then we write An for this product. Note that A0

contains the empty tuple ( ). The set A∗ :=
⋃
n∈NA

n contains the tuples over
A. We will extend this notion to infinite sequences in Definition 22. The disjoint
union of A1, . . . , An is⊎

16i6n

Ai := {(i, a) : 1 6 i 6 n ∧ a ∈ Ai} .

We assume the notions of (n-ary) relation (on some set A) and function (from
A to B) to be known. For n = 1, 2, 3, these are called unary, binary, and ternary.
If � is a binary relation, then we usually write a � b instead of � (a, b). It is
common practice to write p ⊀ q instead of ¬(p � q).

By f : X → Y we indicate that f is a function from X to Y . A function f
is number-theoretic if we have f : Nk → N for some k ∈ N. The set of functions
from X to Y is denoted by XY . If f : A→ B and g : B → C, then g ◦ f denotes
the function from A to C which maps a to g(f(a)). For f : A → A, the nth

iteration fn : A→ A of f (applied to a) is given by

f0(a) := a and fn+1(a) := f(fn(a)) . (2)

We will make heavy use of this notation for functions of higher arities where all
but one arguments are kept fixed. In these cases a “·” indicates the free position.
So, for example,

g(·, b)2(c) = g(g(·, b)1(c), b) = g(g(g(·, b)0(c), b), b) = g(g(c, b), b) .

A binary relation � on a set P is

– reflexive if (∀p∈P )(p � p),
– irreflexive if (∀p∈P )(¬p � p),
– transitive if (∀p, q, r∈P )((p � q ∧ q � r)→ p � r)),
– symmetrical if (∀p, q ∈P )(p � q → q � p),
– antisymmetrical if (∀p, q ∈P )((p 6= q ∧ p � q)→ ¬q � p),
– linear or total if (∀p, q ∈P )(p � q ∨ p = q ∨ q � p).

A binary relation � is a equivalence relation if � is reflexive, transitive and
symmetric. We call an ordered pair (P,4) where 4 is a binary reflexive and
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transitive relation on P a preorder or quasiorder . The strict part of (P,4) is
(P,≺) with p ≺ q :⇐⇒ p 4 q ∧ q 64 p. A partial order is an antisymmetrical
preorder. If (P,4) is a partial order, then we have (∀p, q ∈P )(p 4 q ⇐⇒ p ≺
q∨p = q). Hence the strict part (P,≺) is irreflexive and transitive. On the other
hand, if (P,C) is irreflexive and transitive, then (P,P) with p P q :⇐⇒ p C
q∨p = q is a partial order. Therefore we will frequently introduce a partial order
(P,4) by displaying its irreflexive and transitive strict part (P,≺), and we will
not hesitate to call (P,≺) a partial order. It is common practice to write q � p
for p ≺ q.

Let (P,≺) be a partial order and n > 1. We say F : Pn → P

– is monotone in the ith argument (with i ∈ [1, n]) if

F (p1, . . . , pn) � F (q1, . . . , qn)

holds for all p̄, q̄ ∈ P which satisfy pi � qi and pj = qj for j 6= i,
– is monotone if it is monotone in all arguments,
– is weakly monotone in the ith argument (with i ∈ [1, n]) if

F (p1, . . . , pn) < F (q1, . . . , qn)

holds for all p̄, q̄ ∈ P which satisfy pi < qi and pj = qj for j 6= i,
– is weakly monotone if it is weakly monotone in all arguments, and it
– has the (weak) subterm property if, for all p̄ ∈ P and all i we have F (p̄) � pi

(respectively F (p̄) < pi), such that i ∈ [1, n].

Definition 1. A mapping o : P → P ′ of the partial order (P,≺) into the partial
order (P ′,≺′) satisfying

(∀p, q ∈P )(p ≺ q =⇒ o(p) ≺′ o(q))

is called an embedding. If o even satisfies

(∀p, q ∈P )(p ≺ q ⇐⇒ o(p) ≺′ o(q)) ,

then it is order-preserving. Such a mapping is an order isomorphism if it is
bijective.

Definition 2. Two partial orders are equivalent or order isomorphic if there
exists an order isomorphism between them.

Consider a partial order (P,≺) and X ⊆ P . We call p ∈ P

– a minimum of X if we have p ∈ X and (∀q ∈X)(q ⊀ p),
– an upper bound of X if we have (∀q ∈X)(q 4 p),
– the least element of X if we have p ∈ X and (∀q ∈X)(p 4 q), and
– the supremum of X if it is the least of the upper bounds of X.

The dual notions are maximum, lower bound, greatest element, and infimum. Ex-
istence (and uniqueness) of either maximum, minimum, supremum, or infimum
of X provided, we abbreviate it by maxX, minX, supX, and inf X. We call
Y ⊆ X cofinal (in X) if (∀p∈X)(∃q ∈Y )(p 4 q) holds.
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Definition 3. A partial order (P,≺) is well-founded if every nonempty subset
of P contains a minimum.

We are going to introduce multisets and the basic operations on them. A
multiset is quite like a finite set, but multiple appearances of its elements are
counted. For a set A, a multiset over A is a function M : A → N with finite
{a ∈ A : M(a) 6= 0}. By mul(A) we denote the set of multisets over A.

We sometimes use the notation H. . .I for multisets, so H0, 0, 1, 2, 2, 2I represents
the multiset M satisfying (∀n> 3)(M(n) = 0) and M(0) = 2, M(1) = 1, M(2) =
3. The empty multiset is the function mapping each element of A to 0, and it is
ambiguously denoted by ∅. It will always be clear from the surrounding symbols
if the multiset ∅ is meant. If a ∈ A and M is a multiset, then we use a ∈ M
for M(a) > 0. The union of the multisets M and N is denoted by M ∪N and
satisfies

(∀a∈A)((M ∪N)(a) = M(a) +N(a)) ,

while the notion of subset is transferable via

M ⊆ N :⇐⇒ (∀a∈A)(M(a) 6 N(a)) .

By M \N we denote the difference of the multisets M and N , which is defined
by (M \N)(a) := M(a) ·−N(a).

Definition 4. If (mul(P ),≺mul) is the multiset extension of (P,≺), then we
have, for all M,N ∈ mul(P ),

M ≺mul N ⇐⇒ M 6= N ∧ (∀y ∈M \N)(∃x∈N \M)(y ≺ x) .

Proposition 1.

i. The multiset extension of a (linear) partial order is a (linear) partial order.
ii. The multiset extension of a well-founded partial order is a well-founded par-

tial order.

Definition 5.

– The lexicographic product of partial orders (Pi,≺i), i ∈ [1, n], is defined as
(P1 × · · · × Pn,≺1,n

lex ), where (p1, . . . , pn) ≺1,n
lex (q1, . . . , qn) holds if

(∃i∈ [1, n])(pi ≺i qi ∧ (∀j ∈ [1, i− 1])(pj = qj)) .

– If all (Pk,≺k) coincide with (P,≺), we write ≺nlex for ≺1,n
lex and call the re-

sulting (Pn,≺nlex) the n-fold lexicographic product.
– The lexicographic order (P ∗,≺∗lex) based on a partial order (P,≺) is defined

by

p ≺∗lex q :⇐⇒ |p| < |q| ∨ (|p| = |q| ∧ p ≺|p|lex q) .

If two sequences of equal lengths are considered, we will often write <lex instead
of <nlex or ≺∗lex.
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Proposition 2.

i. The lexicographic product of (linear) partial orders is a (linear) partial order.
ii. The lexicographic product of well-founded partial orders is a well-founded

partial order.
iii. The lexicographic order based on a (linear) partial order is a (linear) partial

order.
iv. The lexicographic order based on a well-founded partial order is a well-

founded partial order.

2.2 Our sets are term-sets

A signature Σ is a set of function symbols, such that each function symbol f ∈ Σ
has a unique arity, denoted as ar(f). The set of function symbols in Σ having
arity n is denoted by Σ(n). The set of terms over Σ and the countably infinite
set of variables V is denoted as T (Σ,V). If no confusion can arise, the reference
to the signature Σ and the set of variables V is dropped.

Convention: To avoid trivialities we demand that whenever we deal with a
specific signature Σ, that Σ is non-empty and contains at least one constant,
i.e. a function symbol of arity 0. This convention is kept throughout this course
material.

Convention: Throughout this text, natural numbers are denoted by lowercase
Latin letters ranging from a to d and i to q, possibly extended by sub- or super-
scripts. Sometimes we also use uppercase versions of these letters; these are either
used to denote various kinds of sets, or numbers which are supposed to be fixed
throughout a section, section, etc. The common names of terms are s and t,
but sometimes r and u show up as well. For variables we use x, y, and z, while
constants are called c, e, or k. Functions or function symbols are represented by
f, g, and h. We occasionally violate these conventions, provided that it seems
appropriate to do so. When we do so, it will always clear from the context what
is meant.

Finite sequences of similar objects are abbreviated using a bar, for example
s̄ is a shortcut for s1, . . . , sn, and 0̄ abbreviates 0, . . . , 0. The length of such a
sequence s1, . . . , sn should always be clear from the context, otherwise it will be
denoted as |s̄|. Empty sequences are allowed and will occur soon. If we consider
sequences of the same symbol, such as k consecutive occurrences of n, then we
write nk. This will not be mixed with exponentiation.

A term t is called ground or closed if var(t) = ∅, where var(t) denotes the set
of variables in t. The set of ground terms over Σ is denoted as T (Σ). With dp(s)
we denote the term depth of s, defined as follows. Set dp(s) := 0, if s ∈ V, or
c ∈ Σ(0), and otherwise

dp(f(s1, . . . , sm)) := max{dp(si) : 1 ≤ i ≤ m}+ 1 .

The size of a term t is the number of symbols in t, denoted as Size(t). A substi-
tution σ : V → T is a mapping from the set of free variables to the set of terms.
The application of a substitution σ to a term t is usually written as tσ instead of
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σ(t). Let f be an arbitrary mapping. Then the domain of f is denoted as dom(f),
while the range of f is written as rg(f). Extending this notion we call the set
{x : σ(x) 6= x} the domain—dom(σ)—of σ and the set {σ(x) : a ∈ dom(σ)} the
range of σ, denoted as rg(σ).

The concatenation of two substitution σ and λ (such that σ is applied before
λ) is written as σ ◦ λ. An expression term e0 is an instance of e if eσ = e0 for
some substitution σ. Note that we have for any term s and substitutions σ, τ
(sσ)τ = s(σ ◦ τ)

Let � be a binary relation on T (Σ,X ). We say that � is

i. closed under contexts (monotone)if we have, for all f ∈ Σ, ar(f) = n+ 1, and
for all terms s, t, s̄, s � t implies f(s1, . . . , s, . . . , sn) � f(s1, . . . , t, . . . , sn),

ii. closed under substitutions (stable) if s � t implies sσ � tσ for all terms s, t
and substitutions σ.

It is obvious how the above definition is altered with respect to the ground term
algebra T (Σ).

2.3 Rewrite systems

Let Σ denote a finite signature. We recall (very briefly) basic notions and con-
cepts in term rewriting theory.

Definition 6. A term rewriting system (or rewrite system) R over T is a finite
set of rewrite rules (l, r). The rewrite relation →R on T is the least binary
relation on T containing R such that

i. if s→R t and σ a substitution, then sσ →R tσ holds, and
ii. if s→R t, then f(. . . , s, . . .)→R f(. . . , t, . . .) .

When we focus on a TRS R, we will sometimes drop the subscript R. If (A)
is a (named) rule from R, then →A indicates a rewrite step due to this rule.
As usual we introduce the relation

∗→ to denote the transitive closure of →. On
the other hand we write

+→ to indicate that at least one rewrite step has been
performed.

Definition 7. Let R be a TRS over Σ. A term t is in normal form (with respect
to R) if there is no term r satisfying t →R r, and t is a normal form of s if
s
∗→R t and t is in normal form.

Definition 8. A signature Σ which solely consists of unary symbols and exactly
one constant is monadic.

We call a TRS over a monadic signature a string rewrite system (SRS) if
the only constant of the signature does not occur in the rules. Since in this
context terms may be identified with strings over the alphabet Σ(1), we will display
them as strings, hence we drop the parentheses and leave out the constant resp.
variable. In addition we will usually not mention the constant when introducing
a monadic signature.
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Definition 9. A rewrite system R is terminating if there is no infinite sequence
〈ti : i ∈ N〉 of terms such that

t0 →R t1 →R · · · →R tm →R · · ·

Definition 10. A (nondeterministic) Turing machine (TM)M is determined by

– a finite alphabet Γ = {a0, . . . , an}, whose elements are called letters, where
a0 is also called the blank,

– a finite set Q = {q0, . . . , qp} of states, and
– a transition relation ∆ ⊆ Q× Γ ×Q× Γ × {L,R}.

A configuration consists of

– the contents of an (bidirectionally) infinite tape which contains a countable
infinitude of cells. Each cell contains a letter (from Γ ), and only finitely
many cells do not contain the blank a0.

– the current state and
– the current position (cell number) of an imagined read-write-head.

If K and K ′ are configurations, then the machineM is able to make a transition
from K to K ′, abbreviated by K K ′, if there is (q, a, q′, a′, d) ∈ ∆ such that in
K the machine is in state q, reading an a, while in K ′ it is in state q′ and the
tape of K ′ emerged from the tape of K by replacing the a just read in by an a′

and moving the head one position to the left (if d = L) or to the right (if d = R).
We say thatM halts for the configuration K if there is no infinite -descending
sequence starting with K.

It should be clear that any TRS can be simulated by a TM. But how about
the opposite direction?

The uniform halting problem is the following problem:

Given: a TMM.
Question: Does M halt for all configurations?

Theorem 8. The uniform halting problem is undecidable.

We want to show next that it is possible to transform any TM M into a
corresponding SRS RSM in such a way thatM halts for all configurations if and
only if RSM terminates. Thus the uniform halting problem is equivalent to the
question of termination of TRSs.

Theorem 9 (Huet and Lankford 1978). Termination is undecidable for
SRSs (and hence for TRSs).

Proof. We describe the construction of the SRS RM. The first problem is to cope
with the infinity of the tape. But since only finitely many cells of the tape are
not blank, it mainly suffices to introduce symbols for the left and right edge of
the tape and to treat anything beyond these symbols as blank.

The main problem is to prevent the TRS from doing reductions that are not in-
tended. For this aim, we have to make more explicit which symbols are positioned
left to the head and which symbols are not. This is achieved by introducing, for
each letter a, symbols â and a. Our signature consists of
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– symbols a and â for each a ∈ Γ ,
– a symbol q for each state q ∈ Q, and
– the symbols . and / for the left resp. right edge of the tape.

A configuration term is any term t of the shape

.âik . . . âi1qaj1 . . . ajh/

with q ∈ Q, 0 6 h, k and 0 6 i1, . . . , ik, j1, . . . , jh 6 n. Any such t describes
exactly one configuration Kt, which looks like this:

. . . aik . . . ai1 aj1 . . . ajh . . .
↑q

Here the two outer dots indicate infinitely many blanks to both edges of the tape.
Of course, each configuration is represented by infinitely many configuration
terms.

Now each possible transition is turned into a few rules of our SRS RM, depend-
ing on the fact that we have to cope with the symbols representing the edges.
For each transition (q, ai, q

′, aj ,R) ∈ ∆ we add to RM the rule qai → âjq
′. If

i = 0 then we also add q/ → âjq
′/. For each transition (q, ai, q

′, aj ,L) ∈ ∆ we
add .qai → .q′a0aj and, for any k ∈ {1, . . . , n}, we also add âkqai → q′akaj to
RM. If i = 0 then we also have to add .q/→ .q′a0/ and, for any k ∈ {1, . . . , n},
we also add âkq/→ q′akaj/. Thus RM is finite.

It is obvious that for any configuration term t, t → t′ implies that t′ is a
configuration term satisfying Kt Kt′ . On the other hand, for two configurations
K and K ′ with K K ′, we find, for any configuration term t with Kt = K, a
configuration term t′ satisfying t→ t′ and Kt′ = K ′.

Thus an infinite computation of M induces an infinite reduction of RM. Un-
fortunately, the other direction is not that simple, since there may be infinite
reductions starting from terms which are not configuration terms. Yet it suf-
fices to show that any infinite reduction induces an infinite reduction starting
with a configuration term. Any term t can be written as u1v1 . . . udvdud+1 such
that no ui contains a state q, the ui may be empty and each vi has the shape
âik . . . âi1qaj1 . . . ajh with 0 6 h, k, and it is maximal with respect to this prop-
erty, that is, ui does not end with some âi and ui+1 does not start with some aj .
Now, any reduction from t requires some element of Q, thus it can not take place
in an ui. Furthermore, the ui are left untouched (well, possibly . may be replaced
by ., but this does not count). Thus t→ t′ implies there is m ∈ {1, . . . , d} and v′m
of the same shape as the other vj such that t′ = u1v1 . . . umv

′
mum+1 . . . udvdud+1,

and additionally we have .vm/→ .v′m/. If there is an infinite reduction starting
from t, then there is an m such that infinitely many steps of this reduction take
place in umvmum+1, thus there is an infinite reduction starting from .vm/, and
this induces there is also an infinite reduction starting from a configuration term
(since we may drop any superfluous . and /).

In the above construction the number of rules contained in R depends on the
number of instructions of theM. Dershowitz [1987b] showed that termination of
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TRSs containing only two rules is already undecidable, and later Dauchet [1992]
(see also Lescanne [1994]) found a way to transform TMs into equivalent TRSs

containing only one rule. Thus termination of TRSs containing exactly one rule
is already undecidable.

2.4 Termination proofs

A general method to prove termination of a TRS is the construction of a well-
founded order on the terms which contains the rewrite relation. Another is the
construction of an interpretation from the (ground) term algebra into a well-
founded order. In both cases any infinite derivation corresponds to an infinite
descending chain in the well-founded order, so we get termination.

Definition 11. Let X be equal to V or ∅. A partial order (T (Σ,X ),≺)

– is a rewrite order if it is closed under contexts and substitutions,
– is a reduction order if it is a well-founded rewrite order,
– is compatible with a TRS R if →R ⊆ �, that is, if s→R t implies s � t,
– normalizes a TRS R if lσ � rσ holds for all rules l → r ∈ R and all ground

substitutions σ, and it
– has the (weak) subterm property if s � t (respectively s < t) holds as soon

as t is a proper subterm of s.

Interpretations are a canonical means to prove termination. We recall (very
briefly) the essential concepts and propositions.

Definition 12. Let (P,≺) be a partial order.

– An interpretation of T (Σ) in (P,≺) is a mapping I : T (Σ)→ P .
– The interpretation I induces a binary relation ≺I on T (Σ) via s ≺I t :⇐⇒
I(s) ≺ I(t). This can be lifted to a binary relation on T (Σ,V) via

s ≺I t :⇐⇒ I(sσ) ≺ I(tσ) for all ground substitutions σ

⇐⇒ sσ ≺I tσ for all ground substitutions σ .

Note that ≺I is not total on T (Σ,V) because distinct variables are always
incomparable. Even if (P,≺) is total, ≺I need not be total on T (Σ) since distinct
terms may be mapped to the same member of P .

Obviously I is an order preserving mapping from (T (Σ),≺I) to (P,≺), and
(T (Σ,V),≺I) is a partial order which is well-founded if (P,≺) is.

Let I be an interpretation of T (Σ) in the partial order (P,≺). We say that

– I is monotone if, for all f ∈ Σ, ar(f) = n+ 1, and all s, t, s̄ ∈ T (Σ), we
have I(s) � I(t) implies I(f(s1, . . . , s, . . . , sn)) � I(f(s1, . . . , t, . . . , sn)),

– I is weakly monotone if, for all f, s, t, s̄, we get I(f(s1, . . . , s, . . . , sn)) <
I(f(s1, . . . , t, . . . , sn)) whenever I(s) < I(t) holds,

– I has the subterm property if I(f(s1, . . . , sn)) � I(si) holds for all f ∈ Σ,
ar(f) ≥ 1, all s̄ ∈ T (Σ), and all i ∈ [1, n], and
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– I is a normalization of a TRS R if, for all rules l→ r in R and for all ground
substitutions σ, we have I(lσ) � I(rσ).

Proposition 3. Let I be an interpretation of T (Σ) in the partial order (P,≺),
and let R be a TRS over Σ.

i. If I is monotone, then (T (Σ,V),≺I) is a rewrite order. Additional well-
foundedness of (P,≺) implies that (T (Σ,V),≺I) is a reduction order.

ii. If I has the subterm property, then so does (T (Σ,V),≺I).
iii. I normalizes R if and only if R ⊆ �I , i.e. if �I normalizes R.
iv. If I is a monotone normalization of R, then I embeds (T (Σ),

+←R) into
(P,≺), and R is compatible with (T (Σ,V),≺I). Additional well-foundedness
of (P,≺) implies termination of R.

Usually, interpretations are defined in a homomorphic manner. For this it
suffices to consider a partial order (P,≺) and, for each symbol f of the signature,
an interpreting function [f ] on P of appropriate arity. Then a mapping [[·]] of
T (Σ) in (P,≺) is defined by recursion on T (Σ) via

[[f(t1, . . . , tn)]] := [f ]([[t1]], . . . , [[tn]]) . (3)

Lemma 1. A homomorphic mapping of (3) is (weakly) monotone if each of the
interpreting functions is (weakly) monotone, and it has the subterm property if
each of the interpreting functions has the subterm property.

An interesting part of terminating TRSs is covered by the following concept.

Definition 13 (Ferreira 1995, 5.40). A TRS R is totally terminating if there
exists a well-order (T (Σ),≺) which is compatible with R.

Obviously, total termination implies termination.

Proposition 4. A TRS R is totally terminating if and only if there exists an
interpretation I of T (Σ) in a well-order (P,≺) such that I

– is monotone and
– normalizes R.

A major drawback of the previous characterization is the need to find every-
where (strictly) monotone interpretations, as such interpretations are usually
rather hard to find, whereas weakly monotone interpretations are often much
easier to construct. It turns out that weak monotonicity suffices, provided that
we join it with the subterm property. This result will be of central importance
in Section 5.

Theorem 10 (Touzet 1998). A TRS R is totally terminating if there exists
an interpretation I of T (Σ) in a well-order (P,≺) such that I

– is weakly monotone,
– has the subterm property, and
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– normalizes R.

Dershowitz [1979] introduced simplification orders, which are rewrite orders
having the subterm property. We call a TRS simplifying if it is compatible with
a simplification order.

Theorem 11 (Kruskal’s Tree Theorem). Let Σ be a finite signature. Ev-
ery simplification order ≺ on T is well-founded. Hence any simplifying TRS is
terminating.

Based on the Theorem, we coin the expression simply terminating to denote a
TRS that is simplifying.

Remark 2. Recall that there are terminating TRSs which are not simplifying, as
the SRS ff → fgf shows. It terminates because each rewrite step decreases the
number of occurrences of ff , yet for any compatible simplification order ≺ we
would get ff � fgf � ff .

Proposition 5 (Zantema 1994). Total termination implies simple termina-
tion.

In the sequel we recall some outstanding simplification orders. In particular
we state the definitions of multiset path orders and lexicographic path orders.

We define a binary relation ∼ on T (Σ,V) by s ∼ t if s = f(s1, . . . , sn),
t = f(t1, . . . , tn), and there is a permutation π of [1, n] such that (∀i∈ [1, n])(si ∼
tπ(i)). The relation is called permutative equivalence. LetΣ be a signature equipped
with a precedence �. To simplify notation we assume � is total and Σ =
{f1, . . . , fN}, such that N denotes the cardinality of Σ. Furthermore suppose
i < j → fi ≺ fj . The multiset path order (MPO) �mpo (based on Σ and �) of
T (Σ,V) is defined as follows.

Definition 14 (Plaisted 1978, Dershowitz 1982). s �mpo t iff

i. t ∈ var(s) and s 6= t, or
ii. s = fj(s1, . . . , sm), t = fi(t1, . . . , tn), and

– there exists k (1 ≤ k ≤ m) with sk �mpo t ∨ sk ∼ t, or
– j > i and s �mpo tl for all l = 1, . . . , n, or
– i = j and Hs1, . . . , smI �mul

mpo Ht1, . . . , tmI.

Let Σ be a signature equipped with a precedence � as above. The lexicographic
path order (LPO) �lpo (based on Σ and �) of T (Σ,V) is defined as follows.

Definition 15. s �lpo t iff

i. t ∈ var(s) and s 6= t, or
ii. s = fj(s1, . . . , sm), t = fi(t1, . . . , tn), and

– there exists k (1 ≤ k ≤ m) with sk �lpo t, or
– j > i and s �lpo tl for all l = 1, . . . , n, or
– i = j and s �lpo tl for all l = 1, . . . , n, and there exists an i0 (1 ≤ i0 ≤ m)

such that s1 = t1, . . . si0−1 = ti0−1 and si0 �lpo ti0 .
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As an exercise we consider the (usual) binary Ackermann function, as a TRS

R.

Ack(0,m)→ m+ 1 ,

Ack(n+ 1, 0)→ Ack(n, 1) , and

Ack(n+ 1,m+ 1)→ Ack(n,Ack(n+ 1,m)) .

Exercise 1. Define a suitable signature Σ and a (total) precedence � on it, such
that �lpo (based on Σ and �) serves as a reduction order for R. Thus R is simply
terminating.

Exercise 2. (+) Show that no multiset path order �mpo is capable of establishing
(simple) termination of R.

The following result is a folklore result in term rewriting theory.

Theorem 12 (Kamin and Lévy [1980]).

i. If s �lpo t (s �mpo t) then var(t) ⊆ var(s).
ii. For any total order ≺ on Σ, the induced LPO �lpo (MPO �mpo) is a simpli-

fication order on T .
iii. If R is a TRS such that →R is contained in an LPO (MPO), then R is

terminating.
iv. Termination via LPO (MPO) implies total termination.

Finally we want to mention Knuth–Bendix orders (KBOs), which were intro-
duced by Knuth and Bendix [1970]. We will not define KBOs in detail, just re-
call the main idea. For further reading see Lankford [1979], Dershowitz [1987b],
and Baader and Nipkow [1998]. The signature is equipped with a precedence
and a weight function, which associates a nonnegative real number with each
symbol. One extends this function to a weight on terms by adding the weights
of the symbols. Very roughly speaking, terms are compared by first comparing
their weights, then their root symbols, and finally, by recursion, their subterms.
Under certain additional assumptions this results in a simplification order.

Remark 3. Note that termination via KBO is incomparable with both termina-
tion via LPO or MPO. The SRS {fg → ggf } (from Ferreira [1995, p. 114], see also
Middeldorp and Zantema [1997, p, 148]) is not terminating via KBO as weight
considerations imply g � f , whereas precedence considerations demand f � g.
In contrast to this, we get termination via LPO (or MPO) using f � g. On the
other hand, the SRS {fg → gff } terminates via KBO, but neither MPO nor LPO

are able to cope with this rule.

This incomparability result shows that we cannot directly relate syntactic
orders as LPO, MPO, or KBO. But still we would be interested in given a char-
acterization of such orders that allows us the separate strong orders from weak
ones. The next section will show how such a uniform measure can be established.
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3 A Uniform Measure

As already mentioned the emphasis of this course lies on the applicability of
ordinals as “universal scales” of well-founded orders and in the end we aim at a
canonical measure of termination orders, such that e.g. a precise characterization
of the “strength” of well-known orders such as LPO and MPO is rendered. To this
avail it seems appropriate to study ordinals and ordinal notation systems to some
extent. This is the purpose of this section.

3.1 Countable ordinals

In this section we introduce countable ordinals. Instead of following the usual set-
theoretic footsteps, we introduce ordinals as order types. The central aim of this
section is the introduction of the collection On of countable ordinals, together
with a well-founded relation < on On. Our presentation follows Pohlers [1996,
pp. 41–45].

Definition 16. Let A be a set; let � be a binary relation on A. We define the
field of the relation �, denoted as Field(�), as follows.

Field(�) := {a : ∃x a � x or x � a}

The relation � is called a partial order if (Field(�),�) is a partially ordered
set. A relation � is called a total order if � is a partial order which is linear.
Recall that for a partial order � we denote its strict predicate by ≺. I.e. p ≺
q ⇐⇒ p � q ∧ p 6= q. As above, we call ≺ a strict partial order. The relation �
is called well-founded if every nonempty subset of Field(�) has a least element.
More formally

∀A [A ⊆ Field(�) ∧A 6= ∅ → ∃x ∈ A∀y(y � a→ (a = y ∨ y 6∈ A))]

Definition 17. Let � denote a linear partial order. Then � is called a well-
order if � is well-founded.

Two total orders ≤, � are equivalent if there is an embedding map o form
Field(≤) onto Field(�). I.e. we have a surjective function o such that

∀x, y ∈ Field(≤) (x ≺ y → o(x) ≺ o(y)) ,

holds. We write ≤∼� to denote the equivalence of ≤ and �.

Exercise 3. In Definition 2, we have stated what should be understood by the
equivalence of two partial orders. Prove that ≤ and � are equivalent as defined
above if (Field(≤),≤) and (Field(�),�) are equivalent (in the old sense).

In term rewriting one introduces the principle of well-founded induction as a
generalization of mathematical induction to any terminating TRS (R,

+→): Let A
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denote some property of elements of P . We formalize well-founded induction as
a rule.

∀x (∀y ∈ P (x→R y → A(y))→ A(x))

∀x ∈ P A(x)

We have only stated this rule to clarify the analogy to the principle of transfi-
nite induction, defined below. Let � denote a well-founded relation, and assume
A denotes some property of the elements of Field(�). Consider the following rule.

Definition 18. (Principle of Transfinite Induction.)

∀x (∀y(y ≺ x→ A(y))→ A(x))

∀xA(x)

Note that this induction principle does not have an explicite base case. This
may come as a surprise. However, let p denote the �-minimal element. Then con-
sider the premise ∀y(y ≺ p → A(y)) of the induction hypothesis more closely.
Obviously this premise is trivially true and hence the induction hypothesis sub-
sumes the base case.

Proof. First note that the hypothesis entails A(p) whenever p 6∈ Field(�). Now
we proceed indirectly. Assume the hypothesis is true and suppose the existence of
an element p ∈ Field(�) such that ¬A(p). The set of all such elements is a subset
of Field(�). We may assume p is �-minimal, as � is well-founded. Therefore for
all y such that y ≺ p the property A(y) holds. This however is the premise of
the induction hypothesis. Whence A(p) holds. Contradiction.

Exercise 4. The equivalence of orders is an equivalence relation.

Definition 19. A countable ordinal is the equivalence class of a countable well-
order.

Convention: As the only ordinals we will deal here with will be countable, we
will frequently drop the “countable” and simply speak of an ordinal.

We will use lower-case Greek letters, possibly extended by super- or sub-
scripts, to denote ordinals. The collection of ordinals is denoted by On.

Definition 20. A segment of a total order � is a subset M of the field of �
such that M is an initial part of Field(�). Put more formally

∀x ∈M∀y ∈ Field(�)(y � x→ y ∈M)

A segment M is called proper if it is distinct from Field(�).

Let p ∈ Field(�) be given. Then p induces a segment M of � as follows.

M := {(x, y) : x � y ∧ y ≺ p}

The segment M is denoted as �(p). Clearly this segment is a proper segment.
We will use the following abbreviation. Field(�(p)) := {x ∈ Field(�) : x ≺ p}.
Finally we are able to define a binary relation < on On. It will turn out that <
is a well-order itself.
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Definition 21. Let α, β ∈ On. Let the well-order �1 represent α and �2 repre-
sents β. Then α < β if there exists z ∈ Field(≺) such that ≤ ∼ ≺(z).

Lemma 2. Let the relation < be defined as above, then < is well-defined, ir-
reflexive and transitive.

Proof. Firstly we have to convince ourselves that the above given definition is
indeed well-defined. Let ≤1,≤2,�1,�2 denote (countable) well-orders such that
≤1∼≤2 and �1∼�2 holds. Assume τ, σ ∈ On such that τ is represented by ≤i
(i = 1, 2) and σ is represented by �i (i = 1, 2). Finally assume the existence of
z ∈ Field(�1) such that ≤1 ∼ �1(z). To show well-definedness it suffices to show
the existence of z ∈ Field(�2) such that ≤2 ∼ �2(z). This however follows easily
by concatenation of the induced order-preserving functions.

Secondly, let us consider irreflexivity. The proof of irreflexivity is simplified if
we first consider the following claim, which is left as an exercise.

Exercise 5. Let � denote a well-founded relation. Assume an embedding o from
Field(�) to Field(�). Show that ∀x(o(x) � x).

Now we proceed indirectly. Assume σ < σ holds for some σ ∈ On. Let � denote
a well-order representing σ. By definition there exists z ∈ Field(�) s.t. � ∼ �(z)
that is there exists an embedding o mapping Field(�) onto Field(�(z)). Taking
the claim for granted, we conclude that ∀x(o(x) � x) holds. In particular, if q
denotes a witness for the existential quantifier in ∃z(� ∼ �(z)), then o(q) � q.
However, by definition of o, o(q) ≺ q holds. Contradiction.

Finally, we consider transitivity. However, this case follows quite as the first
part. Hence the proof is omitted and left to the reader.

By now we have defined a strict partial order < on On. The following result
tells us that this order < is itself a well-order.

Theorem 13. Let the relation < be defined as above, then < is an irreflexive
well-order on On.

Proof. First we show totality of the order >. Let �1,�2 denote representations
of τ, σ ∈ On, respectively. Suppose τ 6= σ.

We have to show the existence of z ∈ Field(�1) (or z ∈ Field(�2)) such that
�1(z) ∼ �2 (or �1 ∼ �2(z)). We define

o(x) := min
�2

{z ∈ Field(�2) : ∀y ≺1 x o(y) ≺2 z}

Obviously o is an order-preserving map from Field(�1) to Field(�2). It is easy to
see that dom(o) and rg(o) are segments of Field(�1), Field(�2), respectively. By
assumption �1 6∼ �2. Thus at least one of dom(o) or rg(o) has to be a proper
segment. W.l.o.g. we assume the latter. Then set z := min{z ∈ Field(�2) : z ∈
rg(o)}. Now it is easy to see that

�1 ∼ �2(z)
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holds. Thus linearity is established.
Finally, we have to convince ourselves that < is well-founded. Assume there

exists a non-empty M ⊆ On, such that M does not admit a <-minimal element.
In particular assume σ ∈ M , then there exists τ ∈ M and τ < σ. Let � denote
a representation of σ. By definition of < there exists z ∈ Field(�) such that
τ ∼ �(z). By iterating this procedure and employing transitivity of <, we obtain
an infinite sequence of elements of Field(�).

z = z1, z2, . . . , zn, zn+1, . . .

A moment of reflection shows that this sequence is ordered by � in decreasing
order. Thus we have constructed an infinite ≺-descending sequence. Contrary to
the assumption that � is a (countable) well-order.

Exercise 6. A binary relation � is well-founded if and only if there are no infinite
<-descending sequences.

Hint: Use the ideas employed in the proof of the totality of <.
We are going to extend finite tuples to infinite sequences. This is achieved by

identifying the tuples over A we already know with functions from finite ordinals
into A.

Definition 22. A sequence (over a nonempty set A) is a function whose domain
is an ordinal α (and whose range is a subset of A). This α is called the length
of the sequence. Such a sequence is usually displayed as (aι)ι<α. The sequence
is finite if α is finite, and otherwise it is infinite. If β is an ordinal and A is a
nonempty set, then A<β denotes the set of sequences over A having length below
β.

Note that there is an obvious isomorphism between A<ω and A∗, as defined in
Section 2.1. We write Seq(x) to state that x is a sequence, and then |x| denotes
its length.

Theorem 14. If α ∈ On, then there exists a β ∈ On, such that α < β. We also
say that the collection of countable ordinals On is unbounded.

Proof. Let σ ∈ On and ≺ a well-order representing σ. Put

x ≺′ y := Seq(x) ∧ Seq(y) ∧ |x| = |y| = 2 ∧
[
((x)0 = 0 ∧ (y)0 = 0 ∧ (x)1 ≺ (y)1)

∨ ((x)0 = 0 ∧ (x)1 ∈ Field(≺) ∧ (y)0 = 1 ∧ (y)1 = 1)
]

Hence we have extended ≺ by a single point (1, 1) at the end and therefore obtain
≺ ∼ ≺′((1, 1)). Note that (x)0, (x)1 denote the first, resp. second projection of
the pair x.

Due to the above theorem, the next definition is well-defined.

Definition 23. Let α be an ordinal. The successor of α is defined as

min{ζ : α < ζ}

We write α+ 1 to denote the successor of α.
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The least element of On is denoted as 0. An ordinal is a successor ordinal if it
can be written in the form α+ 1. An ordinal which is neither 0 nor an successor
ordinal is called a limit ordinal. The collection of limit ordinals is denoted as
Lim.

Definition 24. Assume � is well-founded on A. We associate an ordinal in On
to each element a of A.

otype�(a) := sup{otype�(b) + 1: b ∈ A and a � b} .

The order type of �, abbreviated by otype(�), is the supremum of otype�(a)+1
for a ∈ A.

Sometimes we write otype(≺) in place of otype(�). Note that the just given
definition ought to be considered with some care. Let a ∈ A be given. Then
otype�(a) is an ordinal, i.e. a class of well-orders. Note that we have not defined
what ‘sup’ means when applied to a set of classes. Hence this definition is (strictly
speaking) flawed. However, note that this is a consequence of our approach to
ordinals as order-types. In the ‘usual’ set-theoretic setting, where ordinals are
(transitive) sets this problem doesn’t occur. One solution to the obstacle is to
employ notions from category theory. To be more precise ‘sup’ should be read
as a ‘direct limit’, cf. MacLane [1998]. We need not go into further details. The
same resort to category theory can be employed in similar situations below.

Ordinals whose field is finite, are called finite and otherwise infinite Based on
this we introduce the following convention. Convention: In the following we do
not distinguish between ordinals α, 0 < α < ω, and natural numbers. Instead
we use the expressions n ∈ N and n < ω synonymously.

If (P,≺) is a well-order, then otypeP≺ denotes the order isomorphism of Defi-
nition 24.

Definition 25. Let (P,≺) be a well-order. The inverse function of otypeP≺ is
called the enumerating function of (P,≺) and is denoted by enumP

≺.

Definition 26. Let F : On→ On be given. We say

– F is continuous if it satisfies

(∀λ∈ Lim)(F (λ) = sup {F (α) : α < λ}) ,

– F is normal if it is a continuous embedding, and
– α is a fixed point of F if F (α) = α holds.

Lemma 3. A normal function has arbitrarily large fixed points.

Proof. Let F be a normal function and pick an arbitrary β. We recursively
define G : ω → On by G(0) := β and G(n + 1) := F (G(n)). Our intention
is to show α := sup {G(n) : n < ω} is a fixed point. From Exercise 5 we infer
G(n + 1) = F (G(n)) > G(n), and α > β follows. If there is an n satisfying
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G(n+ 1) = G(n), then we get α = G(n) = F (G(n)), and otherwise α is a limit
ordinal and we have

F (α) = F (sup
n<ω

G(n)) = sup
n<ω

F (G(n)) = sup
n<ω

G(n+ 1) = α

since F is continuous.

3.2 The arithmetic of ordinals

Previously we introduced the principle of transfinite induction. Now we turn to
transfinite recursion. The idea is that we wish to define a (class) function F (σ)
in terms of σ and the values of F (τ) for ordinals τ ≺ σ. Adding parameters,
we arrive at the following situation. We have defined a function G, and wish to
define F so that

F (σ, s1, . . . , sn) = G(σ, (F (τ, s) : τ < σ), s1, . . . , sn) (4)

The principle of transfinite recursion is provable within the framework of Set
Theory, see e.g. Shoenfield [1967]. However, we will not prove it, but simply
treat it as an axiom. We call (4) a definition of F by the principle of transfinite
recursion.

A very common way of defining ordinal functions is by distinguishing between
the three kinds of ordinals. This procedure is legalized by the principle of trans-
finite recursion.

Proposition 6. For functions G : On → On and H : On2 → On there exists
F : On2 → On satisfying

F (α, β) =


G(α) if β = 0 ,

H(F (α, β′), α) if β = β′ + 1 ,

sup {F (α, β′) : β′ < β} if β ∈ Lim .

Definition 27. The (binary) ordinal addition α+ β is defined by

α+ β :=


α if β = 0 ,

(α+ β′) + 1 if β = β′ + 1 ,

sup {α+ β′ : β′ < β} if β ∈ Lim .

Likewise, ordinal multiplication α · β is generated with

α · β :=


0 if β = 0 ,

(α · β′) + α if β = β′ + 1 ,

sup {α · β′ : β′ < β} if β ∈ Lim .

Finally, ordinal exponentiation αβ is given by

αβ :=


1 if β = 0 ,

αβ
′ · α if β = β′ + 1 ,

sup {αβ′
: 0 < β′ < β} if β ∈ Lim .
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It is easy to see that these functions extend the usual functions on natural
numbers to ordinals.

Exercise 7. Let α, β, γ be ordinals.

i. Ordinal addition is associative, but for α > ω we have 1 + α = α < α+ 1.
ii. Ordinal multiplication is associative, but 2 · ω = ω < ω + ω = ω · 2.
iii. We have α · (β + γ) = α · β + α · γ, but (ω + 1) · 2 = ω · 2 + 1 < ω · 2 + 2.
iv. We have αβ · αγ = αβ+γ .
v. The ordinal functions δ 7→ α+ δ (with arbitrary α), δ 7→ α · δ (with α > 0),

and δ 7→ αδ (with α > 1) are normal.

By the above Exercise 7.v and Lemma 3, there are arbitrarily large ordinals λ
satisfying λ = ωλ. Similarly, there are arbitrarily large λ which are closed under
addition, i.e. they satisfy (∀α, β <λ)(α+ β < λ).

Definition 28.

– Ordinals λ > 0 which are closed under addition are called principal ordinals.
They are collected in H.?

– Ordinals λ satisfying λ = ωλ are called epsilons. The αth epsilon number is
called εα.

– We introduce ω-towers ωn by ω0 := 1 and ωn+1 := ωωn .

Lemma 4.

i. The enumerating function of H is α 7→ ωα.
ii. We have ε0 = sup {ωn : n ∈ ω}.

Proposition 7. For every ordinal α there are uniquely determined principal
ordinals α1 > . . . > αn such that α = α1 + · · · + αn holds. This is called the
additive normal form of α, and we sometimes write α =NF α1 + · · ·+ αn.

Note that the sum may be empty, yielding 0. We may combine the Proposition
with Lemma 4.i.

Corollary 1. For every ordinal α there are uniquely determined ordinals α1 >
. . . > αn such that α = ωα1 + · · ·+ ωαn holds. This is called the Cantor normal
form of α, and we sometimes write α =CNF ω

α1 + · · ·+ ωαn .

Based on the additive normal form, it is possible to define an alternative
ordinal addition which is associative and commutative.

Definition 29. The natural sum α⊕β of two ordinals α =NF γ1 + · · ·+γn and
β =NF γn+1 + · · ·+ γn+m is given by α⊕ β := γπ(1) + · · ·+ γπ(n+m), where π is
any permutation of [1, n+m] with (∀i∈ [1, n+m− 1])(γπ(i) > γπ(i+1)).

Exercise 8. The natural sum is commutative, associative, and monotone.

? H stems from the original German notion Hauptzahlen.
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The operation ∗ concatenates two sequences a = (aι)ι<α and b = (bι)ι<β . By
a ∗ b we denote the sequence c = (cι)ι<α+β satisfying

cι =

{
aι if ι < α ,

bξ if ι = α+ ξ .

We say a′ = (a′ι)ι<α′ is an extension of a = (aι)ι<α, abbreviated by a 6ext a
′, if

α 6 α′ and (∀ι<α)(aι = a′ι).

Exercise 9. The class of sequences is partially ordered by 6ext. We have a 6ext a
′

if and only if there is a sequence b with a′ = a ∗ b.

The concatenation of partial orders (P1,≺1), . . . , (Pn,≺n) is (
⊎

16i6n Pi,≺1,n)
with

(i, p) ≺1,n (j, q) :⇐⇒ i < j ∨ (i = j ∧ p ≺i q) .

Exercise 10. i. The concatenation of (linear) partial orders is a (linear) partial
order.

ii. The concatenation of well-founded partial orders is a well-founded partial
order, and its order type is the sum of the order types of the basic orders.

iii. The concatenation of well-orders is a well-order.

Dershowitz and Manna [1979] transmogrified the properties of principal ordi-
nals into a well-order which does not refer to ordinals.

Definition 30. The multiset extension of a given partial order (P,≺) is defined
as (mul(P ),≺mul) with

M ≺mul N :⇐⇒ (∃X,Y ∈mul(P ))(∅ 6= X ⊆ N
∧M = (N \X) ∪ Y
∧ (∀y ∈Y )(∃x∈X)(y ≺ x)) .

Exercise 11. Previous, in Definition 4, we have given an alternative formulation
of the multiset extension order. Show the equivalence of the two.

Exercise 12. The multiset extension of a well-order is a well-order.

A proof of the following Theorem can be extracted, for example, from Weier-
mann [1992], or from Ferreira [1995, Remark 5.22].

Theorem 15. If (P,≺) is a well-founded partial order, then we have

otype(mul(P ),≺mul) = ωotype(P,≺) .

Recall the definition of lexicographic product and lexicographic order, cf. Defini-
tion 5. We have the following propositions, whose proofs we leave as an exercise.

Exercise 13. i. The order type of the lexicographic product of well-founded
partial orders is the reverse product of the order types of the basic orders:

otype(P1 × · · · × Pn,≺1,n
lex ) = otype(Pn,≺n) · · · · · otype(P1,≺1) .
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ii. The lexicographic product of well-orders is a well-order.
iii. The lexicographic order based on a well-order is a well-order.

Lemma 5. Let (P,≺) be well-founded with otype(P,≺) > ω. Then it holds that
otype(P ∗,≺∗lex) = otype(P,≺)ω.

Proof. We put α := otype(P,≺) > ω. Exercise 13.i implies otype(Pn,≺nlex) = αn.
Because of Exercise 7 we have

αn + αn+1 = αn · 1 + αn · α = αn · (1 + α) = αn · α = αn+1

for all n. As (P ∗,≺∗lex) corresponds to the infinite concatenation of the (Pn,≺nlex),
and otype(Pn,≺nlex) = αn, we reach

otype(P ∗,≺∗lex) = sup
n<ω

(
otype(P 0,≺0

lex) + · · ·+ otype(Pn,≺nlex)
)

= sup
n<ω

(
α0 + · · ·+ αn

)
= sup
n<ω

αn = αω ,

using Exercise 10.ii and the definition of ordinal exponentiation.

Theorem 16. We have otype(N∗, <∗lex) = ωω.

3.3 The ordinal ε0

In the previous section we have defined certain (normal) functions on the col-
lection On. In particular ordinal exponentation ω· was defined. In Definition 28
we introduced names for the fix-points of this function, the epsilons. The main
purpose of this section is the study of the first of this fix-points, called ε0. More
precisely we want to study the initial segment <(ε0) of the well-order < upto ε0.
(To simplify notation below we sometimes write < to denote <(ε0).) We believe
that this ordinal is rather prominent. In proof theory it is well-known as the
proof theoretic ordinal of Peano Arithmetic, and even the reader not (or not at
all) familiar with proof theory may have already had contact with ordinals < ε0

of the form ωk (k ∈ N), the so-called ω-towers.
As a central result of this section we will show that the class of well-orders

ε0 contains only well-orders that are rather weak. Especially, if they are to be
compared with recursive path orders as e.g. an instance ≺mpo of the multiset path
orders. To accomplish this, we will explicitely write down a well-order (E,≺) such
that otypeE(≺) equals ε0.

This order will serve several purposes. First of all it will show that the ordinal
ε0 actually exists, i.e. the class ε0 is non-void. Upto now, we can only be sure that
the class ωω in non-void, cf. Theorem 16, and note that ωω < sup{ωk : k ∈ N} =
ε0. Secondly, the well-order ≺ will be defined through a recursive definition. This
definition eases the comparisons between two ordinals α, β ∈ On(ε0) to some
extent. Thirdly, the proof of well-foundedness of ≺ will show that otypeE(≺) ≤
otype T (Σ)(≺mpo) (for some multiset path ordering ≺mpo over the ground term
algebra based on some suitable chosen signature Σ). This renders the relative
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weakness of ε0. Finally, the well-order (E,≺) serves as a basis for further reaching
well-orders (T,≺), defined in a similar way. A specific extension is defined in
Section 3.4 to pin-down the precise order type of any multiset path order and
any lexicographic path order.

It should not come as a surprise that our order (E,≺) will be defined as an
order over notations for ordinals. Sometimes such an ordered pair (E,≺) is called
an (ordinal) notation system for the segment of ordinals On(ε0). The first part
consists in the construction of an appropriate notation system for the ordinals
less than ε0 together with the order ≺ on it. (Here we follow the approach
of Takeuti [1987].) It will become clear in the construction that otype(≺) =
ε0. After this is accomplished, we prove well-foundedness of the order ≺. This
completes the argument, as the construction of this notation system is done
carefully, such that irreflexivity and linearity are almost trivial by construction.
We forget about the previous definition of the collection On, and the operations
defined over elements of On.

Definition 31. Recursive definition of a set E of ordinal terms and a subset P
of E.

i. 0 ∈ E
ii. If α1, . . . , αm ∈ P , then α1 + · · ·+ αm ∈ E.
iii. If α ∈ E, then ωα ∈ P , and ωα ∈ E.
iv. Only those objects are in E that have been obtained through one of the above

clauses.

The last line in the definition makes sure that all objects in E will have either
the form α1 + · · · + αm for some number m and objects α1, . . . , αm ∈ P or
the form ωα, α ∈ E. It is important to note that the symbols 0, +, and ω are
arbitarily chosen objects. It may be convenient to conceive these symbols as
constructors instead of function symbols.

To simplify reading we will abbreviate the object ω0 by 1. It follows from the
definition of the set E that any object in E different from 0 can be represented
in the following form.

ωα1 + ωα2 + · · ·+ ωαn , (5)

where each of the α1, α2, . . . , αn is 6= 0 and has the same property. Note that for
each i = 1, . . . , n holds ωαi ∈ P . Now we can define the relation = and ≺ on E.

Definition 32. Recursive definition of the relation = and ≺, and the binary
function +, simultaneously.

i. 0 is the minimal element of ≺.
ii. If α ≺ β, then ωα ≺ ωβ, and vice versa.
iii. Let α ∈ E contain an occurrence of 0 but not 0 itself, and let β ∈ E be

defined by removing this occurrence of 0 (as well as excessive occurrences of
+) from α. Then α = β.

iv. Let α, β be of the form ωα1 + · · ·+ ωαm , and ωβ1 + · · ·+ ωβn , respectively.
Then α + β is defined as

ωα1 + · · ·+ ωαm + ωβ1 + · · ·+ ωβn .
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v. Let α ∈ E be written in the form (5) and contain two consecutive terms ωαi

and ωαi+1 with αi ≺ αi+1. That is α has the form

· · ·+ ωαi + ωαi+1 + . . . .

Let β ∈ E be obtained by removing the string “ωαi + ” from α, so that β is
of the form

· · ·+ ωαi+1 + . . . .

Then α = β.

vi. Suppose α = ωα1 + · · · + ωαm , and β = ωβ1 + · · · + ωβn , and suppose fur-
thermore that α1 � α2 � · · · � αm, and β1 � β2 � · · · � βn, holds. (α � β
means (β ≺ α)∨ (β = α).) Then α ≺ β iff ωαi ≺ ωβi for some i (1 ≤ i ≤ m)
and for all j = 1, . . . , i− 1 ωαj = ωβj holds.

It follows from (v) that any object α ∈ E can be uniquely represented in the
form

ωα1 + ωα2 + · · ·+ ωαn , (6)

where α1 � α2 � · · · � αm holds. If α is written in this way, we say that α is in
normal form. This normal form is unique as the same holds for any αi that is
used in the construction of the normal form.

Exercise 14. The relation ≺ is irreflexive, linear, and transitive.

Exercise 15. In Takeuti [1987] multiplication of ordinals is introduced as follows.
Suppose α is of the form (6). Let β > 0. Then α · ωβ = ωα1+β Use Definition 27
to show that this (counter-intuitive) definition is correct. Note β > 0.

Now we are in the position to prove the well-foundedness of (E,≺). One way
to establish this result would be to follow the approach by Takeuti [1987, pp. 99–
101]. There the notion of accessibility is introduced and employed to show the
well-foundedness of (E,≺). Another way would be to exploit Krukal’s Tree The-
orem, another standard technique in showing the well-foundedness of a given
(partial) order. However, it is more to the spirit of this course to follow another
(slightly more compact) approach.

Lemma 6. (E,≺) is well-founded.

Proof. Let Σ := {0, p, w}, where ar(0) = 0, ar(p) = 2, and ar(w) = 1, and let >
denote the total precedence w > p > 0 on Σ. We write ≺mpo for the multiset path
order induced by <. We will define a mapping o : (E,≺) → (T (Σ),≺mpo) such
that for all α, β ∈ E, α ≺ β → o(α) ≺mpo o(β) holds. This will imply that o is an
embedding of (E,≺) to (T (Σ),≺mpo). Thus any infinite descending ≺-sequence
in E gives rise to an infinite descending ≺mpo-sequence in T (Σ). By Theorem 12
we conclude that (T (Σ),≺mpo) is well-founded. This will establish the proof that
≺ is well-founded.
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Definition of o: Let α ∈ E be given. Due to Definition 32.v, α can be
written in the form (6). Thus it suffices to recursively define o on this normal
form: o(0) := 0, o(ωα) := w(o(α)), and finally

o(α1 + · · ·+ αn) := p(o(α1), o(α2 + · · ·+ αn)) ,

where n ≥ 2 and α1 � α2 � · · · � αm holds. To prove α ≺ β → o(α) ≺mpo

o(β), we proceed by induction on Size(β). We abbreviate (here and henceforth)
induction hypothesis by (ih).

Firstly we assume β = ωβ0 . Let α (6= 0) be written as (6). Observe that
by definition of ≺ we have for all i = 1, . . . , n that αi ≺ β0 holds. Note that
α ≺ β implies ωα1 ≺ ωβ0 (Definition 32.vi). Which in turn implies α1 ≺ β0

(Definition 32.ii). Furthermore, by definition of α, α1 � · · · � αn. By transitivity
of ≺ the assertion follows. As Size(β0) < Size(β) (ih) is applicable to derive
o(αi) ≺mpo o(β0) for all i. By definition of ≺mpo we obtain for all i = 1, . . . , n

o(ωαi) = w(o(αi)) ≺mpo w(o(β0)) = o(ωβ0) .

We set γi := ωαi , and consider o(α)

p(o(γ1), p(o(γ2), · · · , p(o(γn−1), o(γn)) · · · )) .

As w > p we need to show

o(γ1) ≺mpo o(ω
β0) and p(o(γ2), · · · , p(o(γn−1), o(γn)) · · · ) ≺mpo o(ω

β0) .

Obviously the first inequality follows by (ih). We iterate the argument to con-
clude o(α) ≺mpo o(ω

β0) = o(β).
Secondly, we consider the case where β equals ωβ1 +ωβ2 +· · ·+ωβm , where m ≥

2 and n > m. We suppose α (6= 0) is denoted as above. Hence, by definition there
exists i ∈ [1, n] such that αi ≺ βi. By a similar observation as before, we conclude
that ∀j ≥ i(αj ≺ βi). Thus by (ih) we conclude o(α1) = o(β1), . . . , o(αi−1) =
o(βi−1), and o(αi), . . . , o(αn) ≺mpo o(βi). We set δi := ωβi , consider o(β)

p(o(δ1), p(o(δ2), · · · , p(o(δm−1), o(δm)) · · · )) .

Note that o(γj) = o(δj) for all j = 1, . . . , i− 1. To show o(α) ≺mpo o(β) it thus
suffices to show

Ho(γi), p(o(γi+1), · · · , p(o(γn−1), o(γn)) · · · )I ≺mul
mpo

≺mul
mpo Ho(δi), p(o(δi+1), · · · , p(o(δm−1), o(δm)) · · · )I .

This follows by the same reasoning as in the first subcase. Thus we conclude
o(α) ≺mpo o(β).

Thirdly, we consider the case, where α, β are defined as above, but m >
n. Then o(α) ≺mpo o(β) follows by one application of Subterm clause in the
definition of ≺mpo. Finally, consider the case where α = 0. Then o(α) = 0 ≺mpo

o(β) for arbitrary β � 0 follows due to the setting of the precedence w > p > 0.
This completes the argument.
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Theorem 17. The binary relation ≺ is an irreflexive well-order of order type
ε0.

Proof. We take Exercise 14 for granted. Thus the irreflexivity, transitivity, and
linearity of ≺ has already been established. Due to Lemma 6 the relation ≺ is
well-founded. Thus ≺ is a well-order. It remains to show that ≺ is equivalent
to the initial segment <(ε0). However, a close look on Definition 21, Lemma 4,
Corollary 1, and Definition 32 suffices to see how an appropriate embedding from
Field(≺) onto Field(<) has to be defined.

Convention: In the following we will no longer distinguish between the order
< on On(ε0) and the order ≺ on notations of ordinals E.

3.4 The small Veblen ordinal

Let K be an arbitrary natural number ≥ 2, kept fixed for the rest of this section.
Based on the ordinal notation system (E,<) introduced in the last section, we
define a set of terms T (K) (and a subset P ⊂ T (K)) together with a well-order
< on T (K). The elements of T (K) are built from 0, + and the K-ary function
symbol ψ.

The notation system (E,<) was based on properties of the well-order <(ε0)
introduced in Section 3.1. Contrary, we introduce the notation system (T (K), <)
as a somehow direct extension of (E,<). The unary function symbol ω· is re-
placed by the K-ary function symbol ψ and the binary relation < is changed to
mimic this extension. As above note that the elements of T (K) are terms, not
ordinals. These ordinal terms can and will serve as representations of an initial
segment of the set of ordinals On. However, we will give their interpretation only
after we have finished the presentation of the partial ordered set (T (K), <) and
have established that (T (K), <) is a well-order.

Definition 33. Let K ≥ 2 be given. Recursive definition of a set T (K) of ordinal
terms, a subset P ⊂ T (K), and a binary relation > on T (K).

i. 0 ∈ T (K).
ii. If α1, . . . , αm ∈ P and α1 ≥ · · · ≥ αm, then α1 + · · ·+ αm ∈ T (K).
iii. If α1, . . . , αK ∈ T (K), then ψ(α1, . . . , αK) ∈ P and ψ(α1, . . . , αK) ∈ T (K).
iv. α 6= 0 implies α > 0.
v. α > β1, . . . , βm and α ∈ P implies α > β1 + · · ·+ βm.
vi. Let α = α1 + · · ·+ αm, β = β1 + · · ·+ βn. Then α > β iff

– m > n, and for all i (i ∈ {1, . . . , n}) αi = βi, or
– there exists i (i ∈ {1, . . . ,m}) such that α1 = β1, . . . , αi−1 = βi−1, and
αi > βi.

vii. Let α = ψ(α1, . . . , αK), β = ψ(β1, . . . , βK). Then α > β iff

– there exists k (1 ≤ k ≤ K) with αi ≥ β, or
– α > βl for all l = 1, . . . ,K and there exists an i0 (1 ≤ i0 ≤ K) such that
α1 = β1, . . . αi0−1 = βi0−1 and αi0 > βi0 .
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Remark 4. – Note that, as in Section 3.3, the set P ∈ T (K) corresponds to
the set of additive principal numbers H in On. We will elaborate on the
interpretation of the K-ary functions ψ below.

– Note the close correspondence between the definition of < on terms of
the form ψ(α) and ψ(β) and the way terms are compared in lexicographic
path orders. In particular compare Definition 15.ii in Section 2.4 and Defini-
tion 33.vii above.

As for the elements of On, we (ambiguously) use lower-case Greek letters to
denote the elements of T (K). Furthermore we formally define α+ 0 = 0 +α = α
for all α ∈ T (K). Note that 0 6∈ P .

Definition 34. To relate the elements of T (K) to more expressive ordinal nota-
tions, we define 1 := ψ(0), ω := ψ(0, 1), ε0 := ψ(0, 1, 0), and Γ0 := ψ(0, 1, 0, 0).

Let Lim be the set of elements in T which are neither 0 nor of the form
α + 1. Elements of Lim are called limit ordinal terms. Note that we use the
same notation for the set of limit ordinals in On and a subset of T . However, no
confusion will arise from this.

Exercise 16. Let (T (K), <) be defined as above. Show that < is a strict total
order on T .

Hint: Let Size(α) denote the number of symbols in the ordinal term α. Exploiting
induction on Size(α) one easily verifies that the order < is well-defined.

Theorem 18. Let (T (K), <) be defined as above. Then < is an irreflexive (count-
able) well-order on T .

Proof. We take the result of the exercise for granted. Hence it remains to estab-
lish that < is well-founded. (The fact that < is a countable order is trivial.) We
sketch the definition of an embedding o mapping (T (K), <) onto (T (Σ),≺lpo).
In the first step, we consider terms in P . That is we consider α = ψ(α1, . . . , αm),
and β = ψ(β1, . . . , βn). Then it is obvious how to define an embedding for α, β.

In the second step, we consider terms α = α1 + · · ·+αm and β = β1 + · · ·+βn.
We assume the embedding o has already be defined for P . Then we set

o(α) = o(α1 + · · ·+ αm) := p(o(α1), o(α2 + · · ·+ αm))

and similar for β. It is easy to check that α < β implies o(α) ≺lpo o(β).
Finally, a close look to the definition of (T (K), <) reveals that a comparison

between any terms α, β ∈ T (K) can always be reduced to a comparison of the
above kinds. This completes the construction of the embedding o. Hence the
well-foundedness of < follows from the well-foundedness of ≺lpo.

In the following proposition we want to relate the order type of the well-order
(T (K), <) and the wellfounded partial order (T (Σ,V),≺lpo). Concerning the lat-
ter it is best to momentarily restrict our attention to the well-order (T (Σ),≺lpo).
We write A(k) to denote the set of signatures Σ such that the maximal arity of
f ∈ Σ is ≤ k.
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Theorem 19. i. For any number k ≥ 1, there exists an embedding from the
well-order (T (Σ),≺lpo) into (T (k + 1), <), where Σ ∈ A(k).

ii. For any number k > 2, there exists an embedding from (T (K), <) into
(T (Σ),≺lpo), where Σ ∈ A(k).

iii. Finally, we have

sup
2≤k∈N

(otype(T (k), <)) = sup
k∈N
{otype (≺lpo) :

≺lpo is a LPO over Σ ∈ A(k)} .

Proof. The first two assertions are a consequence of the well-order proof of (T,<).
We only comment on the stated lower bound in the second one. The statement
fails for (T (2), <) and (T (Σ(2)),≺lpo) if only one binary function symbol is
present in Σ. The presence of the binary function symbol + in T (2) can make
the order < more expressive than ≺lpo. This difference vanishes for k ≥ 3. The
third assertion is a direct consequence of the first two.

We denote the supremum of the order types of the notation systems T (K) as
Λ.

Definition 35.

Λ := sup
26k

(otype(T (k), <)) = sup
k∈N
{otype (≺lpo) :≺lpo is a LPO over Σ ∈ A(k)} .

Remark 5. It follows from work by Schmidt [1979] that the ordinal Λ is equal to
the so-called small Veblen ordinal. For the convenience of readers familiar with
(ordinal) proof theory we mention that the small Veblen ordinal is sometimes
denoted as ϑ(Ωω), where Ω stands either for the first uncountable ordinal, of the
first not recursively representable ordinal ωCK

1 . We will not go into any details
here.

Now we turn to multiset path orders. We write C(k) to denote the set of
signatures Σ such that the cardinality of Σ is ≤ k.

Theorem 20. i. For any number k, there exists an embedding from the well-
order (T (Σ),≺mpo) into (T (2), <(ψ(k + 1, 0))), where Σ ∈ C(k).

ii. For any number k, there exists an embedding from (T (2), <(ψ(k, 0))) into
(T (Σ),≺mpo), where Σ ∈ C(k + 2).

iii. Finally, we obtain

sup
k∈N

(otype(T (2), <(ψ(k, 0)))) = sup
k∈N
{otype (≺mpo) :

≺mpo is a MPO over Σ ∈ C(k)} .

Proof. For the first part we recursively define a mapping o : (T (Σ),≺mpo) →
(T (2), <) as follows. If s = fj(s1, . . . , sm), then set o(s) := ψ(j, o(s1) + · · · +
o(sm)). Then it is easy to see that o(s) < ψ(k + 1, 0) for all s ∈ T (Σ). Further-
more it is easy to see that for all terms s, t ∈ T (Σ), s ≺mpo t → o(s) < o(t).
We leave this as an exercise. Hence o is indeed an embedding and therfore
otype(T (Σ),≺mpo) ≤ ψ(k + 1, 0), holds.
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Now consider the second part. We suppose Σ contains a constant symbol
0, a binary function symbol p, and k unary function symbols f0, . . . , fk−1. We
recursively define an embedding o : (T (2), <(ψ(k, 0)))→ (T (Σ),≺mpo) by

o(0) := 0 and o(α1 + · · ·+ αm) := p(o(α1), o(α2 + · · ·+ αn)) ,

where αi ∈ P for all i = 1, . . . ,m. Finally

o(ψ(i, α)) := fi(o(α)) for all i = 0, . . . , k − 1 .

This completes the definition of o. (Again the proof that o is indeed an embedding
is left as an exercise.)

The third assertion follows from the first two.

3.5 Interpretation

Now we turn to the interpretation of the notation system (T (K), <). The only
tricky part in the interpretation of the objects occurring in T (K) is to give an
interpretation for the K-ary function symbol ψ. To this end, we are going to
introduce a part of the Veblen [1908] function ϕ and its fixed point free variant
ψ. This part suffices to reach Λ.

For α1, . . . , αk ∈ On with k > 0 we intend to recursively define the branch
ϕᾱ : On → On of the Veblen function. It is advisable to interchangeably use
ϕᾱ(β) and ϕ(ᾱ, β), thus regarding ϕ as a function from the ordinal sequences of
lengths larger than 1 into the ordinals. The principal ordinals H are enumerated
by ϕ0̄. If αk > 0, then ϕᾱ is the enumerating function of

{β : (∀γ <αk)(ϕ(α1, . . . , αk−1, γ, β) = β)} ,

and otherwise we have (α1, . . . , αk) = (α1, . . . , αi, 0̄, 0) with αi > 0. Here we let
ϕᾱ be the enumerating function of

{β : (∀γ <αi)(ϕ(α1, . . . , αi−1, γ, β, 0̄, 0) = β)} .

Obviously ϕ0̄,ᾱ = ϕᾱ holds (Exercise). By definition ϕ0̄,1 enumerates the ep-
silons. The ϕ function lacks the subterm property since it admits fixed points.
Therefore we concentrate on ψ, the fixed point free version of ϕ.

Definition 36. We let ψ(α1, . . . , αk, β) be ϕ(ᾱ, β + 1) if β = β0 + n for some
n ∈ N and β0 ∈ Lim∪{0} with ϕ(ᾱ, β0) ∈ {α1, . . . , αk, β0}, and otherwise ψ(ᾱ, β)
is just ϕ(ᾱ, β).

Now we are in the position to restate the central result of this course, com-
pare Theorem 19 and Theorem 20.

Theorem 21 (Dershowitz and Okada 1988). Let Σ be a finite signature.
Let ≺lpo (≺mpo) denote a lexicographic (multiset) path order based on Σ. Then

i. supk∈N {otype (≺lpo) :≺lpo is a LPO over Σ ∈ A(k)} = Λ, our denotation of
the small Veblen ordinal and
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ii. supk∈N {otype (≺mpo) :≺mpo is a MPO over Σ ∈ C(k)} = ϕ(ω, 0).

We denote the first infinite ordinal closed under + and the k-ary ψ (k ≥ 2) as
∆k:

∆k := ϕ(1, 0, . . . , 0︸ ︷︷ ︸
k times

) = ψ(1, 0, . . . , 0︸ ︷︷ ︸
k times

) . (7)

Thus ∆2 coincides with the ordinal Γ0 celebrated by Gallier [1991]. (In other
contexts the ordinal Γ0 is sometimes called the ordinal of predicativity.) Note
that ∆k = otype((T (k), <)) (for k ≥ 2) follows directly from the definitions.

Another denotation for the small Veblen number Λ is ϑ(Ωω).The connection
between the Veblen function ϕ and ϑ was illuminated by Schmidt [1979]. The
equality Λ = ϑ(Ωω) comes about as follows.

Λ = sup {otype(T (k), <) : k ∈ N ∧ k ≥ 2} = sup {∆k : k ∈ N ∧ k ≥ 2} = ϑ(Ωω) .

The following theorem relates the strength of LPO to arbitrary simplification
orders.

Theorem 22 (Schmidt 1979).

sup {otype(≺) : ≺ is a simplification order} = Λ

By Proposition 7, for every ordinal α > 0 there are uniquely determined prin-
cipal ordinals α0 > . . . > αn such that α = α0 + · · · + αn holds. In addition,
for every principal α < ∆k there are uniquely determined α1, . . . , αk+1 below α
satisfying α = ψ(ᾱ), cf. Buchholz [1993]. So every α < ∆k can be associated with
a unique representation solely built up from 0, + and the K-ary ψ. We call this
the k-normal form of α. The next Lemma lists some of the basic properties of
ψ. Recall from Definition 5 that the lexicographic order of ordinal tuples having
the same length is denoted by <lex.

Lemma 7. Let α1, . . . , αk+1 and γ1, . . . , γk+1 be given.

i. Each ψ(ᾱ) is a principal ordinal and, except for ψ(0̄) = 1, a limit ordinal.
ii. The function ψ has the subterm property and is monotone.
iii. ψ(ᾱ) > ψ(γ̄) is equivalent to [ᾱ >lex γ̄ ∧ ψ(ᾱ) > γ̄] ∨ ψ(γ̄) 6 ᾱ.

Exercise 17. It is an easy but interesting exercise to relate the above Lemma
to the definition of the notation system (T (k + 1), <). In particular note the
correspondence between Lemma 7.iii and Definition 33.vii.

Recall from (2) the notion f(x̄, ·, ȳ)n(z) of the nth iteration of the unary func-
tion v 7→ f(x̄, v, ȳ) on z. The following Lemma contains all properties of ψ we
will rely on later.

Lemma 8. Let i ∈ [1, k]; m,n ∈ N, and ordinals α1, . . . , αk+1, γ1, . . . , γk+1,
δ, δ′ be given.

i. If n > m, then ψ(ᾱ) · n > ψ(ᾱ) ·m.
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ii. If ψ(ᾱ) > ψ(γ̄), then ψ(ᾱ) > ψ(γ̄) · n+m.
iii. If n > m; δ > δ′, and at least one of the inequalities is proper, then

ψ(α1, . . . , αi, ·, αi+1, . . . , αk)n(δ) > ψ(α1, . . . , αi, ·, αi+1, . . . , αk)m(δ′) .

iv. If (γ1, . . . , γi) >lex (α1, . . . , αi) and ψ(γ̄) > α1, . . . , αk, δ, then

ψ(γ̄) > ψ(α1, . . . , αi, ·, αi+1, . . . , αk)n(δ) .

Proof. The first point follows from ψ(ᾱ) ≥ 1. Under the conditions of (ii), ψ(ᾱ)
is a principal limit ordinal. For (iii) we utilize the subterm property and the
monotonicity of ψ, respectively. Finally, (iv) is established by induction on n
using Lemma 7.iii.

Exercise 18. Show the above Lemma without reference to the collection On, i.e.
purely on basis of the definition of < as introduced in Definition 33.

Remark 6. Note that in the remaining part of this course material, we need not
make use of the above defined interpretation of the notation system (T (K), <),
but can rely directly on the properties of (T (K), <) instead. Thus we can make
sure that the objects we are dealing with are always concretely.

4 Slow-growing and Fast-growing functions

The purpose of this section is to introduce hierarchies of subrecursive functions,
defined through transfinite recursion along the terms in the ordinal notation
system T (K), where K is an arbitrary natural number ≥ 2, cf. Definition 33.
Note that we can work purely within the ordinal notation system T based upon
the K-ary ψ function symbol. In particular no reference is made to the class On.

Convention: Throughout this section K is supposed to be fixed. To simplify
denotation we will drop the reference to K henceforth.

4.1 Fundamental sequences

To each ordinal term α ∈ T we assign a canonical sequence of ordinal terms
〈α[x] : x ∈ N〉, the fundamental sequence. We have to wade through some tech-
nical definitions. We define the set ISα(γ), the set of interesting subterms of γ
(relative to α) by induction on γ. We set ISα(0) := ∅, ISα(γ1 + · · · + γm) :=⋃m
i=1 ISα(γi), and finally

ISα(ψ(γ1, . . . , γK)) :=

{
{ψ(γ)} if (γ1, . . . , γK−1) ≥lex (α1, . . . , αK−1)⋃K
i=1 ISα(γi) otherwise.

The (relative to α) maximal interesting subterm MSα(γ1, . . . , γn) of a non-
empty sequence (γ1, . . . , γn) is defined as the maximum of the terms occurring
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in ISα(γi). Let >lex denote the lexicographic order on sequences of ordinal terms
induced by >. Let α = α1, . . . , αN ∈ T and β ∈ T . Then set

Fix(α) := {ψ(γ, δ) : γ >lex α and ψ(γ, δ) > αi for all i = 1, . . . ,K − 1} . (8)

Within this section λ (possibly extended by a subscript) will denote a limit
ordinal term.

Definition 37. Recursive definition of α[x] for x < ω.

0[x] := 0

(α1 + · · ·+ αm)[x] := α1 + · · ·+ αm[x] m > 1;α1 ≥ · · · ≥ αm
ψ(0)[x] := 0

ψ(0, β + 1)[x] := ψ(0, β) · (x+ 1)

ψ(0, λ)[x] := ψ(0, λ[x]) λ 6∈ Fix(0)

ψ(0, λ)[x] := λ · (x+ 1) λ ∈ Fix(0)

ψ(α1, . . . , αi + 1, 0, 0)[x] := ψ(α1, . . . , αi, ·, 0)x+1(0)

ψ(α1, . . . , αi + 1, 0, β + 1)[x] := ψ(α1, . . . , αi, ·, 0)x+1(ψ(α1, . . . , αi + 1, 0, β))

ψ(α1, . . . , αi + 1, 0, λ)[x] := ψ(α1, . . . , αi + 1, 0, λ[x]) λ 6∈ Fix(α, 0)

ψ(α1, . . . , αi + 1, 0, λ)[x] := ψ(α1, . . . , αi, ·, 0)x+1(λ) λ ∈ Fix(α, 0)

ψ(α1, . . . , λi, 0, 0)[x] := ψ(α1, . . . , λi[x], 0,MSα,λi,0(α, λi))

ψ(α1, . . . , λi, 0, β + 1)[x] := ψ(α1, . . . , λi[x], 0, ψ(α1, . . . , λi, 0, β))

ψ(α1, . . . , λi, 0, λ)[x] := ψ(α1, . . . , λi, 0, λ[x]) λ 6∈ Fix(α, 0)

ψ(α1, . . . , λi, 0, λ)[x] := ψ(α1, . . . , λi[x], 0, λ) λ ∈ Fix(α, 0)

The above definition is given in such a way as to simplify the comparison
between the fundamental sequences for T and the fundamental sequences for
the set of ordinal terms T (2) (built from 0, +, and a 2-ary function symbol
ψ) as presented in Weiermann [2001]. Note that our definition is equivalent to
the more compact one presented in Lepper [2003]. The following proposition is
stated without proof. A proof (for a slightly different assignment of fundamental
sequences) can be found in Buchholz [2003].

Theorem 23. Let α ∈ T be given; assume x < ω. If α > 0, then α > α[x].
For α > 1 we get α[x] > 0, and if α ∈ Lim, then α[x + 1] > α[x]. Finally, for
α ∈ Lim, supx<ω α[x] = α.

In the definition of ψ(α1, . . . , λi, 0, 0)[x] we introduce at the last position of
ψ the term MSa,0(α). We cannot simply dispense of this term. To see this, we
momentarily consider only 3-ary ψ-functions, set Γ0 := ψ(1, 0, 0) and calculate
ψ(0, Γ0[x], 0):

ψ(0, Γ0[x], 0) = ψ(0, ψ(1, 0, 0)[x], 0)

= ψ(0, ψ(0, ·, 0)x+1(0), 0) = ψ(0, ·, 0)x+2(0) < ψ(1, 0, 0) .

Hence for every x < ω we have ψ(0, Γ0[x], 0) < Γ0 < ψ(0, Γ0, 0).
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Definition 38 (Bachmann 1967). We say that a ordinal notation system T
together with an assignment of fundamental sequences is a Bachmann system
(T, ·[·]) if

α[x] < β < α→ α[x] ≤ β[0]

holds for all α, β ∈ T .

As a side-remark we want to mention that the given assignment of fundamental
sequences even fulfills the Bachmann property, i.e. (T, ·[·]) is a Bachmann system.

4.2 Subrecursive hierarchies

Utilizing Definition 37 we are now in the position to define subrecursive hierar-
chies of ordinal functions. We start with a technical definition.

Definition 39. A function f : N→ N (eventually) dominates g : Nn → N if

g(m1, . . . ,mn) < f(max {m1, . . . ,mn}) (9)

holds for (almost) all m1, . . . ,mn, where “almost all” means “all but finitely
many”.

We abbreviate eventual domination by g <ed f . The canonical variant using 6
in (9) is called 6ed. We extend the notion to sets X and Y of number-theoretic
functions, where X 6ed Y means (∀g ∈X)(∃f ∈Y )(g 6ed f). If additionally
Y 6ed X holds, then we mark this by X ≈ Y .

We assume the reader is familiar with the usual definitions of the set Elem
of elementary functions and the set Prec of primitive recursive functions. We
will briefly recall a nice classification of the set Prec through the (binary) Ack-
ermann function.

Definition 40 (Ritchie 1965). The (binary) Ackermann function is given by
Ack(n,m) := Ackn(m), with its branches Ackn : N→ N generated via

Ack0(m) := m+ 1 and Ackn+1(m) := Ackm+1
n (1) .

Usually the (binary) Ackermann function is defined differently, as follows,
cf. Péter [1935].

Ack(0,m) = m+ 1 ,

Ack(n+ 1, 0) = Ack(n, 1) , and

Ack(n+ 1,m+ 1) = Ack(n,Ack(n+ 1,m)) .

Exercise 19. Show that both formulations of the Ackermann function are equiv-
alent. Show that Ack is monotone in both its arguments. Show that the Ackn
are primitive recursive.

Theorem 24.
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i. For any primitive recursive function f : Nk → N there is an n such that

f(m1, . . . ,mk) < Ackn(max {m1, . . . ,mk})

holds for all m̄ ∈ N. Hence f is dominated by Ackn.
ii. We have Prec ≈ {Ackn : n ∈ N}.
iii. Ack is not primitive recursive.
iv. For all n we have Ack(n, n) 6 Ack(n+ 2, 0).

We extend the binary function Ack to higher arities.

Definition 41. For k > 2 the k-ary Ackermann function is defined by

Ack(0̄,m) := m+ 1 ,

Ack(l̄, n+ 1, 0) := Ack(l̄, n, 1) ,

Ack(l̄, n+ 1,m+ 1) := Ack(l̄, n,Ack(l̄, n+ 1,m)) , and

Ack(l1, . . . , li−1, li + 1, 0, 0̄,m) := Ack(l̄, m, 0̄,m) .

We slightly simplify the usual definition of the set of multiple recursive func-
tions. See Péter 1936 for the original definition.

Definition 42 (Péter 1936). The set Mrec of multiple recursive functions
is the smallest set of number-theoretic functions which contains zero functions
of arbitrary arities, the successor, and the projections and is closed under sub-
stitution and all k-ary Ackermann functions.

Definition 43. Based (and depending) on our Bachmann system (T, ·[·]), we re-
cursively define three hierarchies of number-theoretic functions. Consider α, λ ∈
T with λ ∈ Lim.

The fast growing functions (Fγ)γ∈T are based on iterations

F0(m) := m+ 1, Fα+1(m) := Fm+1
α (m), and Fλ(m) := Fλ[m](m) .

Of slightly slower growth (below ε0) are the Hardy functions (Hγ)γ∈T

H0(m) := m, Hα+1(m) := Hα(m+ 1), and Hλ(m) := Hλ[m](m) .

Finally, the slow growing functions (Gγ)γ∈T

G0(m) := 0, Gα+1(m) := Gα(m) + 1, and Gλ(m) := Gλ[m](m) .

Hardy [1904] used the Hγ to construct a set of real numbers of cardinality ℵ1,
and their first appearance in the field of subrecursive hierarchies is Wainer [1972].
Robbin [1965] investigated the fast growing functions up to ωω as the canonical
extension of (variants of) the Grzegorczyk [1953] functions to the transfinite.
Later this approach was extended to ε0, see Löb and Wainer [1970], Schwichten-
berg [1971], and Wainer [1970]. Weiermann [1997] observed that the choice of the
underlying assignment of fundamental sequences is vital to the slow growing hi-
erarchy. In contrast to this, the other two hierarchies are not that much affected
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by changes of the assignment. However, the slow growing functions possesses
some nice properties. Any primitive recursive function f over N

f(a, 0) := h(a)

f(a, b+ 1) := g(a, b, f(a, b))

can be easily extended to T by extending the definition of f with a third clause
for the ‘limit’ case. Assume ρ, χ express the extensions of h, g, respectively. Set

φ(α, 0) := ρ(α)

φ(α, β + 1) := χ(α, β, φ(α, β))

φ(α, λ) := sup
x∈N

φ(α, λ[x]) .

With the use of the slow-growing hierarchy a clear connection between the
number-theoretic function f and its lifting φ : T → T can be given. To make
the argument easily presentable we swap the argument in the definition of the
G function. We write Gn(α) instead of Gα(n). I.e. for each fixed n ∈ N there is
a function Gn : T → N. We prove that

Gn(φ(α, β)) = f(Gn(α),Gn(β))

assuming we have already for fixed n, and all α, β, γ.

Gn(ρ(α)) = h(Gn(α))

Gn(χ(α, β, γ)) = g(Gn(α),Gn(β),Gn(γ)) .

The result follows from a simple induction on β. Hence Gn constitutes a homo-
morphism, collapsing the arithmetic on T down to N. Using the recipe above,
the following Lemma is easy.

Lemma 9. Let n ∈ N be fixed. Then

Gn(α+ β) = Gn(α) + Gn(β)

Gn(α · β) = Gn(α) ·Gn(β)

Gn(αβ) = Gn(α)Gn(β) .

As properties of the fast-growing hierarchies note the following facts.

Exercise 20.
Hα+β = Hα ◦Hβ and Hωα = Fα .

Definition 44. Let <(x) denote the transitive closure of .[x]. I.e.

α <(x) β :⇐⇒ α <(x) β[x] ∨ α = β[x] .

Lemma 10. For all α ∈ T .

i. Gα is increasing (strictly if α is infinite), and if β <(n) α, then Gβ(m) <
Gα(m) for all m > n.
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ii. Hα and Fα are strictly increasing, and if β <(n) α, then Hβ(m) < Hα(m),
and Fβ(m) < Fα(m) for all m > n.

Proof. We only prove that (a) Gα is increasing and (b) that for all n < m,
β <(n) α → Gβ(m) < Gα(m) by simultaneous induction on α. To prove the
second assertion of the proposition, follow the pattern of the given proof. We
abbreviate induction hypothesis as (ih).

Let α = 0. Then G0(m) = 0 = G0(m + 1). Now consider a successor ordinal
α+ 1. Then

Gα+1(m) = Gα(m) + 1 ≤ Gα(m+ 1) + 1 = Gα+1(m+ 1) .

Finally consider the case of a limit ordinal λ. By definition and (ih)

Gλ(m) = Gλ[m](m) ≤ Gλ[m](m+ 1) .

To proceed we have to prove the following claim.

Claim. For any m,n, n < m, and λ ∈ Lim, λ[n] <(0) λ[m] holds.

Assume the claim has already been established. Then (ih) yields

Gλ[m](m+ 1) ≤ Gλ[m+1](m+ 1) = Gλ(m+ 1) ,

yielding property (a). Now we prove the claim. Due to Theorem 23 we obtain
λ[n] < λ[m]. Now we apply the Bachmann property (λ[n] < λ[m] < λ)→ (λ[n] ≤
λ[m][0]) repeatedly to derive λ[n] = λ[m][0] . . . [0]. Thus we obtain λ[n] <(0)

λ[m].
We turn to property (b). The case α = 0 is trivial. Assume the case of a

successor ordinal, and suppose β <(n) α + 1. Hence either β = α or β <(n) α.
Assume the former, then

Gβ(m) < Gβ(m) + 1 = Gα(m) + 1 = Gα+1(m) .

on the other hand, we have by (ih)

Gβ(m) < Gα(m) < Gα(m) + 1 = Gα+1(m) .

Finally consider a limit ordinal λ. Then assume β <(n) λ, and assume β = λ[n].
By the claim, we obtain λ[n] <(0) λ[m] and thus

Gβ(m) = Gλ[n](m) < Gλ[m](m) < Gλ(m) .

Theorem 25. Let α, β ∈ T . Assume β < α. Then Gβ ( Hβ, Fβ) is eventually
dominated by Gα ( Hα, Fα).

Proof. This time, we argue with respect to the Hardy hierarchy. We employ
induction on α. If β < α, then there exists n such that β < α[n] by Theorem 23.
Hence, by (ih), Hβ is eventually dominated by Hα[n]. If m > n, then Hα[n](m) <
Hα(m), by the Proposition. Thus Hα eventually dominates Hβ .
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In the literature another variant of the Hardy hierarchy occurs, whose defini-
tion is slightly different.

Definition 45. Consider α, λ ∈ T with λ ∈ Lim. We define a slightly faster
growing variant of the Hardy functions (H′γ)γ∈T

H′0(m) := m, H′α+1(m) := H′α(m+ 1), and H′λ(m) := H′λ[m](m+ 1) ,

and the related counting functions (Lγ)γ∈T

L0(m) := 0, Lα+1(m) := Lα(m+ 1) + 1, and Lλ(m) := Lλ[m](m) + 1 .

This variant of the Hardy hierarchy allows a more direct assessment of the
longest possible Hydra battle, see Section 5. The following lemma relates the
functions H′α and Lα.

Lemma 11. For any α < Λ and any m ∈ N we have H′α(m) = H′Lα(m)(m) =

m+ Lα(m).

Proof. The second equation is easily established by noting that for finite n we
have H′n(m) = n+m. We prove the first equation by induction on α. The case
α = 0 follows from L0(n) = 0. For α 6= 0 we put γ := α[m] and gladly see

H′α(m) = H′γ(m+ 1) = H′Lγ(m+1)(m+ 1) = H′Lγ(m+1)+1(m) = H′Lα(m)(m)

suffices.

Exercise 21. Let α ∈ T , m ∈ N be given. Show that Hα(m) ≤ H′α(m). Further-
more show that the second assertion of Exercise 20 fails when Hωα is replaced
by H′ωα .

Taking the exercise for granted, we see that the newly defined variant of the
Hardy hierarchy grows (slightly) faster than the original one. Furthermore the
two hierarchies are different. However, we have the following result, showing that
the growth-rate of both functions coincide.

Lemma 12.
⋃
α∈T

Hα ≈
⋃
α∈T

H′α.

Proof. The inclusion form left to right follows from the Exercise. To show the
other direction it suffices to show

H′α(m) ≤ Hα+1(m) for any α ∈ T,m ∈ N. (10)

First we consider the following claim.

Claim. Let λ ∈ Lim. Then λ[x] + 1 ≤(0) λ[x+ 1].

Assume the claim has already established. We proceed by induction on α. The
case α = 0 is trivial. Consider a successor ordinal α+ 1. Then

H′α+1(m) = H′α(m+ 1) ≤ Hα+1(m+ 1) = H(α+1)+1(m) .
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Finally consider a limit ordinal λ. Then we obtain by (ih) and an application of
Lemma 10

H′λ(m) = H′λ[m](m+ 1)

≤ Hλ[m]+1(m+ 1)

≤ Hλ[m+1](m+ 1) = Hλ(m+ 1) = Hλ+1(m) .

It remains to prove the claim. Let λ ∈ Lim. Due to Theorem 23 we obtain
λ[x] + 1 ≤ λ[x + 1] < λ. Hence following the pattern of the proof of Lemma 10
we obtain either λ[x] + 1 <(0) λ[x + 1] or λ[x] + 1 = λ[x + 1]. Hence the claim
follows.

To see that the name of the hierarchy
⋃
α∈T Gα is appropriate, we calculate

an example. Take e.g. Gω:

Gω(x) = Gψ(0)·(x+1)(x) = Gx+1(x) = Gx(x) + 1 = x+ 1 .

Furthermore note the following facts.

Exercise 22. Gε0 majorizes the elementary functions Elem. Fω majorizes the
primitive recursive functions Prec. That is its growth rate is comparable to the
(binary) Ackermann function.

Furthermore the class Mrec of multiple recursive functions can be characterized
by

Theorem 26 (Péter 1967, Robbin 1965).

Mrec ≈
⋃
γ<ωω

Fγ ≈
⋃

γ<ωωω

Hγ

The following theorem states a (surprising) connection between the slow- and
fast-growing hierarchy. This theorem shows the difference in the growth-rate be-
tween the slow-growing and the fast-growing functions. (Note that due to the
second result of Exercise 20 Hε0 and Fε0 have the same growth rate.) See e.g. Gi-
rard [1981], Cichon and Wainer [1983], Weiermann [2001] for further reading on
the Hierarchy Comparison Theorem.

Theorem 27 (The Hierarchy Comparison Theorem).⋃
α∈T (K)

Gα ≈
⋃

γ<ωK+1

Fγ .

Proof. We do not give a detailed proof, but only state the main idea. In Weier-
mann [2001] the hierarchy comparison theorem has been established for the set
of ordinal terms T (2) (built from 0, +, and the binary function symbol ψ). To
extend the result to T it suffices to follow the pattern of the proof in Weiermann
[2001].

The difficult direction is to show that every function in the hierarchy {Fγ : γ <
ωK+1} is majorized by some Gα. To show this one in particular needs to extend
the proofs of Lemma 5 and Theorem 1 in Weiermann [2001] adequately. The
reversed direction follows by standard techniques, cf. Cichon and Wainer [1983].
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Theorem 28. ⋃
α<ψ(ω,0)

Gα ≈
⋃
γ<ω

Fγ ≈ Prec .

Proof. Again the difficult direction is to show that every Fγ with γ < ω is
majorized by some Gα. This follows directly from Theorem 1 in Weiermann
[2001]. To show the other direction one follows the proof of Theorem 27.

5 Simple Termination is Really Really Complex

If termination of a TRS R is established by showing R is compatible with a
simplification order, then this can be used to impose an upper bound on the
worst case behaviour of R. The worst-case behavior of a terminating TRS can
be measured by the lengths of its derivations.

First we define dlR : T (Σ) → N in such a way that dlR(s) is the maximal
length of a derivation starting from s:

dlR(s) := max {dlR(t) + 1 : s→R t},

using the convention max ∅ = 0. This is well-defined by an invocation of König’s
Lemma since the finiteness of R implies →R is finitely branching. Now we intro-
duce the derivation length function or complexity DlR : N→ N by

DlR(n) := max {dlR(s) : s ∈ T (Σ) ∧ dp(s) 6 n}.

The condition dp(s) 6 n guarantees weak monotonicity. It suffices to consider
only closed terms because any derivation may be transformed, under preservation
of depths and sizes, to a derivation of equal length containing only closed terms:
simply apply a substitution which maps all variables to constants. One glance
at Definition 24 shows dlR corresponds to a certain order type.

Lemma 13. For any terminating TRS R we have otype(T (Σ),
+←R) 6 ω since

dlR(s) is just the order type of s in the partial order (T (Σ),
+←R).

We know from Theorems 5 and 6 that

– a termination proof via MPO implies there is a primitive recursive bound on
the derivation length function and

– a termination proof via LPO implies there is a multiple recursive bound on
the derivation length function.

Both results are essentially optimal. In Chapter 6 we will encounter proofs of
these Theorems which relate the order types of the involved orders to the slow
growing hierarchy of Definition 43. In the general case, slow growing functions
have to be replaced with Hardy functions.

Theorem 29 (Weiermann 1994). For every simply terminating TRS R there
exists α < Λ such that the complexity of R is dominated by Hα.
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We recall from Theorem 22 that Λ is the supremum of the order types of sim-
plification orders. One may wonder if there is a closer connection between the
complexity of the TRS and the order type of the compatible order. And indeed,
there is a rather close connection.

Theorem 30 (Buchholz et al. 1994, Theorem 1). If a TRS R is compatible
with a simplification order of order type α then the complexity of R is dominated
by some Hβ with β < α+ ωω.

The aim of this section is to show that these gigantic bounds (recall from
Theorem 26 that all multiple recursive functions are eventually dominated by
Hα for α = ωω

ω

) are essentially optimal. For k > 1 we construct TRSs Rk which
are able to simulate, for all α < ∆k+1, computational processes which are closely
related to computing Hα(n). More precisely, we will see below that the Hardy
function is related to an iterated application of fundamental sequences in the
following sense:

Hα(n) = n+ min {m : α[n][n+ 1] . . . [n+m− 1] = 0}

For reasons which will be elucidated later this iterated application is called the
Hydra battle. The battles will be simulated by the Rk, yielding a complexity DlRk
related to H∆k+1

.
The structure of this section is as follows. In Section 5.2 we have to give a

slight reformulation of the notation system for Λ of Definition 37 since in a term
rewriting setting we have to stick to a + with fixed arity. Consequently, we
have to adapt the definition of fundamental sequences to this new setting. For
a fixed k > 1, the TRS Rk mentioned above is then introduced in Section 5.2,
and it is shown that its complexity eventually dominates all Hα with α < ∆k+1.
Total termination of Rk is established in Section 5.3 using Touzet’s technically
smooth characterization of total termination from Theorem 10. The Rk are given
in a uniform manner, and for k > l the TRS Rk can be regarded as a proper
extension of Rl. Thus the Rk constitute a hierarchy of totally terminating TRSs,
and the complexity of any simply terminating TRS is eventually dominated by the
complexities of almost all Rk. This stepwise approach from below is inevitable
as, due to Theorem 29, it is not possible to define a simply terminating TRS

which is able to simulate Hydra battles for all ordinals below Λ.
We are now going to formally introduce Hydrae and Hydra battles and to

show the connection between these battles and the Hardy hierarchy.

Definition 46. For m ∈ N we introduce

α[n,m] :=

{
α if n > m ,

(α[n,m− 1])[m] otherwise.

Thus α[n,m] = α[n][n + 1] . . . [m]. The main results concerning subrecursive
hierarchies in Chapter 4 are related to the ordinal notation system T (k), cf. Def-
inition 33.
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The battle of Hercules and the Hydra from Kirby and Paris [1982] is closely
connected to the Hardy functions. This is emphasized by the fact that Hardy
is an anagram for Hydra. The name of the battle refers to the famous fight of
Hercules against the Hydra, a multi-headed monster. In the battle, Hercules tries
to chop off the heads of the Hydra with his sword, but each time he chops off
one head a couple of new heads grow out of the fresh wound. However, Hercules
wins the fight as soon as he realizes that the heads stop to grow when he burns
fresh wounds with a torch.

The connection to the theoretical battle defined below is as follows. We take the
place of Hercules and fight against a Hydra configuration (α, n) with α < ∆k+1

and n ∈ N. At each configuration (β,m) of the battle we manage to chop off
something from the Hydra, reaching the new configuration (β[m],m+ 1). Thus
many new heads (in the term) grow as long as β is a limit ordinal, whereas no
new heads appear only if β is a successor or zero. Of course nothing new happens
when we arrive at 0.

Definition 47. A Hydra is an ordinal below ∆k+1. For each Hydra α the or-
dered pair c := (α, n) is called a configuration. The next configuration c+ for
c is (α[n], n + 1), and the Hydra battle for the configuration c is the sequence
(cm)m<ω of configurations with c0 = c and cm+1 = c+m. The minimal m such
that the Hydra in cm is 0 is called the length of the battle.

An immediate consequence of Theorem 23 is (∀α> 0)(∀n)(α > α[n]), thus the
length of the battle is well-defined for each configuration. The following Lemma
gathers a few basic facts about Hydra battles, and it links the length of a battle
to the counting functions Lα of Definition 45.

Lemma 14. Let c := (α, n) be a configuration and consider its battle (cm)m∈N.

i. For all m we have cm = (α[n, n+m− 1], n+m).
ii. The length of the battle is the minimal m such that α[n, n+m− 1] = 0.
iii. The length of the battle is Lα(n).

Proof. We can show (i) by an induction on m, and (ii) is an easy consequence
of this. An induction on α establishes (iii).

The counting functions are tailored exactly for the Hydra battle, and hence the
Hardy functions are also closely related to the battle.

Proposition 8. The function which maps n to the length of the battle for the
configuration (∆k+1, n) eventually dominates all Hα with α < ∆k+1.

Proof. We combine Lemma 11 and Lemma 14.iii to see that the length of the
battle for (∆k+1, n) is H′∆k+1

(n)− n. Since ∆k+1 is a limit ordinal, Theorem 25

and (10) establish the claim.

5.1 Encoding all Hydrae

Since we work in a rewriting setting, we have to encode all Hydrae below ∆k+1

by terms using a + of finite arity. For these terms the fundamental sequences of
Definition 37 have to be adapted.
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Definition 48. The signature Σ0 consists of

– the constant 0,
– the unary (successor) S,
– the binary +, and
– the k + 1-ary P, which represents ψ.

Each s ∈ T (Σ0) has a value val(s) < ∆k+1, which is calculated by interpreting
0, S, +, P with 0, the successor function, the ordinal sum, and ψ, respectively.

The symbol S is not really needed for encoding Hydrae since the terms Ss and
+(s,P(0̄)) have the same value. We use S as a syntactic indicator of successor
ordinals, and additionally its presence will simplify various calculations.

Obviously, each ordinal below ∆k+1 can be denoted by terms of T (Σ0). To
mimic fundamental sequences on terms we introduce a set of standard terms.
Because our + has fixed arity and because we do not want to bother about
distinguishing between +(+(s, t), u) and +(s,+(t, u)), there will usually be dis-
tinct standard terms denoting the same ordinal. Furthermore, for γ < ∆k+1

denoted by the standard term s and for n > 0 we intend to denote γ+n by Sns,
thus using + only for certain additions of (standard terms for) limit ordinals.
This will be useful later when we treat derivations of standard terms.

Recall from Definition 29 that ⊕ denotes the natural sum of two ordinals. A
pair (λ, µ) of limit ordinals is called compatible if λ+ µ = λ⊕ µ holds.

Definition 49. The set D ⊆ T (Σ0) of standard terms is the smallest superset
of {0} which is closed under S and these rules:

– s̄ ∈ D and s̄ 6= 0̄ =⇒ P(s̄) ∈ D,
– s, t ∈ D and (val(s), val(t)) compatible =⇒ +(s, t) ∈ D.

By D(α) we denote the collection of standard terms with value α.

The following Lemma should be no surprise.

Lemma 15.

i. If s′ is a proper subterm of s ∈ D(α), then there is β < α with s′ ∈ D(β).
ii. For all α < ∆k+1 we have D(α) 6= ∅.
iii. D is the union of the D(α) with α < ∆k+1.

Definition 50. A formal multiplication for a term s and n > 0 is defined by

s× n := +(·, s)n−1(s) .

It will be important that the recursion occurs in the first argument.
Our aim is now to mimic Definition 37, the definition of α[n], for the members

of D. We encounter some difficulties on the way. Our rather granulated definition
of standard terms implies that a formal equivalent to fundamental sequences
for standard terms will not always produce standard terms. For example, if we
defined P(0̄,Ss)[n] to be P(0̄, s) × (n + 1), this would result in occurrences of
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the nonstandard term P(0̄) for s = 0. We overcome this obstacle for d ∈ D(α)
by simultaneously defining d〈n〉 and d[n], where d〈n〉 is a formal equivalent to
α[n] which need not be a standard term but has a uniform definition, while d[n]
is a refinement of d〈n〉 and an element of D(α[n]). Later we will work in a TRS

which is able to reduce d〈n〉 to d[n].

Definition 51. By D(Lim) we denote the set of standard terms whose values
are limit ordinals, while the analogies to Fix(ᾱ) and MSᾱ(β̄) on D are called
Fix(s̄) and MSs̄(t̄).

Definition 52. For d ∈ D and n ∈ N we simultaneously define d〈n〉 and d[n],
both members of T (Σ0), by recursion on D:

0〈n〉 := 0 (11a)

Ss〈n〉 := s (11b)

+(s, t)〈n〉 := +(s, t[n]) (11c)

P(s̄, t)〈n〉 := P(s̄, t[n]) if t ∈ D(Lim) \ Fix(s̄) (11d)

P(0̄,St)〈n〉 := P(0̄, t)× (n+ 1) (11e)

P(0̄, t)〈n〉 := t× (n+ 1) (11f)

P(s1, . . . ,Ssi, 0̄,St)〈n〉 := P(s̄, ·, 0̄)n+1(P(s1, . . . ,Ssi, 0̄, t)) (11g)

P(s1, . . . ,Ssi, 0̄, t)〈n〉 := P(s̄, ·, 0̄)n+1(t) (11h)

P(s1, . . . , si, 0̄, 0)〈n〉 := P(s1, . . . , si[n], 0̄,MSs̄,0̄(s̄)) (11i)

P(s1, . . . , si, 0̄,St)〈n〉 := P(s1, . . . , si[n], 0̄,P(s1, . . . , si, 0̄, t)) (11j)

P(s1, . . . , si, 0̄, t)〈n〉 := P(s1, . . . , si[n], 0̄, t) . (11k)

Similar to Definition 37, si 6= 0 is required for (11i)–(11k).
If d = +(s, t) and t[n] = Sit′ where i is as large as possible, we put

+(s, t)[n] :=

{
Sis if t′ = 0 ,

Si+(s, t′) otherwise.

Moreover, we demand P(0̄,S0)[n] := Sn+10 as well as

P(0, . . . ,S0, 0̄, 0)[n] := P(0, . . . , 0, ·, 0̄)n(S0) ,

and in all remaining cases we put d[n] := d〈n〉. For m ∈ N we further introduce
d[n,m] in analogy with the α[n,m] of Definition 46.

We now show that this definition is correct and meets our requirements.

Lemma 16. Let α < ∆k+1 and n ∈ N. For d ∈ D(α) we have val(d〈n〉) = α[n]
and d[n] ∈ D(α[n]).

Proof (Proof by induction on D). As the definition of d〈n〉 just copies Defini-
tion 37, the first statement is immediate from the induction hypothesis. Because
in the above definition recursion is only used for standard terms s and t denoting
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limit ordinals, we have s[n] 6= 0 and t[n] 6= 0 according to the induction hypoth-
esis and Theorem 23. Since MSs̄,0̄(s̄), being a subterm of some sj ∈ D, cannot be
P(0̄), the only possible occurrences of P(0̄) in d〈n〉 are the ones we gave special
treatment in the definition of d[n]. In both cases it is obvious that d〈n〉 and d[n]
have the same value and that d[n] is standard.

Now let d = +(s, t) and let i, t′ be as in the definition of d[n]. Since d is
standard, we know the pair (τ, µ) with τ := val(s) and µ := val(t) is compatible.
The statement obviously holds if t′ = 0. So let t′ denote a limit ordinal, say µ′. By
Definition 49 we have to show (τ, µ′) is compatible. This is done by proving µ′ 6
µ. The induction hypothesis yields t[n] is a standard term with val(t[n]) = µ[n].
Because µ is a limit, Theorem 23 implies µ > µ[n] holds, thus µ′ 6 µ[n] < µ. So
d[n] is standard and has the correct value. In the remaining cases the statement
easily follows from the induction hypothesis.

5.2 Simulating all Hydra battles

We are now prepared to gradually define the TRS R, which is intended to simulate
all Hydra battles below ∆k+1. Therefore Σ0 has to be enlarged by new symbols
whose meaning will be elucidated in the following definitions.

Definition 53. The signature Σ consists of Σ0 enriched by

– the unary •, ◦, and 8,
– the k + 1-ary M,
– the i+ 1-ary Ji, for 1 6 i 6 k,
– the i+ 1-ary Qij, for 1 6 j 6 i 6 k, and
– the i+ 2-ary Ri, for 1 6 i 6 k.

It will sometimes be necessary to reduce a term to one of its subterms. Since R
is intended to be totally and thus simply terminating, we may introduce, for all
symbols f ∈ Σ(n) with n > 0 and for 1 6 i 6 n, embedding rules

(Sif) f(x1, . . . , xn)→ xi .

Because 0 is the only constant, the following result is blatantly trivial, even
though we did not yet define the whole of R.

Lemma 17. Each s ∈ T (Σ) reduces in less than dp(s) + 1 steps to its unique
normal form 0. If s′ is a subterm of s, then s

∗→ s′.

The promised rules which enable us to reduce d〈n〉 to d[n] are

(F1) P(0̄)→ S0 , (F2) +(x,Sy)→ S+(x, y) .

Lemma 18. For d ∈ D we have d〈n〉 ∗→ d[n].

Proof. The difference between d〈n〉 and d[n] for d = P(0̄,S0, 0̄, 0) consists of
one single P(0̄) which is replaced with S0. This can be handled by (F1). For
d = P(0̄,S0) and n > 0 we have to show P(0̄) × n +→ Sn0, which is done by
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induction on n. The case n = 1 is again established by (F1), while the induction
hypothesis yields P(0̄)× (n+ 1)

+→ +(Sn0,P(0̄)). Now we get

+(Sn0,P(0̄))→F1 +(Sn0,S0)→F2 S+(Sn0, 0)→S1+ Sn+10 .

It suffices for the remaining case d = +(s, t) to note that

+(s,Sit′)
∗→F2 Si+(s, t′)→S1+ Sis

is possible for arbitrary i and t′.

Following Touzet [1998], R is to regard •8n+1
d with d ∈ D as a term which

encodes the battle configuration (val(d), n). Since we want to simulate Hydra

battles at full length we intend, for d 6= 0, to make possible derivations •8n+1
d

+→
•8n+2

d[n], which can then be iterated until •8n+m0 is reached.

For some calculations it will be necessary to facilitate •8n+1
d

+→ 8n+1•n+1d,
so that •n+1 may be moved to the top of subterms of d as material which can be
deleted in subderivations. When we reach a point where d can safely be modified
into something close to d〈n〉, we do so and put a ◦ on top of the new subterm.

This ◦ will enable us to create •8 in front of 8n+1
d[n], furthermore, recursions

like the one needed for (11c) can be simulated. The required rules are variations
on rules of Touzet [1998]:

(N1) •8x→ 8••x , (N2) 8◦x→ ◦88x ,

(N3) ◦x→ 8x , (N4) 8x→ •x .

Lemma 19. For n > 0 and s ∈ T (Σ) we have

i. 8ns +→ •ns +→ s
ii. •8ns +→ 8n•ns
iii. 8n◦s +→ •8n+1

s.

Proof. For (i) we rely on (N4) and (S1•), while (ii) follows from (i) and •8ns +→
8n•2ns, which is shown by induction on n using

•m8s ∗→N1 8•2ms , (12)

which in turn is shown by induction on m > 0 using (N1). We get (iii) from

8n◦s +→N2 ◦82n
s
∗→ ◦8n+1

s→N3 88n+1
s→N4 •8n+1

s .

Its first step is won like (12), and the second one relies on 2n > n+ 1 and (i).

To simulate cases like (11c) we have to import • and 8 into standard terms. For
f ∈ {S,+,P} with arity n and for 1 6 i 6 n we thus introduce the rule

(Dif) •f(x̄)→ f(x1, . . . , 8xi, . . . , xn) .
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Lemma 20. For s, t, s̄ ∈ T (Σ); n > 0, and 1 6 i 6 k + 1 we have

i. •n+1+(s, t)
+→ +(s, •n+1t)

ii. •n+1P(s̄)
∗→ •P(s1, . . . , •nsi, . . . , sk+1)

+→ P(s1, . . . , •n+1si, . . . , sk+1)

iii. •n+1P(s̄)
+→ P(s1, . . . , 8

n+1
si, . . . , sk+1)

iv. •n+1P(s1, . . . ,Ssi, . . . , sk+1)
+→ P(s1, . . . ,S8n+1

si, . . . , sk+1).

Proof. To settle (i), (D2+) is applied n + 1 times, and afterwards we rely on
Lemma 19.i. With little changes, using (DiP) and (D1S) instead of (D2+), the
remaining points follow.

As mentioned earlier, importing •n or 8n shall enable us to locally reduce until
it is safe to create a ◦ on top of the subterm we treated. Sometimes such a ◦ has
to be exported. This is achieved by these rules:

(E2+) +(x, ◦y)→ ◦+(x, y)

(EiP) P(x1, . . . , ◦xi, . . . , xk+1)→ ◦P(x̄) for 1 6 i 6 k + 1 .

In order to simulate (11e)–(11h) we need rewrite rules for a special kind of
multiplication and for iterations of P. Since multiplication amounts to iterating
+, the rules are very similar:

(RM) M(x̄, 8y)→ +(M(x̄, y),P(x̄, y))

(RJi) Ji(x1, . . . , 8xi, y)→ P(x̄, Ji(x̄, y), 0̄) for 1 6 i 6 k .

Lemma 21. For s̄, t ∈ T (Σ); n > 0, and 1 6 i 6 k we have

i. M(s̄, 8nt) +→ P(s̄, t)× n
ii. Ji(s1, . . . , 8

n
si, t)

+→ P(s1, . . . , si, ·, 0̄)n(t).

Proof. As both statements are treated similarly by induction on n, we only
prove (i) in detail. For the start we have

M(s̄, 8t)→RM +(M(s̄, t),P(s̄, t))→S2+ P(s̄, t) ,

and the induction step is

M(s̄, 8n+1
t)→RM +(M(s̄, 8nt),P(s̄, 8nt))

+→ +(M(s̄, 8nt),P(s̄, t))
+→ +(P(s̄, t)× n,P(s̄, t)) ,

where we used Lemma 19.i and the induction hypothesis for the last two steps.
Statement (ii) relies on (RJi) and (Si+1Ji) instead of (RM) and (S2+).

We now present the rules intended to carry out the transformations prescribed
by Definition 52. Because it is not easy to distinguish between cases like (11d)
and (11k), Lemma 20 and the rules (EiP) facilitate both possible transforma-
tions. Hence R is also able to simulate wrong battles, i.e. battles based on as-
signments of fundamental sequences which differ from our assignment. In the
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wrong cases the ordinals denoted are smaller, thus this shall pose no problem to
our intended normalization. Likewise, transformations as the one needed in (11h)
are made possible for arbitrary terms t, and the t in (11f) is supposed to be an
element of Fix(0̄) whereas the associated rule (H3) below treats arbitrary terms
beginning with P. The final rules are:

(H1) •Sx→ ◦x
(H2) P(0̄,Sy)→ ◦M(0̄, y)

(H3) P(0̄,P(x̄, y))→ ◦M(x̄, y)

(Hi4) P(x1, . . . ,Sxi, 0̄, y)→ ◦Ji(x̄, y)

(Hi5) P(x1, . . . ,Sxi, 0̄,Sy)→ ◦Ji(x̄,P(x1, . . . ,Sxi, 0̄, y))

(Hij6) •P(x1, . . . , xi, 0̄, 0)→ Qij(x1, . . . , •xi, xj)
(RQij) Qij(x1, . . . , ◦xi, y)→ ◦P(x̄, 0̄, y)

(Hi7) •P(x1, . . . , xi, 0̄,Sy)→ Ri(x1, . . . , •xi, xi, y)

(RRi) Ri(x1, . . . , ◦xi, y, z)→ ◦P(x̄, 0̄,P(x1, . . . , xi−1, y, 0̄, z))

for i and j with 1 6 j 6 i 6 k.

Proposition 9. For d ∈ D with d 6= 0 and for n > 0 we have

•8n+1
d

+→ 8n+1•n+1d
+→ 8n+1◦d[n]

+→

{
◦d[n]

•8n+2
d[n] .

Before we prove this, we would like to point out its main implication. By Lemma 16,
R is able to simulate Hydra battles for all configurations (α, n) with 0 < α <
∆k+1 at full length:

•8n+1
d

+→ •8n+2
d[n]

+→ •8n+3
d[n, n+ 1]

+→ . . .
+→ •8n+l0

+→ 0 .

It is obviously not wise to strive after a similar result for d = 0.

Proof (Proof by induction on D). As mentioned before, a close look at Defi-
nition 52 shows that whenever u[n] (with u being a subterm of d) is used to
define d[n] we have u 6= 0. This observation enables us to rely on the induction
hypothesis when required.

A quick glance at Lemmata 18 and 19 assures us that it suffices to show

•n+1d
+→ ◦d〈n〉 .

For (11b) we employ Lemma 19.i to get •n+1Ss
∗→ •Ss →H1 ◦s = ◦d〈n〉,

while (11c) is handled by Lemma 20 and the induction hypothesis:

•n+1+(s, t)
+→ +(s, •n+1t)

+→ +(s, ◦t[n])→E2+ ◦+(s, t[n]) .

The treatment of (11d) and (11k) is very close to this, relying on (EiP) instead
of (E2+). For (11f) we note that d = P(0̄, u) with u ∈ Fix(0̄) holds. According
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to (8), u is some P(s̄, t). Applying Lemmata 20.ii,iii and 21.i,

•n+1P(0̄,P(s̄, t))
+→ P(0̄,P(s̄, 8n+1

t))

→H3 ◦M(s̄, 8n+1
t)

+→ ◦(P(s̄, t)× (n+ 1))

follows. The proof of (11e) is very similar (using (H2)) and therefore left out
here. For (11h) we need Lemmata 20.iv and 21.ii:

•n+1P(s1, . . . ,Ssi, 0̄, t)
+→ P(s1, . . . ,S8n+1

si, 0̄, t)

→Hi4 ◦Ji(s1, . . . , 8
n+1

si, t)
+→ ◦P(s1, . . . , si, ·, 0̄)n+1(t) ,

while we care for (11g) in much the same way, replacing (Hi4) by (Hi5). The
treatment of MSs̄,0̄(s̄) in (11i) requires a new idea, since R does not know which
of the sj has MSs̄,0̄(s̄) as a subterm. By virtue of Lemma 20.ii and the induction
hypothesis, for each j with 1 6 j 6 i and for si 6= 0, we can show

•n+1P(s1, . . . , si, 0̄, 0)
∗→ •P(s1, . . . , •nsi, 0̄, 0) (13a)
+→ Qij(s1, . . . , •n+1si, sj) (13b)
+→ Qij(s1, . . . , ◦si[n], sj)

→RQij ◦P(s1, . . . , si[n], 0̄, sj) . (13c)

To get from (13a) to (13b), we make use of (Hij6) and, in case of j = i,
Lemma 19.i. Now we may incorporate Lemma 17 to reduce the second sj in (13c)
to any of its subterms. Since MSs̄,0̄(s̄) is a subterm of some sj , we reach our goal.
When we use (Hi7) and (RRi) instead of (Hij6) and (RQij), the result for (11j)
is easily obtained.

Corollary 2. If R terminates, then its complexity DlR eventually dominates all
Hα with α < ∆k+1.

Proof. As mentioned in (7), ∆k+1 = ψ(1, 0̄) holds where 0̄ has length k + 1.
Proposition 8 tells us the function which maps n to the length of the Hydra
battle for cn := (∆k+1[n], n + 1) eventually dominates all Hα with α < ∆k+1.
We take a short digression from our fixed k to k + 1, recall ψ0,ᾱ = ψᾱ, and see

∆k+1[n] = ψ(0, ·, 0̄)n+1(0) = ψ(·, 0̄)n+1(0)

holds where the first ψ is k+2-ary and the second one is, as usual, k+1-ary. Since
sn := •8n+2P(·, 0̄)n(S0) encodes cn, the length of the battle for cn is majorized
by dlR(sn). Because of dp(sn+1) = dp(sn) + 2, DlR grows much faster than any
Hα with α < ∆k+1.

Since the complexity of a TRS terminating via either MPO, LPO, or KBO is
bounded by a multiple recursive function (see Theorems 5, 6, and 7), termination
of R cannot be established by one of these orders.
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We want to demonstrate where LPO fails. R owes much of its strength to the
interplay between •, 8, and ◦ on the one hand and + and P on the other hand.
No LPO is able to prove termination of a TRS containing the rules (N3), (N4),
(D1P), and (E1P), since the first three rules require ◦ � 8 � • � P while the
fourth rule implies P � ◦.

5.3 Proof of total termination

We order P := (∆k+1 \ {0}) × ω × ω by ≺, which is the lexicographic product
of the usual < on these sets of ordinals. By Exercise 13.i, (P,≺) is a well-order
with (using Exercise 7 and the fact that ∆k+1 is an epsilon)

otype(P,≺) = ω · ω ·∆k+1 = ω2 · ω∆k+1 = ω2+∆k+1 = ω∆k+1 = ∆k+1 .

We identify (α, 0, 0) ∈ P and α to avoid lengthy notations. Thus α > β implies
α � (β,m, n) < β. We now define interpreting functions for all symbols of our
rewrite system. The homomorphic mapping (cf. (3)) based on these functions
will establish total termination for R via Theorem 10. Note that the homomor-
phic mapping is not the real interpretation of R in a well-order in the sense of
Proposition 4, it is rather used to define such an interpretation via Theorem 10.
In spite of this, we call [[s]] the interpretation of s.

Definition 54. For arbitrary elements p = (α,m, n), pl = (αl,ml, nl) (with
1 6 l 6 k), q = (β,m′, n′) and r = (γ,m′′, n′′) of P we put

[0] := 1

[S](p) := α+ 1

[+](p, q) := α⊕ β ⊕ β
[P](p̄, q) := ψ(ᾱ, β)

[•](p) := (α,m, n+ 1)

[8](p) := (α,m+ 1, 0)

[◦](p) := α+ 1

[M](p̄, q) := ψ(ᾱ, β) · (3m′ + 1)

[Ji](p1, . . . , pi, q) := ψ(α1, . . . , αi, ·, 1̄)2mi+1(β)

[Qij ](p1, . . . , pi, q) := ψ(α1, . . . ,max {αj , β}, . . . , αi, 1̄)

[Ri](p1, . . . , pi, q, r) := ψ(α1, . . . ,max {αi, β}, 1̄, γ + 1) .

Note that some components of q, r and pl are never used. Furthermore the [f ]
with f ∈ Σ0 intentionally forget the two trailing components of p, q and pl.
Hence, for s, t, s̄ ∈ T (Σ), we have

[[S8s]] = [[Ss]] = [[◦s]] = [[◦8s]],
[[+(8s, t)]] = [[+(s, 8t)]] = [[+(s, t)]],

[[P(s1, . . . , 8si, . . . , sk+1)]] = [[P(s̄)]].

(14)
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This remains true when 8 is replaced with •.
Both the use of m′ in [M] and the use of mi in [Ji] are based on [8], as m′ and

mi count the appearances of 8 at the positions important for (RM) and (RJi),
respectively. The definitions of [Qij ] and [Ri] reflect the duplication of xj and xi
in (Hij6) and (Hi7), respectively. Here we profit from Theorem 10, since taking
the maximum violates monotonicity. Note that only [•] is monotone, as the other
functions ignore the third component of their first arguments.

Lemma 22. The mapping [[·]] is weakly monotone and has the subterm property.

Proof. Due to Lemma 1 it suffices to show that the functions interpreting the
symbols of Σ are weakly monotone and have the subterm property. We start
with the latter one. The proof for [+] uses the fact that the first components of
elements of P are larger than 0, and all interpretations involving ψ rely on its
subterm property and its monotonicity, hence on Lemma 7.ii..

Weak monotonicity is obvious for all interpreting functions from [0] to [◦], and
a moment’s reflection establishes it for [Qij ] and [Ri]. The result for [M] and [Ji]
relies on Lemma 8.

Proposition 10. R is totally terminating.

Proof. Because of Theorem 10 and Lemma 22 it remains to prove that [[·]] nor-
malizes R. Let a ground substitution σ be given. We denote the values of σ for x,
xi (with 1 ≤ i ≤ k + 1), y and z by s, si, t and u with interpretations (α,m, n),
(αi,mi, ni), (β,m′, n′) and (γ,m′′, n′′). Our goal will be established by showing

∀(l, r) ∈ R p := [[lσ]] � [[rσ]] =: p′ .

For all rules (Sif) we can fall back upon the subterm property of the interpreting
functions under consideration. The subterm properties of [•] and [◦], sometimes
in combination with (14), settle (N2), (N3), (Dif), (H1), (Hij6), and (Hi7). For
example, we can treat (N3) by p = [[◦s]] = [[◦8s]] � [[8s]] = p′, and

p = [[•P(s1, . . . , si, 0̄,St)]] � [[P(s1, . . . , si, 0̄,St)]]

= [[P(s1, . . . , •si, 0̄,St)]] = [[Ri(s1, . . . , •si, si, t)]] = p′

suffices for (Hi7). In the same way we build on [[8s]] = [[8•s]] to treat (N1) and
(N4), while (F2) and (E2+) both rely on α⊕(β+1)⊕(β+1) > α⊕β⊕β+1. The
monotonicity of ψ and Lemma 8.ii yield the result we are after for (F1), (EiP),
and (H2), while (i) and (iii) of Lemma 8 settle (RM) and (RJi). The subterm
property and the monotonicity of ψ, joined with (ii) and (iv) of Lemma 8, provide
us with everything we need for (H3), (Hi4) and (Hi5). It remains to take care
of (RQij) and (RRi). For the former we have p < ψ(α1, . . . , αi + 1, 1̄) by weak
monotonicity, and p � α1, . . . , αi, 1, β by the subterm property of ψ. Under these
conditions Lemma 7.iii implies p � p′. Via similar reasoning we can handle (RRi).

Combining Corollary 2, Proposition 10, and the aforementioned Theorem 29
of Weiermann we come to a satisfying conclusion.
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Theorem 31. For every α < Λ there exists a simply (and even totally) termi-
nating TRS whose complexity eventually dominates Hα (and thus all Hβ with
β 6 α.

On the other hand, for every simply terminating TRS there exists α < Λ such
that the complexity of the rewrite system is dominated by Hα.

In conclusion we learn that simply terminating TRSs are blessed with an enor-
mous computational strength. This strength is by no means exhausted by the
common classes of simplification orders like MPO, LPO, or KBO. The question
arises whether there is a natural class of simplification orders whose correspond-
ing TRSs may attain complexities beyond multiple recursion.

5.4 Some notes

A somewhat more abstract version of this section can be found in Lepper [2001b].
We should stress that most of the proofs presented in this section are inspired

by Touzet [1998]. Recall from Definition 28 that ω0 = 1 and ωn+1 = ωωn . Touzet
showed the following:

Theorem 32 (Touzet 1998). For any n ∈ N there is a totally terminating
TRS whose complexity eventually dominates all Hα with α < ωn.

The TRS used for n + 1 can be identified with a proper extension (concerning
both symbols and rules) of the one used for n. As TRSs have to be finite, it was
not possible to reach Hε0 with this construction.

There are related results, which also rely on applications of subrecursive hi-
erarchies to term rewriting. For example, the construction behind the following
result is based on a generalized Hardy hierarchy below ω3.

Theorem 33 (Cichon and Tahhan Bittar 1998). For any simply termi-
nating SRS R there is α < ω3 such that the complexity of R is dominated by
Hα.

Touzet established the optimality of this upper complexity bound.

Theorem 34 (Touzet 1999). For any α < ω3 there is a totally terminating
SRS whose complexity eventually dominates Hα.

So for strings it is all just the same as for terms: these results are directly
connected to the supremum of the order types of simplification orders on strings.

Theorem 35 (de Jongh and Parikh 1977). If (T (Σ),≺) is a simplification
order on strings then

otype(T (Σ),≺) < ω3 .

The frequent appearance of the Hardy functions in this section give strong
evidence to the following quote of Touzet [1999]:

“the Hardy hierarchy is the right tool for connecting derivation length and order
type.”
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Though this is true for the set of all simplification orders (no matter if we
consider terms or strings), it may yield far too large bounds for smaller and
more uniform sets of simplification orders.

An outstanding example for the validity of Touzet’s claim is KBO with a
maximal (tiny) order type of ωω and complexities equivalent to Ack(2O(n), 0), see
Lepper [2001a]. The Hardy function Hωω is a version of the (binary) Ackermann
function Ack (cf. Exercises 22 and 20). Far less convincing examples are MPO

and LPO, which are not able to make full use of their huge order types. For the
complexities occurring within termination via MPO, the Hα with α < ωω suffice,
while those of termination via LPO are controlled by the Hα with α < ω3. A
tight approach to these orders is presented in the next section.

6 Exploiting the Slow-growing Hierarchy

We start this section by presenting a general outline. Let terms s = t0, t1, . . . , tn
be given, such that s →R t1 →R · · · →R tn holds, where tn is in normal form
and term-depth of s is ≤ m. Assume →R is contained in a termination order
�. Hence

s � t1 � · · · � tn .

Assume further the sequence 〈s, t1, . . . , tn〉 is chosen so that n is maximal. Then
in the realm of classifications of derivation lengths one usually defines an inter-
pretation I : T (Σ,V)→ N such that

I(s) > I(t1) > · · · > I(tn) ,

holds. The existence of such an interpretation then directly yields a bound on
the derivation length.

The problem is to guess the right interpretation from the beginning. More
often than not this is not at all obvious. Therefore we want to generate the
interpretation function directly from the termination order in an intrinsic way.
To this avail we proceed as follows. We separate I into an ordinal interpretation
π : T (Σ)→ T and an ordinal theoretic function g : T (K)→ N, where T denotes
a suitable chosen set of terms representing an initial segment of the ordinals,
cf. Definition 33.

Firstly, we can employ the connection between the termination order� and the
order on the notation system T , as elaborated on in Section 3. Secondly, it turns
out that g can be defined in terms of the slow-growing function Gx : T → N;
x ∈ N. (Note that we have swapped the usual denotation of arguments, see
Definition 43.) This approach work smoothly when the TRS R is compatible with
(i) a MPO �mpo, (ii) a LPO �lpo, or (iii) a KBO �kbo, respectively. To simplify the
presentation of the proof we restrict our attention to a rewrite system R whose
termination can be shown by a multiset path order �mpo. We will comment
on the necessary extension for the other two cases in Section 6.5. Let terms
s = t0, t1, . . . , tn be given, such that s →R t1 →R · · · →R tn holds, where tn is
in normal form and dp(s) ≤ m. By our choice of R this implies

s �mpo t1 �mpo · · · �mpo tn . (15)
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We define a ground substitution ρ: ρ(x) = c, for all x ∈ V. Let > denote the
well-order on the ordinal notation system T as stated in Definition 33. Let l, r ∈
T (Σ,V). Depending on m and properties of R, we show the existence of a natural
number h such that l �lpo r implies π(lρ) > π(rρ) and Gh(π(lρ)) > Gh(π(rρ)),
respectively. Employing this form of an Interpretation Theorem we conclude from
(15) for some α ∈ T , so that α < ψ(ω, 0)

α > π(sρ) > π(t1ρ) > · · · > π(tnρ) .

and consequently

Gh(α) > Gh(π(sρ)) > Gh(π(t1ρ)) > · · · > Gh(π(tnρ)) .

Thus Gh(α) calculates an upper bound for n. Therefore the complexity of R can
be measured in terms of the slow-growing hierarchy below ψ(ω, 0). Hence, due
to Theorem 28 we obtain a primitive recursive upper bound for n.

6.1 The underlying rewrite system R

We fix some notations. Let Σ = {f1, . . . , fN} denote a finite signature. The car-
dinality N is assumed to be fixed in the sequel. We set K := max{ar(f) : f ∈ Σ}.
In Section 2 we introduced the notion of term depth. To simplify the presentation
below, we will alter this definition to our purpose.

Definition 55. We define τmpo(s) := K, if s ∈ V or s ∈ Σ(0) and otherwise

τmpo(f(s1, . . . , sm)) := max{τmpo(si) : 1 ≤ i ≤ m}+ 3 .

Let R denote an arbitrary but fixed finite rewrite system. By assumption the
rewrite relation →R is compatible with in the multiset path order �mpo, hence
terminating.

6.2 The interpretation theorem

Assume T equals T (2) the notation system based on the binary function symbol
ψ as introduced in Definition 33.

Definition 56. Recursive definition of the interpretation function π : T (Σ) →
T . If s = fj(s1, . . . , sm), then set

π(s) := ψ(j, π(s1)⊕ · · · ⊕ π(sm) + 1) .

In the sequel of this section we show that π defines an interpretation for R on
(T,<); i.e. we establish the following theorem.

Theorem 36. For all s, t ∈ T (Σ) we have s→R t implies π(s) > π(t).
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Unfortunately this is not strong enough. The problem being that α > β im-
plies that Gα eventually dominates Gβ , only, compare Theorem 25. Whereas to
proceed with our general program we need an interpretation theorem for a binary
relation � on T , such that α � β ⇒ Gα(x) > Gβ(x) holds for all x.

We introduce a notion of a generalized system of fundamental sequences for
(T,<(ψ(ω, 0))). Based on this generalized notion, it is then possible to define a
suitable order �.

Definition 57 (Generalized system of fundamental sequences). Recur-
sive definition of (α)x for x < ω.

i. (0)x := ∅
ii. Assume α = α1 + · · ·+ αm; m > 1. Then β ∈ (α)x if either

– β = α1 ⊕ · · ·α∗i · · · ⊕ αm and α∗i ∈ (αi)
x holds, or

– β = αi.
iii. Assume α = ψ(α). Then β ∈ (α)x if

– β = ψ(α∗1, α2) or β = ψ(α1, α
∗
2), and α∗i ∈ (αi)

x for i ∈ {1, 2} or
– β = αi + x, where αi > 0, or
– β = ψ(α)[x].

By recursion we define the transitive closure of the ownership (α)x 3 β. (We
ambiguously denote this binary relation by the same symbol as the binary rela-
tion introduced in Definition 44. No confusion will arise from this.)

(α >(x) β)⇔ (∃γ ∈ (α)x(γ >(x) β ∨ γ = β)) .

Let α, β ∈ T . It is easy to verify that α >(x) β (for some x < ω) implies α > β.
If no confusion can arise we write αx instead of (α)x. Instead of α >(x) β we
sometimes write β <(x) α.

Lemma 23. (Subterm Property) Let x < ω be arbitrary.

i. α <(x) γ1 ⊕ · · ·α · · · ⊕ γm.
ii. α, β <(x) ψ(α, β).

Proof. The first assertion is trivial. The second assertion follows by the definition
of <(x) and assertion i).

Lemma 24. (Monotonicity Property) Let x < ω be arbitrary.

i. If α >(x) β, then γ1 ⊕ · · ·α · · · ⊕ γm >(x) γ1 ⊕ · · ·β · · · ⊕ γm.
ii. If α >(x) β, then ψ(α, γ) >(x) ψ(β, γ) and ψ(γ, α) >(x) ψ(γ, β), respectively.

Proof. We employ induction on α to prove i). We may assume that α > 0. By
definition of α >(x) β we either have (a) that there exist δ ∈ αx and δ >(x) β or
(b) β ∈ αx. Firstly, one considers the latter case. Then (γ1 ⊕ · · ·β · · · ⊕ γm) ∈
(γ1⊕ · · ·α · · · ⊕ γm)x holds by Definition 57. Therefore (γ1⊕ · · ·α · · · ⊕ γm) >(x)

(γ1 ⊕ · · ·β · · · ⊕ γm) follows. Now, we consider the case (a). By assumption
δ >(x) β holds, by (ih) this implies (γ1⊕· · · δ · · ·⊕γm) >(x) (γ1⊕· · ·β · · ·⊕γm).
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Now (γ1 ⊕ · · ·α · · · ⊕ γm) >(x) (γ1 ⊕ · · · δ · · · ⊕ γm) follows by definition of >(x),
if we replace β by δ in the proof of the second case. This completely proves i).

To prove ii) we proceed by induction on α. By definition of α >(x) β we have
either (i) δ ∈ αx and δ >(x) β or (ii) β ∈ αx. It is sufficient to consider the
latter case, the first case follows from the second as above. By Definition 57,
β ∈ αx implies ψ(β, γ) ∈ (ψ(α, γ))x and ψ(γ, β) ∈ (ψ(γ, α))x, respectively. Thus
ψ(α, γ) >(x) ψ(β, γ) or ψ(γ, α) >(x) ψ(γ, β) follows.

In the sequel we show the existence of a natural number d, such that for
all s, t ∈ T , and any ground substitution ρ, s →R t implies π(sρ) >(d) π(tρ).
Theorem 36 follows then as a corollary. The proof is involved, and makes use of
a sequence of lemmas.

We start with the following lemma that will be applied in various places below.
It generalizes the fact α >(x+1) α[x], i.e. sequences of descents along the (x+ 1)-
branch lead us to a (single) decent along the x-branch of the generalized system
of fundamental sequences for (T,<), cf. Definition 57.

Lemma 25. Assume α, β ∈ Lim; x ≥ 1. If α >(x) β, then α >(x+1) β+ 1 holds.

To prove the lemma we exploit the following auxiliary lemma.

Lemma 26. We assume the assumptions and notation of Lemma 25; assume
Lemma 25 holds for all γ, δ ∈ Lim with γ, δ < α. Then α >(x+1) α[x+ 1] ≥(x+1)

α[x] + 1.

Proof. The lemma follows by induction on the form of α by analyzing all cases
of Definition 37.

Proof. (of Lemma 25) The proof proceeds by induction on the form of α. We
consider only the case where α = ψ(α1, α2). The case where α = α1 + · · ·+ αm
is similar but simpler.

By definition of α >(x) β we have either (i) γ ∈ αx and γ >(x) β or (ii)
β ∈ αx. Assume for γ ∈ αx we have already shown that γ+1 <(x+1) α. Then for
β <(x) γ, we conclude by (ih) and the Subterm Property β + 1 <(x+1) γ <(x+1)

γ + 1 <(x+1) α. Hence, it suffices to consider the second case. We proceed by
case distinction on the form of β.

Case β = ψ(α∗1, α2) where α∗1 ∈ (α1)x. Note that α1 < α, hence (ih) is
applicable to establish α∗1 + 1 <(x+1) α1. Furthermore by the Subterm Property
follows α∗1 <(x+1) α

∗
1 +1 and therefore ψ(α∗1, α2) <(x+1) ψ(α∗1 +1, α2) holds with

Monotonicity. Applying (ih) wrt. ψ(α∗1 + 1, α2) we obtain

ψ(α∗1, α2) + 1 <(x+1) ψ(α∗1 + 1, α2) <(x+1) ψ(α1, α2) = α .

The last inequality follows again by an application of the Monotonicity Property.
The case β = ψ(α1, α

∗
2) is similar.

Case β = αi + x: Then (αi + x) + 1 = αi + (x+ 1) <(x+1) α.
Case β = ψ(α)[x]. Clearly β ∈ Lim. Then the auxiliary lemma becomes

applicable. Thus ψ(α)[x] + 1 ≤(x+1) α[x+ 1] <(x+1) α.
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The following lemma provides a relation between the generalized system of
fundamental sequences for (T,<), introduced in this section, and the “usual”
notion of fundamental sequence ·[·] : T × ω → T . Note that the restriction to
α ∈ T such that α is in the range of π is essential.

Lemma 27. Let t ∈ T (Σ), let d ≥ 3, and set α := π(t). Then β ∈ αd−3 implies
β ≤(d) α[d− 3].

Proof. The proof proceeds by induction on α. (We abbreviate induction hypoth-
esis as (ih).) Assume α has the form ψ(j, α1 ⊕ · · · ⊕ αm + 1) for j,m < ω. We
proceed by case-distinction on β.

Assume β = ψ(j∗, α1⊕· · ·αm+1), where j∗ ∈ (j)d−3, i.e. j∗ ≤(d) j−1 <(d) j.
By definition we obtain

α[d− 3] = ψ(j − 1, ·)d−2(ψ(j, α1 ⊕ · · ·αm)) ≥(d) ψ(j − 1, ψ(j, α1 ⊕ · · · ⊕ αm)) .

Furthermore, by definition we obtain ψ(j, α1⊕ · · ·⊕αm) >(d) α1⊕ · · ·⊕αm + 1.
This together with Monotonicity yields ψ(j − 1, ψ(j, α1 ⊕ · · · ⊕ αm)) ≥(d) ψ(j −
1, α1 ⊕ · · · ⊕ αm + 1). Putting everything together renders

α[d− 3] >(d) ψ(j − 1, α1 ⊕ · · · ⊕ αm + 1) >(d) β .

Now assume β = ψ(j, γ), where γ ∈ (α1 ⊕ · · · ⊕ αm + 1)d−3. Assume w.l.o.g.
γ = α1 ⊕ · · · ⊕ α∗i ⊕ αm + 1, so that α∗i ∈ α

d−3
i . Employing (ih) and Lemma 26

we conclude α∗i ≤(d) αi[d − 3] ≤(d) αi[d − 3] + 1 ≤(d) αi Thus we have (α1 ⊕
· · · ⊕ αi ⊕ · · · ⊕ αm) ≥(d) (α1 ⊕ · · · ⊕ αi[d − 3] ⊕ 1 · · · ⊕ αm) and furthermore
(α1⊕· · ·⊕αi[d−3]⊕1 · · ·⊕αm) ≥(d) (α1⊕· · ·⊕αi[d−3]⊕· · ·⊕αm⊕1) ≥(d) γ.
Putting this together, we obtain

α[d− 3] ≥(d) ψ(j − 1, ψ(j, α1 ⊕ · · · ⊕ αm)) >(d) ψ(j, α1 ⊕ · · ·αm) ≥(d) β .

Assume β = j + (d− 3). Then clearly

α[d− 3] >(d) ψ(j, α1 ⊕ · · · ⊕ αm) >(d) j + d >(d) β

On the other hand assume β = (α1 ⊕ · · · ⊕ αm + 1) + (d− 3). Then we have

α[d− 3] >(d) ψ(j, α1 ⊕ · · · ⊕ αm)

>(d) (α1 ⊕ · · · ⊕ αm) + d)

>(d) (α1 ⊕ · · · ⊕ αm) + (d− 3) + 1

= β

Finally assume β = α[d − 3]. Then the lemma holds almost trivially via
Lemma 26.

In the following we feel free to frequently employ the Subterm and the Mono-
tonicity Property without further notice. The following lemma is purely techni-
cal. Recall that K denotes the maximal arity of a function symbol in Σ.
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Lemma 28. Let t ∈ T (Σ) and assume α := π(t). Furthermore assume d ≥
K + 3. Then α[d− 1] >(d) α[d− 3] ·K + 1.

Proof. Let α be of the form ψ(j, α1 ⊕ · · · ⊕ αm + 1), where j,m < ω. Note that
by definition d ≥ K holds. Then

α[d− 1] = ψ(j − 1, ·)d(ψ(j, α1 ⊕ · · · ⊕ αm))

= ψ(j − 1, ·)2+(d−2)(ψ(j, α1 ⊕ · · · ⊕ αm))

= ψ(j − 1, ψ(j − 1, ψ(j, α1 ⊕ · · · ⊕ αm + 1)[d− 3]))

>(d) ψ(j − 1, α[d− 3] + 1)

≥(d) ψ(0, α[d− 3] + 1)

>(d) ψ(0, α[d]) · (d+ 1)

>(d) (α[d] ·K) + α[d− 3]

>(d) (α[d] ·K) + 1

It is a crucial observation that 0 <(x) α holds for any x < ω, α ∈ T . (This follows
by a simple induction on α.) Hence the last inequality follows as by definition
α > 0.

The following three lemmas provide the ground for the Interpretation theorem.
These are the crucial arguments in the proof.

Lemma 29. Let t ∈ T (Σ) be given. Assume τmpo(t) ≤ d, and fj ∈ Σ. If fj �lpo

t, then π(fj) >(d) π(t).

Proof. We proceed by induction on dp(t). Set α := π(fj), and β := π(t).
Case dp(t) = 0: Then by assumption t = fi ∈ Σ, i < j. Hence i <(d) j holds

and we conclude π(t) = ψ(i, 1) <(d) ψ(j, 1) = π(fj).
Case dp(t) > 0: Let t = fi(t1, . . . , tn). Set βl := π(tl) for all l = 1, . . . , n. By

(ih) one obtains βl <(τmpo(tl)) α for all l = 1, . . . , n, i.e. βl <(d−3) α holds for all
l. (Apply Lemma 25 if necessary.)

For all l, we need only consider the case where βl ∈ αd−3. By Lemma 27 this
implies βl ≤(d) α[d − 3]. We consider α[d] = π(fj)[d] and apply the following
sequence of descents via >(d). Apart from the definition of the generalized system
of fundamental sequences, we employ (ih) and Lemma 28.

α[d] = ψ(j − 1, ·)d+1(ψ(j, 0))

= ψ(j − 1, ψ(j − 1, ·)d(ψ(j, 0)))

= ψ(j − 1, ψ(j, 1)[d− 1])

>(d) ψ(j − 1, ψ(j, 1)[d− 3] ·K + 1)

≥(d) ψ(j − 1, α[d− 3]⊕ · · · ⊕ ·α[d− 3] + 1)

≥(d) ψ(j − 1, β1 ⊕ · · · ⊕ βn + 1)

≥(d) ψ(i, β1 ⊕ · · · ⊕ βn + 1) = β .

This proves the lemma completely.
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Lemma 30. Let fi(t1, . . . , tn), fj(s1, . . . , sm) ∈ T (Σ) be given; let d ≥ K + 3.

i. Assume i < j and π(fj(s)) >(d−3) π(tl) for all l = 1, . . . , n. Then we obtain
π(fj(s)) >(d) π(fi(t)) holds.

ii. Assume i = j and assume the existence of sets X,Y with

{π(s1), . . . , π(sm)} −X ∪ Y = {π(t1), . . . , π(tn)}

such that for all β ∈ Y , exists α ∈ X and α >(d−3) β. Then π(fj(s)) >(d)

π(fi(t)) holds.

Proof. Set α := π(fj(s)); β := π(fi(t)); finally set αi := π(si) for all i = 1, . . . ,m,
and βi := π(ti) for all i = 1, . . . , n.

Firstly assume i < j and α >(d−3) βl for all l = 1, . . . , n. As above, we consider

only the case where βl ∈ (α)d−3. By Lemma 27 this implies βl ≤(d) α[d−3]. The
other case follows easily.

We consider π(fj(s))[d] = α[d] and apply the following sequence of descents
via >(d). Apart from the definition of the generalized system of fundamental
sequences, we employ the assumption of the lemma and Lemma 28.

α[d] = ψ(j, α1 ⊕ · · · ⊕ αm + 1)[d]

= ψ(j − 1, ·)d+1(ψ(j, α1 ⊕ · · · ⊕ αm))

= ψ(j − 1, ψ(j − 1, ·)d(ψ(j, α1 ⊕ · · · ⊕ αm)))

≥(d) ψ(j − 1, α[d− 3] ·K + 1)

≥(d) ψ(j − 1, α[d− 1]⊕ · · · ⊕ ·α[d− 1] + 1)

≥(d) ψ(j − 1, β1 ⊕ · · · ⊕ βn + 1)

≥(d) ψ(i, β1 ⊕ · · · ⊕ βn + 1) = β .

This proves the first case of the lemma. Now assume the existence of sets X,Y
with {α1, . . . , αm}−X∪Y = {β1, . . . , βn} such that for all βj ∈ Y , exists αi ∈ X
and αi >(d−3) βj .

We fix i, j; by Lemma 27 we conclude α[d− 3] ≥(d) β. Furthermore

αi >(d) αi[d− 1] >(d) αi[d− 3] ·K + 1 >(d) βj ·K ≥(d) βj · card(Y )

holds by Lemma 25 and Lemma 28.
As α, β were arbitrarily chosen we conclude α1 ⊕ · · · ⊕ αm >(d) β1 ⊕ · · · ⊕ βn.

In conclusion we obtain

π(sρ) = ψ(j, α1 ⊕ · · · ⊕ αm + 1) >(d) ψ(i, β1 ⊕ · · · ⊕ βn + 1) = π(tρ) .

This proves part two.

Lemma 31. Let s, t ∈ T be given. Assume s = fj(s1, . . . , sm), ρ is a ground
substitution, τmpo(t) ≤ d. Assume further sk �mpo u and τmpo(u) ≤ d implies
π(skρ) >(d) π(uρ) for all u ∈ T . Then s �mpo t implies π(sρ) >(d) π(tρ).
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Proof. The proof is by induction on d. (Note that d ≥ K by definition.)
Case d = K: This implies dp(t) = 0; therefore t ∈ V or t = fi ∈ Σ. Consider

t ∈ V. Then t is a subterm of s. Hence there exists k (1 ≤ k ≤ m) s.t. t is subterm
of sk. Hence sk �mpo t, and by assumption this implies π(skρ) >(d) π(tρ), and
therefore π(sρ) >(d) π(tρ) by the Subterm Property.

Now assume t = fi ∈ Σ. As s �mpo t by assumption either i < j or sk �mpo

t holds. In the latter case, the assumptions render π(skρ) ≥(d) π(tρ); hence
π(sρ) >(d) π(tρ). Otherwise, π(sρ) = ψ(j, π(s1ρ) ⊕ · · · ⊕ π(smρ) + 1), while
π(tρ) = π(t) = ψ(i, 1). As π(skρ) >(x) 0 holds for arbitrary x < ω, we conclude
π(sρ) >(d) π(tρ).
Case d > K: Assume dp(t) > 0. (Otherwise, the proof follows the pattern

of the case d = 0.) Let t = fi(t1, . . . , tn), and clearly τmpo(tl) ≤ (d − 3) for all
l = 1, . . . , n. We start with the following observation: Assume there exists i0 s.t.
s �mpo tl holds for all l = i0 +1, . . . , n. Then by (ih) we have π(sρ) >(d−3) π(tlρ).

We proceed by case-distinction on s �mpo t. Assume firstly there exists k
(1 ≤ k ≤ m) s.t. sk �mpo t. Utilizing the assumptions of the lemma, we conclude
π(sρ) >(d) π(tρ). Now assume i < j and s �mpo tl for all l = 1, . . . , n. By the
observation π(sρ) >(d−3) π(tlρ) holds. Hence Lemma 30i becomes applicable and
therefore π(sρ) >(Kd) π(tρ) holds true.

Finally assume i = j; and (s1, . . . , sm) �mul
mpo (t1, . . . , tn). By assumption of the

lemma for each k = 1, . . . ,m and j = 1, . . . , n sk �mpo tj implies π(skρ) >(d−3)

π(tjρ). Set αi := π(siρ) for all i = 1, . . . ,m and βi := π(tiρ) for all i = 1, . . . , n.
By assumption (s1, . . . , sm) �mul

mpo (t1, . . . , tn) implies the existence of sets X,Y
with {α1, . . . , αm} − X ∪ Y = {β1, . . . , βn} such that for all βj ∈ Y , exists
αi ∈ X and αi >(d−3) βj . Hence Lemma 30ii becomes applicable and therefore
π(sρ) >(d) π(tρ) holds true.

The following lemma tells us that we can find an ordinal α < ψ(ω, 0) that
bounds effectively all ordinal interpretations of terms in the ground term algebra.

Lemma 32. Let t ∈ T (Σ) be given, assume τmpo(t) ≤ d. Then ψ(N + 1, 1) >(d)

π(t).

Proof. The proof is by induction on dp(t) and follows the proof of Lemma 29.

Finally, we can collect the pieces.

Theorem 37. Let l, r ∈ T be given. Assume ρ is a ground substitution and
τmpo(t) ≤ d. Then l �mpo r implies π(lρ) >(d) π(rρ).

Proof. We proceed by induction on dp(s).
Case dp(s) = 0: Then s can either be a constant or a variable. As s �mpo

t holds, we can exclude the latter case. Hence assume s = fj . As fj �lpo t,
t is closed. Hence the assumptions of the theorem imply the assumptions of
Lemma 29 and we conclude π(sρ) = π(s) >(d) π(t) = π(tρ).
Case dp(s) > 0: Then s can be written as fj(s1, . . . , sm). By (ih) sk �mpo u

and dp(u) ≤ d imply π(skρ) >(d) π(tρ). Therefore the present assumptions
contain the assumptions of Lemma 31 and hence π(sρ) >(d) π(tρ) follows.
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Theorem 38 (The Interpretation Theorem.). Let R denote a finite rewrite
system whose induced rewrite relation is contained in �mpo. Then there exists
d < ω, such that for all l, r ∈ T , and any ground substitution ρ l →R r implies
π(lρ) >(d) π(rρ).

The number d is given effectively by setting d equal to max{τmpo(r) : ∃l (l, r) ∈
R}.

Proof. The theorem follows as a direct corollary to Theorem 37.

6.3 Collapsing theorem

We define a variant of the slow-growing hierarchy, cf. Definition 43, suitable for
our purposes.

Definition 58. Recursive definition of the function G̃α : ω → ω for α ∈ T .

G̃0(x) := 0

G̃α(x) := max{G̃β(x) : β ∈ (α)x}+ 1 .

Lemma 33. Let α ∈ T , α > 0 be given. Assume x < ω is arbitrary.

i. G̃α is increasing. (Even strictly if α > ω.)

ii. If α >(x) β, then G̃α(x) > G̃β(x).

Proof. Both assertions follow by induction over < on α.

We need to know that this variant of the slow-growing hierarchy is indeed
slow-growing. We show this by verifying that the hierarchies {G̃α : α < ψ(ω, 0)}
and {Gα : α < ψ(ω, 0)} coincide with respect to growth-rate. It is a triviality to

verify that there exists β ∈ T such that G̃β majorizes Gα. (Simply set β = α.)
The other direction is less trivial. One first proves that for any α < ψ(ω, 0)

there exists γ < ω such that G̃α(x) ≤ Fγ(x) for almost all x. Then one employs

Theorem 28 to establish the existence of β ∈ T such that G̃α(x) ≤ Gβ(x) holds
for almost all x.

Theorem 39.
⋃

α<ψ(ω,0)

Gα ≈
⋃

α<ψ(ω,0)̃

Gα ≈
⋃
γ<ω

Fγ ≈ Prec .

6.4 Complexity bounds

The complexity of a terminating finite rewrite system R is measured by the
derivation length function.

Definition 59. The derivation length function DlR : ω → ω. Let m < ω be fixed.
Then we define

DlR(m) := max{n : ∃t1, . . . , tn ∈ T ((t1 →R · · · →R tn) ∧ (dp(t1) ≤ m))} .
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By assumption R is a finite rewrite system over T such that →R is contained
in a multiset path order. Now assume that there exist s = t0, t1, . . . , tn ∈ T with
τmpo(s) ≤ m such that

s→R t1 →R · · · →R tn

holds. By our choice of R this implies s �mpo t1 �mpo · · · �mpo tn. By assumption
on Σ there exists c ∈ Σ, with ar(c) = 0.

We define a ground substitution ρ: ρ(x) = c, for all x ∈ V. Let d < ω be
defined as max{τmpo(r) : ∃l (l, r) ∈ R}. Recall that N denotes the cardinality
of Σ. We conclude from the Interpretation Theorem and Lemma 32, π(sρ) >(d)

π(t1ρ) >(d) · · · >(d) π(tnρ) and ψ(N + 1, 0) >(m) π(sρ).
Setting h := max{d,m} and utilizing Lemma 25, we obtain ψ(N + 1, 0) >(h)

π(sρ) >(h) · · · >(h) π(tnρ). An application of Lemma 33.ii yields

G̃ψ(N+1,0)(h) > G̃π(sρ)(h) > · · · > G̃π(tnρ)(h) .

Thus we have established a primitive-recursive upper bound for the derivation
length of R if→R is contained in a multiset path order. Furthermore, this bound
is essentially optimal, cf. Hofbauer [1992]. Contrary to the original proof inHof-
bauer [1992], we can circumvent technical calculations with functions on the
natural numbers and can shed light on the way the slow-growing hierarchy re-
lates the order type of the termination order � to the bound on the length of
reduction sequences along →R.

6.5 Extensions

As already mentioned the above presented argument is general applicable. Using
the same approach we obtain (essentially) optimal bounds on the derivation
length of rewrite systems R where the induced rewrite relation →R is

i. contained in a lexicographic path order �lpo, or
ii. contained in a Knuth–Bendix order �kbo.

We briefly indicate how the above proof needs to be adapted in the former
case. Let R denote a rewrite system whose termination can be shown via a
lexicographic path order �lpo. Firstly the definition of the interpretation function
π has to be changed as follows.

Definition 60. Recursive definition of the interpretation function π : T (Σ) →
T (K + 1), where K denotes the maximal arity of a function symbol in Σ. If
s = fj ∈ Σ, then set π(s) := ψ(j, 0). Otherwise, let s = fj(s1, . . . , sm) and set

π(s) := ψ(j, π(s1), . . . , π(sm) + 1, 0) .

Secondly it is necessary to adapt the specific notion of term depth employed
above. Instead of Definition 55 we employ the following definition.

Definition 61. We define τlpo(s) := 0, if s ∈ V or s ∈ Σ(0) and otherwise

τlpo(f(s1, . . . , sm)) := max{τlpo(si) : 1 ≤ i ≤ m}+ 2 .
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Then the presented proof needs only partial changes. It suffices to reprove the
crucial lemmas in the above proofs. I.e. Lemma 29, 30, 31, and 32, respectively
need to be reformulated and reproved.

As we have packed the technical details into the altered definition of term
depth, Definition 55, the reformulation of these lemmas can almost be dropped.
However it is important to note that in (the altered form of) Lemma 32 we need
the full strength of the ordinal notation system T to find an upper bound. I.e. if
t ∈ T (Σ) be given, assume τlpo(t) ≤ d. Then ψ(K + 1, 0) >(d) π(t).

It remains to relate the hierarchy
⋃
α∈T Gα to the multiple recursive functions.

This is obtained through an application of the Hierarchy Comparison Theorem,
cf. Chapter 4. Thus we can establish a multiple recursive upper bound for the
derivation length of R if →R is contained in a lexicographic path order. Fur-
thermore, this bound is essentially optimal, cf. Weiermann [1995]. A complete
presentation of the argument is given in Moser and Weiermann [2003].

Now let us consider the case where the given finite rewrite system induces a
rewrite relation →R that is contained in a KBO. Unfortunately the definition of
the ordinal interpretation π is not as simple as in Definition 56 and 60. Techni-
cally this is due to the more involved definition of KBOs that seemingly does not
fit the chosen approach as easily as a lexicographic or multiset path order does.
In the next section we will briefly discuss some not so technical reasons for this
difference.

As the order �kbo itself is distinctively different form the above considered
orders, the proof needs more considerable changes. Due to these difficulties we
will not longer dwell on the extension of the presented method to the Knuth
Bendix order. However, the reader should bear in mind that the same method
is applicable in this context as well. Of course, rendering optimal bounds.

6.6 Bibliographic notes

In this section we have exploited a very nice feature of lexicographic path orders
and multiset path orders, namely the fact that these orders abide to the following
principle. This principle—henceforth referred to as (CP)—claims that the com-
plexity (or derivation length function) of a rewrite system for which termination
is provable using a termination order of order type α is eventually dominated by
a function from the slow-growing hierarchy along α.

A. Cichon (implicitly) stated this principle in Cichon [1992] as a valid principle
for all rewrite systems. In Cichon [1992] the attempt was made to prove the
correctness of (CP) for the (i) multiset path order (�mpo) and the (ii) lexicographic
path order (�lpo). Unfortunately, the proof was bugged, cf. Buchholz [1995].

However, Hofbauer [1992] proved that �mpo as termination order implies prim-
itive recursive derivation length, while Weiermann [1995] showed that �lpo as
termination order implies multiply-recursive derivation length. If one regards
the order types of �mpo and �lpo, respectively, then these results imply the cor-
rectness of (CP) for (i) and (ii). Buchholz [1995] has given an alternative proof of
(CP) for (i) and (ii). His proof avoids the (sometimes lengthy) calculations with
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functions from subrecursive hierarchies in Hofbauer [1992], Weiermann [1995].
Instead a clever application of proof-theoretic results is used.

The mentioned proofs Hofbauer [1992], Weiermann [1995], Buchholz [1995] of
(CP)—with respect to (i) and (ii)—are indirect. I.e. without direct reference to
the slow-growing hierarchy. On the other hand, the above proof of the fact that
termination proofs by multiset path orders imply primitive derivation lengths
(together with its mentioned extension to lexicographic path orders) is a direct
proof of (CP) for (i) and (ii).

By now, we know from the work of Touzet [1998] and Lepper [2001a, 2003]
that (CP) fails to hold in general. In Section 5 we have shown that for any
α < Λ there exist simply terminating TRSs such that the respective derivation
length function eventually dominates Hα. Hence, employing Theorem 22, (CP)
cannot be valid for these rewrite systems. Another interesting counter-example
are TRSs terminating via KBO. It was shown in Lepper [2001a] that the cor-
responding derivation length function lifes within Ack(2O(n), 0). Furthermore it
was shown that the maximal order type of a KBO is ωω. Thus, employing The-
orem 27 together with Exercise 19, (CP) fails to hold for rewrite systems whose
termination is shown via a KBO.

However, as already mentioned, the proof method presented in this chapter is
applicable for �kbo, too, yielding the (essentially) optimal bound. Hence we can
employ the slow growing hierarchy usefully, even if (CP) fails to hold. This leads
to the interesting question what the genuine feature of a termination order �
ought to look like, such that (CP) holds with respect to a rewrite system whose
termination has been shown by �. A question we are not yet able to answer.
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