

Interactive Theorem Proving Week 2

Cezary Kaliszyk

March 10, 2015

Summary

So far

Proof Assistants

HOL Light

- HOL Systems
- OCaml and LCF style
- Types and Terms
- Rules
- Introducing Connectives

Today

- Typed λ -calculus, STT
- Type Assignment
- Curry-Howard Isomorphism and example derivations

Different Foundations

Set Theory

- sets and membership
- semantic information
- "collections of things"
- membership is undecidable
- extensional; talk about things that exist

Type Theory

- typing judgement
- syntactic information
- what objects can be constructed
- intentional
- type checking (and sometimes inference) is decidable

Basis for a Proof Assistant

- Terms: Programs and Proofs
- Types: Specifications and Formulas

Brings together

- Programming
- Proving

Simple Type Theory (STT) or $\lambda_{ ightarrow}$

Types

- Atomic types
- Function types

$$\begin{array}{ccc} \beta & \gamma & \dots \\ \alpha \to \beta \end{array}$$

 α

For example: $(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$

Terms

- Variables with explicit types: $x_1^{\sigma}, x_2^{\sigma}, \dots$
 - Countably many for each σ
- Applications: if $M : \sigma \rightarrow \tau$ and $N : \sigma$ then $(MN) : \tau$
- Abstractions: if $P: \tau$ then $(\lambda x^{\sigma}.P): \sigma \to \tau$

Examples

$$\lambda x^{\sigma} . \lambda y^{\tau} . x : \sigma \to \tau \to \sigma$$

$$\lambda x^{\alpha \to \beta \to \gamma} . \lambda y^{\alpha \to \beta} . \lambda z^{\alpha} . xz : \beta \to \gamma$$

Conventions

Parentheses

- Types associate to the right
- Applications associate to the left

α -convertibility

$$\lambda x^{\sigma} \dots x \dots x \dots \approx_{\alpha} \lambda y^{\sigma} \dots y \dots y \dots$$

Capture avoiding substitution

M[x := N]

β -reduction

$$(\lambda x^{\sigma}.M)N \longrightarrow_{\beta} M[x := N]$$

Terms in STT (λ_{\rightarrow})

• Can we find a term for every type?

Terms in STT (λ_{\rightarrow})

• Can we find a term for every type?

 x^{α} : α

• Can we find a closed term for every type?

Terms in STT (λ_{\rightarrow})

• Can we find a term for every type?

 x^{α} : α

• Can we find a closed term for every type?

$$(\alpha \to \alpha) \to \alpha$$

• No! Not every type is inhabited.

Type assignment

Typing à la Church

- All terms have the type information in the λ -abstractions
- Unique term types can be computed from the variable types

Typing à la Curry

- Given an untyped λ -term assign types
- Types are no longer unique
- Unification gives principal types

Example: Type $\lambda x.\lambda y.x(\lambda z.y)$

Type assignment

Typing à la Church

- All terms have the type information in the λ -abstractions
- Unique term types can be computed from the variable types

Typing à la Curry

- Given an untyped λ -term assign types
- Types are no longer unique
- Unification gives principal types

Example: Type $\lambda x.\lambda y.x(\lambda z.y)$

•
$$((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$$

•
$$((\beta \to \alpha) \to \gamma) \to \alpha \to \gamma$$

•
$$((\beta \to \alpha \to \alpha) \to \gamma) \to (\alpha \to \alpha) \to \gamma$$

Type assignment

Typing à la Church

- All terms have the type information in the λ -abstractions
- Unique term types can be computed from the variable types
- Useful in proving

Typing à la Curry

- Given an untyped λ -term assign types
- Types are no longer unique
- Unification gives principal types
- Useful in programming

Example: Type $\lambda x.\lambda y.x(\lambda z.y)$

•
$$((\beta \to \alpha) \to \alpha) \to \alpha \to \alpha$$

•
$$((\beta \to \alpha) \to \gamma) \to \alpha \to \gamma$$

•
$$((\beta \to \alpha \to \alpha) \to \gamma) \to (\alpha \to \alpha) \to \gamma$$

Erasure map: | · |

 $|x^{\alpha}| = x$ |MN| = |M||N| $|\lambda x^{\alpha}.M| = \lambda x.|M|$

Theorem

If $M : \sigma$ in STT à la Church, then $|M| : \sigma$ in STT à la Curry

Theorem

If $N : \sigma$ in STT à la Curry, then $\exists M . |M| = N \land M : \sigma$ in STT à la Church

Inductive definition of terms

Rule form $\frac{\cdot}{x^{\sigma}:\sigma}$ $\frac{M:\sigma \to \tau \ N:\sigma}{MN:\tau}$ $\frac{P:\tau}{\lambda x^{\sigma}.P:\sigma \to \tau}$

With a context

• Declare the free variables

$$x_1:\sigma_1\ldots,x_n:\sigma_n\vdash t:\tau$$

- Usually denoted Γ
- Derivation tree

The three typing rules with a context

 $\boldsymbol{\Gamma}$ treated as a set: not possible for a variable to appear twice

variable rule		
	$\underline{x:\sigma\in\Gamma}$	
	$\Gamma \vdash x : \sigma$	

abstraction rule

$$\frac{\Gamma, x : \sigma \vdash P : \tau}{\Gamma \vdash (\lambda x : \sigma. P) : (\sigma \to \tau)}$$

application rule

$$\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma$$

 $\Gamma \vdash MN : \tau$

Provability in λ_{\rightarrow}

$$\Gamma \vdash_{\lambda_{\rightarrow}} M : \sigma$$

iff there exists a derivation using the rules with the conclusion $\Gamma \vdash M : \sigma$

Formulas as Types (Curry-Howard isomorphism)

A typing judgement $M : \sigma$ can be read in two ways:

M is a function with the type σ

- term is an algorithm (program)
- type is its specification

M is a proof of the proposition σ

- type is a proposition
- term is its proof

One to one correspondence between

- Terms in λ_{\rightarrow} (typable)
- Derivations in minimal propositional logic

Example derivations in λ_{\rightarrow}

Blackboard

Subset of Intuitionistic Propositional Logic

Only one connective: \rightarrow

Definition cut

$$\begin{bmatrix} \sigma^1 \\ \mathbb{D}_1 \\ \frac{\tau}{\sigma \to \tau} \mathbf{1} & \mathbb{D}_2 \\ \frac{\sigma}{\tau} & \sigma \end{bmatrix}$$

Subset of Intuitionistic Propositional Logic

Only one connective: \rightarrow

Cut Elimination vs λ_{\rightarrow}

Lemma

Cut-elimination in minimal proposition logic corresponds to $\beta\text{-reduction}$ in $\lambda_{\rightarrow}.$

if
$$\mathbb{D}_1 \longrightarrow_{cut} \mathbb{D}_2$$
 then $\mathbb{D}_1 \longrightarrow_{\beta} \mathbb{D}_2$

Summary

Today

- λ_{\rightarrow} , Curry, Church styles
- Type Assignment, Erasure map
- Inductive definition of Terms
- Curry-Howard, Example derivations
- Cut-elimination

Next time

- Untyped lambda calculus, Principal Types
- Gentzen-style natural deduction
- Type Checking Problem, Synthesis, Inhabitation
- HOL Light tactics