omputational
ogic

Interactive Theorem Proving
\WEE

Cezary Kaliszyk

March 10, 2015

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/~cek

Summary

Proof Assistants

HOL Light

HOL Systems

OCaml and LCF style
Types and Terms

Rules

Introducing Connectives

Today
e Typed A-calculus, STT
e Type Assignment

e Curry-Howard Isomorphism and example derivations

V.

CK Interactive Theorem Proving 2/17

Different Foundations

Set Theory

e sets and membership

e semantic information
e “collections of things"

e membership is undecidable

e extensional; talk about things that exist

Type Theory

e typing judgement
e syntactic information
e what objects can be constructed

e intentional

e type checking (and sometimes inference) is decidable

y

CK Interactive Theorem Proving 3/17

. .., - i,NSA
Typed A-calculus

Basis for a Proof Assistant

e Terms: Programs and Proofs

e Types: Specifications and Formulas

Brings together

e Programming

e Proving

CK Interactive Theorem Proving 4/17

... e,
Simple Type Theory (STT) or A,

e Atomic types
o Function types @ —) [3

For example: (o —) - a — 3

S

e Variables with explicit types: x{, x5, ...
e Countably many for each o

e Applications: if M : 0 — 7 and N : o then (MN) : 7
o Abstractions: if P: 7 then (Ax°.P):0 — T

XAy x:0—=>T—0

AT NP Nz xz 1 B —

CK Interactive Theorem Proving 5/17

Conventions

e Types associate to the right

e Applications associate to the left

4

a-convertibility

o

AXT XX R AY Ly Ly

Capture avoiding substitution

M[x := N|

[-reduction

(AxT.M)N — 5 M[x := N]

w

CK Interactive Theorem Proving 6/17

Terms in STT (\,)

e Can we find a term for every type?

CK Interactive Theorem Proving

Terms in STT (\,)

e Can we find a term for every type?

X%«

e Can we find a closed term for every type?

CK Interactive Theorem Proving

Terms in STT (\,)

e Can we find a term for every type?

X%«

e Can we find a closed term for every type?

(a = a) =«

e No! Not every type is inhabited.

CK Interactive Theorem Proving

. .., - i,NSA
Type assignment

Typing a la Church

o All terms have the type information in the A-abstractions
e Unique term types can be computed from the variable types

Typing a la Curry

e Given an untyped A-term assign types
e Types are no longer unique
e Unification gives principal types

Example: Type Ax.\y.x(Az.y)

CK Interactive Theorem Proving 8/17

. .., - i,NSA
Type assignment

Typing a la Church

o All terms have the type information in the A-abstractions
e Unique term types can be computed from the variable types

Typing a la Curry

e Given an untyped A-term assign types
e Types are no longer unique
e Unification gives principal types

Example: Type Ax.\y.x(Az.y)

e ((B—a)—a)ma—a
e ((B—=a)—=7)oa—ny
e (Boa—a)=y)—o(a—a)—=y

CK Interactive Theorem Proving 8/17

Type assignment

Typing a la Church

o All terms have the type information in the A-abstractions
e Unique term types can be computed from the variable types
e Useful in proving

Typing a la Curry

Given an untyped A-term assign types
Types are no longer unique
Unification gives principal types
Useful in programming

Example: Type Ax.\y.x(Az.y)

e ((B—a)—a)Da—a
e ((B—=a)—=7)oa—ny
e (Boa—a)=y)—=(a—a)—=y

CK Interactive Theorem Proving 8/17

O
Connection between STT a la Church and a la Curry

Erasure map: |- |

x| = x
|MN| = |M||N|
[Ax*.M| = Ax.|M|

If M: 0 in STT a la Church, then [M|: 0 in STT a la Curry I
If N:oinSTT ala Curry, then IM. M| = NAM : o in STT a la Church I

CK Interactive Theorem Proving 9/17

Inductive definition of terms

M:0c—7 N:o P:T
MN :t AMXP.P:o— T

X% .0

With a context
e Declare the free variables

X1 .01 ..., Xp:0pbt:T

e Usually denoted '

e Derivation tree

CK Interactive Theorem Proving 10/17

. .., - i,NSA
The three typing rules with a context

I" treated as a set: not possible for a variable to appear twice

variable rule

x:o€el
- x:0
abstraction rule
Mx:okF P:7T

N (Ax:0.P):(c =)

application rule

Fr'=M:0—71 Fr'=N:o
FrEMN: T

CK Interactive Theorem Proving 11/17

. .., - i,NSA
Provability

Provability in A_,

Tk, M:o

iff there exists a derivation using the rules with the conclusion ' = M : o

CK Interactive Theorem Proving 12/17

Formulas as Types (Curry-Howard isomorphism)

A typing judgement M : ¢ can be read in two ways:

M is a function with the type o

e term is an algorithm (program)

e type is its specification

M is a proof of the proposition o

e type is a proposition

e term is its proof

One to one correspondence between

e Terms in A_, (typable)

e Derivations in minimal propositional logic

CK Interactive Theorem Proving 13/17

O
Example derivations in A_,

Blackboard

Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: —

Definition cut

[o"]
D,
T 1 D,
o—T g
p

CK Interactive Theorem Proving 15/17

Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: —

Definition cut-elimination

[o] D,
Dy o

T 1 D,
o—T o D
T T

CK Interactive Theorem Proving 15/17

L
Cut Elimination vs A_,

Cut-elimination in minimal proposition logic corresponds to S-reduction
in A_,.

if D1 —cur Dy then Dy —B Dy

CK Interactive Theorem Proving 16/17

Summary

A_, Curry, Church styles

Type Assignment, Erasure map
Inductive definition of Terms

Curry-Howard, Example derivations
Cut-elimination

Next time
Untyped lambda calculus, Principal Types

o Gentzen-style natural deduction

Type Checking Problem, Synthesis, Inhabitation
HOL Light tactics

CK Interactive Theorem Proving 17/17

