omputational ogic

Interactive Theorem Proving

Week 6

Cezary Kaliszyk

April 21, 2015

Summary

So far

Proof Assistants, HOL Light, λ_{\rightarrow}, Gentzen-style, Tactics

- Properties of λ_{\rightarrow}
- BHK interpretation and λ-cube again
- Dependent types
- λ_{P}

Today

- HOL Light more advanced tactics
- Natural numbers, Quotients, the library

Arithmetic

Definition of Natural Numbers

From the axiom of infinity

Rewriting

- REWRITE_TAC [ARITH]
- What rules are being used?
- Is it complete?

Other domains

- Real, Complex, Integer, \mathbb{R}^{n} (vectors)
- Bootstrapped decision procedures

MESON

- Model-Elimination
- Loveland 1968
- How it works
- Given helper theorems (possibly polymorphic) assume them with appropriate types
- Try to remove occurrences of the Hilbert operator
- Eliminate trivial assumptions
- Beta-reduce
- Eliminate remaining abstractions (using λ-lifting)
- Replace if..then..else expressions using Disjunctions
- For quantification expressions over booleans, consider all cases
- Transform to NNF and Skolemize
- Make all applications first-order
- Translate to FOL and execute model elimination

MESON export - monomorphisation

- Simple, but effective procedure
- Find all polymorphic constants in the goal and the first assumption
- For every occurrence of a constant in the goal and in the assumptions find a type instantiation
- Apply the instantiation to the assumption and include its new instantiated constants in the goal constants
- Repeat for all other assumptions
- May produce very big goals for set constants
- Considering all constants repeatedly can be very slow

MESON export — first order

- Given a term like:

$$
\text { MAP } f[a]=\left[\begin{array}{ll}
f & a
\end{array}\right]
$$

we have the symbol f sometimes applied to zero sometimes one argument

- Can be encoded in FO logic like:

$$
\text { MAP } f[a]=\left[\begin{array}{lll}
I & f
\end{array}\right]
$$

If we assume that identity I is always applied to two arguments

- For every constant or free variable we find the minimum number of arguments it is applied to
- An application of a function F that needs two arguments to 4 arguments is now encoded as:

$$
I(I(F(a 1, a 2), a 3), a 4)
$$

Overview of HOL Light library

Looking at the code

- Unit type
- Quotient Package
- Pairs
- Natural numbers
- Inductive types
- Arithmetic
- Lists
- Reals
- Integers
- Sets

Summary

Today

- Natural numbers, datatypes
- Quotients, reals
- HOL Light library

Next time

- How hard is λ_{P}
- Second order logic
- Order of variables
- λ_{2}

