First Exam

Logic Programming, LVA 703113

June 25, 2015

The exam consists of 5 exercises with a total of $100(+2)$ points. Please fill out your name and credentials before you start the exam.

$0-49:$	$\mathbf{5}$	$50-59:$	$\mathbf{4}$	$60-74:$	$\mathbf{3}$	$75-89:$	$\mathbf{2}$	$90-102:$	$\mathbf{1}$

1. Consider the following (naive) implementation of reverse/2, where the implementation of append/3 is standard.
```
reverse([],[]).
reverse([X],[X]).
reverse([X|Xs],Zs) :-
    reverse(Xs,Ys),
    append(Ys,[X],Zs).
```

a) Construct the SLD tree of the ground query reverse ([1,2,3],[3,2]) (based on Prolog's selection function).
b) A logic program is called deterministic, if the cardinality of the answer set is one. Decide whether or not the program above is deterministic and explain your answer.
c) Provide an improved implementation of reverse/2 making use of an accumulator.
d) Proof or disprove: any ground query for reverse with accumulator requires a proof tree of size (asymptotically) linear in the first argument to reverse.
2. Consider the predicate occurrences(Sub,Term, N) that is true if N is the number of occurrences of subterm $S u b$ in Term, where you can assume Term is ground.
a) Implement occurrences/3 as a recursive program, where as system predicates only types should be used.
b) Reimplement occurrences/3, but this time make use of system calls and higherorder constructs.
3. Consider the following grammars G_{1} and G_{2}

$$
G_{1}:=P \rightarrow[P]|P P| \varepsilon \quad G_{2}:=B \rightarrow[B \mid] B \mid \varepsilon
$$

a) Implement the predicate paren/2 as a DCG that generates $\mathrm{L}\left(G_{1}\right)$ by directly encoding G_{1}. Is this clever? (Explain your answer).
b) Implement the predicate string/4 as a DCG, such that string (L,R) generates $\mathrm{L}\left(G_{2}\right)$ and $\mathrm{L}(\mathrm{R})$ returns the number of left (right) brackets of the generate string.
c) Suppose x is generated by paren and string (L, R). What can one then deduce for L and R ? (Explain your answer).
4. Consider the following Prolog program.

```
foo(X,Y) :- foo([X|Xs]\Xs,Y,[X]).
foo([]\[],Y,Visited) :- !, fail.
foo([A|Xs]\Ys,A, Visited).
foo([A|Xs]\Ys,B,Visited) :-
    setof1(N, edge(A,N),Ns),
```

```
    foo2(Ns,Visited, Visited1, Xs\Ys,Xs1),
    foo(Xs1,B, Visited1).
foo2([N|Ns],Visited, Visited1, Xs, Xs1) :-
        member(N, Visited),
        foo2(Ns,Visited, Visited1, Xs, Xs1).
foo2([N|Ns],Visited, Visited1, Xs \[N|Ys],Xs1) :-
        \}\mathrm{ member(N, Visited),
        foo2(Ns,[N| Visited], Visited1, Xs\Ys, Xs1).
foo2([],V,V,Xs,Xs).
setof1 (Template, Goal, Set) :-
    setof(Template, Goal, Set ).
setof1(Template, Goal, Set) :-
        \ + ~ s e t o f ( T e m p l a t e , ~ G o a l , ~ S e t ~ ) , ~ ! , ~ S e t ~ = ~ [ ] .
```

a) Give a declarative reading of the program.
b) The meaning of the program changes if setof1/3 is replaced by the system predicate setof $/ 3$. Give an example of a goal that succeeds in the original program, but fails in the altered program.
5. Determine whether the following statements are true or false. Every correct answer is worth 2 points; wrong answers "earn" -1 points.

statement

(Prolog) terms are build from logical variables, constants, and functions.
A type is an infinite set of terms.
A rule is a universally quantified logical formula of the form $A \leftarrow B_{1}, B_{2}, \ldots, B_{n}$,
 where A is a goal and for all $i=1, \ldots, n$: B_{i} is a goal.
An SLD refutation is a finite SLD derivation ending in \square.
A proof tree is the same as an SLD tree
A logic program's meaning is the Herbrand model of the program.
The operators \#=, \# $=$ =, and \#> are standard arithmetic comparison operators.
Answer Set Programming (ASP) is a novel programming language that extends
 CLP, that is, all constraint logic programs can be formulated as ASPs.
Prolog programs are executed using SLD resolution, where leftmost and topdown selection is used.

A cut fixes all choices between the moment of matching a rule's head with the goal of the parent clause and the cut.
The predicate setof(Template,Goal,Bag) is similar to bagof. However it removes
 duplicates in the obtained multiset, which is also sorted.

