1. a) We write rev (app) instead of reverse (append) and obtain the following SLD tree, where answer substitutions have usually be performed directy, exception: $\mathrm{Ys}_{1} \mapsto\left[3 \mid \mathrm{Ys}_{4}\right]$.

$$
\begin{aligned}
& \text { (2) } \\
& { }^{(1)} \leftarrow \operatorname{app}\left([3],[2], \mathrm{Ys}_{1}\right), \operatorname{app}\left(\mathrm{Ys}_{1},[1],[3,2]\right) \\
& \leftarrow \operatorname{rev}\left([3], \mathrm{Ys}_{2}\right), \operatorname{app}\left(\mathrm{Ys}_{2},[2], \mathrm{Ys}_{1}\right), \operatorname{app}\left(\mathrm{Ys}_{1},[1],[3,2]\right) \\
& \leftarrow \operatorname{rev}\left([2,3], \mathrm{Ys}_{1}\right), \operatorname{app}\left(\mathrm{Ys}_{1},[1],[3,2]\right) \\
& \leftarrow \operatorname{rev}([1,2,3],[3,2])
\end{aligned}
$$

Here (1) is the following subtree:

$$
\begin{gathered}
\leftarrow \operatorname{app}\left([3],[2], \mathrm{Ys}_{1}\right), \quad \operatorname{app}\left(\mathrm{Ys}_{1},[1],[3,2]\right) \\
\leftarrow \operatorname{app}\left([],[3], \mathrm{Ys}_{2}\right), \operatorname{app}\left(\mathrm{Ys}_{2},[2], \mathrm{Ys}_{1}\right), \operatorname{app}\left(\mathrm{Ys}_{1},[1],[3,2]\right) \\
\leftarrow \operatorname{rev}\left([],[], \mathrm{Ys}_{3}\right), \operatorname{app}\left(\mathrm{Ys}_{3},[3], \mathrm{Ys}_{2}\right), \operatorname{app}\left(\mathrm{Ys}_{2},[2], \mathrm{Ys}_{1}\right), \operatorname{app}\left(\mathrm{Ys}_{1},[1],[3,2]\right) \\
\leftarrow \operatorname{rev}\left([3], \mathrm{Ys}_{2}\right), \operatorname{app}\left(\mathrm{Ys}_{2},[2], \mathrm{Ys}_{1}\right), \operatorname{app}\left(\mathrm{Ys}_{1},[1],[3,2]\right)
\end{gathered}
$$

and (2) is:

> failure
> $\leftarrow \operatorname{app}([],[1],[])$
> $\leftarrow \operatorname{app}([2],[1],[2])$
> $\leftarrow \operatorname{app}([3,2],[1],[3,2])$
> $\leftarrow \operatorname{app}\left([],[2], \mathrm{Ys}_{4}\right), \operatorname{app}\left(\left[3 \mid \mathrm{Ys}_{4}\right],[1],[3,2]\right)$
> $\left.\leftarrow \operatorname{app}\left([3],[2], \mathrm{Ys}_{1}\right), \quad \underset{\mathrm{Ys}_{1}}{ }{ }^{\prime} \rightarrow\left[3 \mid \mathrm{Y}_{4}\right],[3,2]\right)$
b) The program is not deterministic and the cardiality of the answer set is two. This is due to nondeterminancy introduced between the 2nd and 3rd rule.
c) reverse(Xs,Ys) :-
reverse (Xs,[], Ys).
reverse ([], Acc, Acc).
reverse ([X|Xs], Acc, Ys) :reverse (Xs, [X|Acc], Ys).
d) The proof proceed by induction on the length of $X s$.
2. a) constant (C) :-

```
    integer (C) ; atom(C).
occurrences (Sub, Term, 1) :-
    ground (Term) ,
    Sub \(=\) Term.
occurrences (Sub, Term, 0) :-
    constant (Term),
    Sub \(\backslash=\) Term.
occurrences (Sub, Term,N) :-
    compound(Term),
    Term =.. [_F|Args],
    occurrences_args (Args, Sub, N).
occurrences_args ([],_Sub, 0).
occurrences_args ([Term|Ts], Sub,N) :-
    occurrences (Sub, Term, N0),
    occurrences_args (Ts, Sub, N1) ,
    N is \(\mathrm{N} 0+\mathrm{N} 1\).
```

b) occurrences (Sub, Term,N) :-
findall (Sub, sub_term (Sub, Term), Subs),
length (Subs,N).
3. a) foo (X, Y) holds if Y is reachable from X in a graph represented by the predicate edge $/ 2$. The graph is traversed breadth-first.
b) setof1 (Template,Goal,Set) succeeds with the empty list, if no instance of Template can meet Goal. This is in contrast to the system predicate setof $/ 3$, which simply fails in this case. If setof $1 / 3$ is replaced by setof $/ 3$ in the considered program, then the breadth-first search fails. Let us call the new programm new_foo. For example, if we define the following facts:

```
edge (a, b) .
edge (a, c).
```

we have that foo (a,c) holds (as it should), but new_foo(a,c) fails. Thus the meaning of the program changes if setof $1 / 3$ is replaced by the system predicate setof $/ 3$.
(Prolog) terms are build from logical variables, constants, and functions.
A type is an infinite set of terms.
A rule is a universally quantified logical formula of the form $A \leftarrow B_{1}, B_{2}, \ldots, B_{n}$, where A is a goal and for all $i=1, \ldots, n$: B_{i} is a goal. An SLD refutation is a finite SLD derivation ending in \square.

A proof tree is the same as an SLD tree
A logic program's meaning is the Herbrand model of the program.
The operators \#=, \#\=, and \#> are standard arithmetic comparison operators.
Answer Set Programming (ASP) is a novel programming language that extends CLP, that is, all constraint logic programs can be formulated as ASPs.

Prolog programs are executed using SLD resolution, where leftmost and topdown selection is used.

A cut fixes all choices between the moment of matching a rule's head with the goal of the parent clause and the cut.
The predicate setof(Template,Goal,Bag) is similar to bagof. However it removes
 duplicates in the obtained multiset, which is also sorted.

