
Solutions, 2nd exam Logic Programming, LVA 703113 Institute of Computer
Science
July 31, 2015 University of Innsbruck

1. Solution. The following program solves the exercise:

% graph G
edge (a , b) .
edge (a , c) .
edge (b , d) .
edge (c , d) .
edge (d , e) .
edge (f , g) .

% connected (X,Y) i s t rue i f X i s connected to Y in G
%
connected (X,X) .
connected (X,Z) :−

edge (X,Y) ,
connected (Y,Z) .

We only show that the height of the SLD-tree is (grossly) bounded by the number
of vertices n in the graph G. Suppose the height is strictly larger than n; then there
exists a path in G whose length is larger than n. Contradiction to the assumption
that G is acyclic.

2. Solution. (a) The given goal order leads to non-termination, even if both arguments
are complete lists. (b) The difference can be easiest seen from the queries given
below:

:− \+ s u b l i s t ([a , d] , [a , b , c , d]) .
:− subsequence ([a , d] , [a , b , c , d]) .

3. Solution. Consider the following program:

?− op(700 , xfx , ∗ ∗ ∗) .

constant (X) :− integer (X) .
constant (X) :− atom(X) .

normal i s e (Exp ,Norm) :−
normalise_ds (Exp ,Norm ∗∗∗ 1) .

normalise_ds (A∗B, Norm ∗∗∗ Space) :−
normalise_ds (A, Norm ∗∗∗ NormB) ,
normalise_ds (B, NormB ∗∗∗ Space) .

normalise_ds (A, (A ∗ Space) ∗∗∗ Space) :−
constant (A) .

4. Solution. Consider the following program:

pal indrome (Xs) :− palindrome (q0 , Xs , []) .

pal indrome (q0 , [X| Xs] , Ys) :− palindrome (q0 , Xs , [X| Ys]) .
pal indrome (q0 , [X| Xs] , Ys) :− palindrome (q1 , [X| Xs] , Ys) .
pal indrome (q0 , [_X|Xs] , Ys) :− palindrome (q1 , Xs , Ys) .
pal indrome (q1 , [X| Xs] , [X| Ys]) :− palindrome (q1 , Xs , Ys) .
pal indrome (q1 , [] , []) .

5. Solution. Consider the following programs:

% prop/1 −−> DCG tha t genera t e s we l l−pa r en th e s i s ed p r o p o s i t i o n a l formulas
%
prop (p) −−> "p" .
prop (q) −−> "q" .
prop (r) −−> " r " .
prop (not (A)) −−> "~" , prop (A) .
prop (and (A,B)) −−> " (" , prop (A) , "&" , prop (B) , ") " .
prop (or (A,B)) −−> " (" , prop (A) , " | " , prop (B) , ") " .
prop (impl (A,B)) −−> " (" , prop (A) , "=>" , prop (B) , ") " .

% prop2/1 −−> DCG tha t genera t e s p r o p o s i t i o n a l formulas us ing
% the standard precedence
%
atom(p) −−> "p" .
atom(q) −−> "q" .
atom(r) −−> " r " .
atom(A) −−> " (" , prop2 (A) , ") " .
unary (not (A)) −−> "~" , unary (A) .
unary (A) −−> atom(A) .
and (and (A,B)) −−> unary (A) , "&" , and (B) .
and (A) −−> unary (A) .
or (or (A,B)) −−> and (A) , " | " , or (B) .
or (A) −−> and (A) .
prop2 (impl (A,B)) −−> or (A) , "=>" , prop2 (B) .
prop2 (A) −−> or (A) .

6. Solution.
statement yes no

An existential fact is a fact that contains existentially quantified variables. X

Data is structured in logic programs to obtain for example (i) better modularity
or (ii) better organisation of the data.

X

Almost all, but not all basic elements of a relation database model can be ex-
pressed in Prolog.

X

Consider the standard implementation of member/2. Then any call to member
terminates iff the second argument is a complete list.

X

A Prolog clause is called iterative if it has one recursive call and zero or more
calls to system predicates that appear before the recursive call.

X

A cut fixes all choices between (and including) the moment of matching the
rule’s head with parent goal and the cut. If backtracking should read the cut,
then the cut succeeds and the execution is continued with the clause after the
clause containing the cut.

X

?−op(180, xfy, [imp, =>]). asserts that the operators imp and => are binary
right-associative operators.

X

The explicit constructor for difference structures should be removed, if time or
space efficiency is an issue.

X

A meta-interpreter for a language is an interpreter for the language written in
the language itself.

X

Prolog is the only language that allows the efficient manipulation of meta-
interpreters.

X

