
Solutions, 3rd exam Logic Programming, LVA 703113 Institute of Computer
Science
October 2, 2015 University of Innsbruck

1. Solution. % graph G
edge (a , b) .
edge (a , c) .
edge (b , d) .
edge (c , d) .
edge (d , e) .
edge (f , g) .

% connected (X,Y) i s t rue i f X i s connected to Y in G
%
connected (X,X) .
connected (X,Z) :−

edge (X,Y) ,
connected (Y,Z) .

We show that the size of the search tree is (grossly) bounded by O(n2), where n
is the number of vertices in the graph G. First, we observe that the number of
edges in a graph with n nodes is bounded by n2. Furthermore, in searching for
a connection we need to consider each edge at most once. Hence the search tree
is bounded by O(n2). This argument is independent of the fact that the goal is
ground or not.

2. Solution.

dup l i c a t e (Xs ,N, Ys) :−
dup l i c a t e2 (Xs ,N, Ys \ []) .

dup l i c a t e2 ([] ,_N,Ys\Ys) .
dup l i c a t e2 ([X| Xs] ,N, Ys0\Ys2) :−

generate (X,N, Ys0\Ys1) ,
dup l i c a t e2 (Xs ,N, Ys1\Ys2) .

generate (_X, 0 ,Ys\Ys) .
generate (X,N, Ys0\Ys1) :−

N > 0 ,
N1 i s N − 1 ,
generate (X,N1 , Ys0 \ [X| Ys1]) .

3. Solution.

1

i s o t r e e (n i l , n i l) .
i s o t r e e (t r e e (X, Left1 , Right1) , t r e e (X, Left2 , Right2) :−

i s o t r e e (Left1 , Le f t2) ,
i s o t r e e (Right1 , Right2) .

i s o t r e e (t r e e (X, Left1 , Right1) , t r e e (X, Left2 , Right2) :−
i s o t r e e (Left1 , Right2) ,
i s o t r e e (Right1 , Le f t2) .

4. Solution.

% prop/1 −−> DCG tha t genera t e s we l l−pa r en th e s i s ed p r o p o s i t i o n a l formulas
% and s t o r e s the syntax t r e e
%
prop (true) −−> " true " .
prop (f a l s e) −−> " f a l s e " .
prop (not (A)) −−> "not" , prop (A) .
prop (and (A,B)) −−> " (" , prop (A) , "and" , prop (B) , ") " .
prop (or (A,B)) −−> " (" , prop (A) , " or " , prop (B) , ") " .

% prop2/1 −−> DCG tha t genera t e s p r o p o s i t i o n a l formulas us ing
% the standard precedence
%
atom(p) −−> " true " .
atom(q) −−> " f a l s e " .
atom(A) −−> " (" , prop2 (A) , ") " .
unary (not (A)) −−> "not" , unary (A) .
unary (A) −−> atom(A) .
and (and (A,B)) −−> unary (A) , "and" , and (B) .
and (A) −−> unary (A) .
prop2 (or (A,B)) −−> and (A) , " or " , or (B) .
prop2 (A) −−> and (A) .

5. Solution.

jump(N,A/B,C/D) :−
jump_dist (X,Y) ,
C i s A+X, C > 0 , C =< N,
D i s B+Y, D > 0 , D =< N.

jump_dist (1 , 2) .
jump_dist (2 , 1) .
jump_dist (2 ,−1).

2

jump_dist (1 ,−2).
jump_dist (−1 ,−2).
jump_dist (−2 ,−1).
jump_dist (−2 ,1) .
jump_dist (−1 ,2) .

6. Solution.

statement yes no

A rule is a universally quantified logical formula of the form A← B1, B2, . . . , Bn,
where A is a goal and for all i = 1, . . . , n: Bi is a goal.

X

An SLD-refutation is a finite SLD-derivation ending in the goal to be proven. X

Logic programming is a declarative programming paradigm, that is, the compu-
tation of a function is made a first-class citizen.

X

The declarative semantics of a program P is the minimal model of P . X

The order of goals is irrelevant in the computation model of logic programming,
but not the order of rules.

X

A search tree is the same as an SLD tree. X

Prolog is a language without types and the main technique to manipulate data
is unification.

X

Difference lists are ineffective if the generation of different sections of a list
depend on each other.

X

A meta-interpreter in Prolog interprets Prolog terms on the Warren abstract
machine.

X

The predicate bagof (Template,Goal,Bag) unifies Bag with the alternatives of
Goal that meet Template.

X

3

