1. Solution. \% graph G

$$
\operatorname{edge}(\mathrm{a}, \mathrm{~b})
$$

$$
\operatorname{edge}(\mathrm{a}, \mathrm{c}) .
$$

edge (b, d).
edge (c, d).
edge (d,e).
edge (f,g).

```
% connected (X,Y) is true if X is connected to Y in G
%
connected (X,X).
connected (X,Z) :-
    edge(X,Y),
    connected(Y,Z).
```

We show that the size of the search tree is (grossly) bounded by $\mathrm{O}\left(n^{2}\right)$, where n is the number of vertices in the graph G. First, we observe that the number of edges in a graph with n nodes is bounded by n^{2}. Furthermore, in searching for a connection we need to consider each edge at most once. Hence the search tree is bounded by $\mathrm{O}\left(n^{2}\right)$. This argument is independent of the fact that the goal is ground or not.
2. Solution

```
duplicate(Xs,N,Ys) :-
    duplicate2(Xs,N,Ys \[]).
duplicate2([],_N,Ys\Ys).
duplicate2([X|Xs],N,Ys0\Ys2) :-
    generate(X,N,Ys0\Ys1),
        duplicate2(Xs,N,Ys1\Ys2).
generate(_X,0,Ys\Ys).
generate(X,N,Ys0\Ys1) :-
    N > 0,
    N1 is N - 1,
        generate(X,N1,Ys0\[X|Ys1]).
```

3. Solution.
```
isotree(nil, nil).
isotree(tree(X, Left1, Right1),tree(X,Left2,Right2) :-
    isotree(Left1, Left2),
    isotree(Right1, Right2).
isotree(tree(X, Left1, Right1), tree(X,Left2,Right2) :-
    isotree(Left1, Right2),
    isotree(Right1, Left2).
```

4. Solution.
```
% prop/1 - DCG that generates well-parenthesised propositional formulas
% and stores the syntax tree
%
prop(true) --> "true".
prop(false) — "false".
prop(not(A)) --> "not", prop(A).
prop(and(A,B)) - " (", prop(A), "and", prop(B), ")".
prop(or(A,B)) — "(", prop(A), "or", prop(B), ")".
% prop2/1 —> DCG that generates propositional formulas using
% the standard precedence
%
atom(p) --> "true".
atom(q) ——> "false".
atom(A) --> "(", prop2(A), " )".
unary (\boldsymbol{not}(A)) -> "not", unary(A).
unary (A) - atom (A).
and (and (A,B)) }->\mathrm{ unary (A), "and", and(B).
and (A) — unary (A).
prop2(or (A,B)) - and (A), "or", or (B).
prop2(A) —> and (A).
```

5. Solution
```
jump(N,A/B,C/D) :-
    jump_dist(X,Y),
    C is A+X,C>0,C =< N,
    D is B+Y, D > 0, D =< N.
jump_dist (1,2).
jump_dist (2,1).
jump_dist (2, - 1).
```

```
jump_dist (1, - 2).
jump_dist (-1, -2).
jump_dist ( -2, -1).
jump_dist ( - 2,1).
jump_dist(-1,2).
```


6. Solution.

```
statement
```

A rule is a universally quantified logical formula of the form $A \leftarrow B_{1}, B_{2}, \ldots, B_{n}$, where A is a goal and for all $i=1, \ldots, n$: B_{i} is a goal.
An SLD-refutation is a finite SLD-derivation ending in the goal to be proven.
Logic programming is a declarative programming paradigm, that is, the computation of a function is made a first-class citizen.
The declarative semantics of a program P is the minimal model of P.

The order of goals is irrelevant in the computation model of logic programming, but not the order of rules.

A search tree is the same as an SLD tree.

Prolog is a language without types and the main technique to manipulate data is unification.

Difference lists are ineffective if the generation of different sections of a list depend on each other.
A meta-interpreter in Prolog interprets Prolog terms on the Warren abstract machine.

The predicate bagof (Template, Goal,Bag) unifies Bag with the alternatives of
\square $\sqrt{ }$ \square
\square

\square Goal that meet Template.

