
Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

http://cl-informatik.uibk.ac.at


Organisation

Organisation

GM (Institute of Computer Science @ UIBK) Logic Programming 2/1



Organisation

Time and Place

Lecture Thursday, 11:15–13:00, HS 10
Proseminar Thursday, 13:15–14:00, HS 10

Schedule

week 1 March 5 week 8 May 7
week 2 March 12 week 9 May 21
week 3 March 19 week 10 May 28
week 4 March 26 week 11 June 11
week 5 April 16 week 12 June 18
week 6 April 23 first exam June 25
week 7 April 30

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Logic Programming 3/1



Organisation

Time and Place

Lecture Thursday, 11:15–13:00, HS 10
Proseminar Thursday, 13:15–14:00, HS 10

Schedule

week 1 March 5 week 8 May 7
week 2 March 12 week 9 May 21
week 3 March 19 week 10 May 28
week 4 March 26 week 11 June 11
week 5 April 16 week 12 June 18
week 6 April 23 first exam June 25
week 7 April 30

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Logic Programming 3/1



Organisation

Time and Place

Lecture Thursday, 11:15–13:00, HS 10
Proseminar Thursday, 13:15–14:00, HS 10

Schedule

week 1 March 5 week 8 May 7
week 2 March 12 week 9 May 21
week 3 March 19 week 10 May 28
week 4 March 26 week 11 June 11
week 5 April 16 week 12 June 18
week 6 April 23 first exam June 25
week 7 April 30

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Logic Programming 3/1



Organisation

Literature

1 Leon Sterling and Ehud Shapiro
The Art of Prolog

Additional Reading

• Patrick Blackburn, Johan Bos and Kristina Striegnitz
Learn Prolog Now!
Texts in Computing 7, College Publications, 2006, ISBN
1-904987-17-6

• William F. Clocksin and Christopher S. Mellish
Programming in Prolog (fifth edition)
Springer Verlag, 2003, ISBN 978-3-540-00678-7

• http://groups.google.com/group/comp.lang.prolog

GM (Institute of Computer Science @ UIBK) Logic Programming 4/1

http://groups.google.com/group/comp.lang.prolog


Organisation

Literature

1 Leon Sterling and Ehud Shapiro
The Art of Prolog

Additional Reading

• Patrick Blackburn, Johan Bos and Kristina Striegnitz
Learn Prolog Now!
Texts in Computing 7, College Publications, 2006, ISBN
1-904987-17-6

• William F. Clocksin and Christopher S. Mellish
Programming in Prolog (fifth edition)
Springer Verlag, 2003, ISBN 978-3-540-00678-7

• http://groups.google.com/group/comp.lang.prolog

GM (Institute of Computer Science @ UIBK) Logic Programming 4/1

http://groups.google.com/group/comp.lang.prolog


Organisation

Literature

1 Leon Sterling and Ehud Shapiro
The Art of Prolog

Additional Reading

• Patrick Blackburn, Johan Bos and Kristina Striegnitz
Learn Prolog Now!
Texts in Computing 7, College Publications, 2006, ISBN
1-904987-17-6

• William F. Clocksin and Christopher S. Mellish
Programming in Prolog (fifth edition)
Springer Verlag, 2003, ISBN 978-3-540-00678-7

• http://groups.google.com/group/comp.lang.prolog

GM (Institute of Computer Science @ UIBK) Logic Programming 4/1

http://groups.google.com/group/comp.lang.prolog


Organisation

Evaluations

Exam
• first exam will take place on June 25

• closed- or open-book will be decided in the lecture

Proseminar
• I’d like to combine lecture and proseminar, so that we can easily

switch between lecture and practical programming

• still there will be weakly homework assignments, which will be
discussed at a suitable time during the 3 hours

• your mark depends on your level of activity in the laboratory

• exercises will be easy and few, so that everybody can solve all
exercises

GM (Institute of Computer Science @ UIBK) Logic Programming 5/1



Organisation

Evaluations

Exam
• first exam will take place on June 25

• closed- or open-book will be decided in the lecture

Proseminar
• I’d like to combine lecture and proseminar, so that we can easily

switch between lecture and practical programming

• still there will be weakly homework assignments, which will be
discussed at a suitable time during the 3 hours

• your mark depends on your level of activity in the laboratory

• exercises will be easy and few, so that everybody can solve all
exercises

GM (Institute of Computer Science @ UIBK) Logic Programming 5/1



Organisation

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, se-
mantics

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, efficient programs, complexity

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, answer set programming

GM (Institute of Computer Science @ UIBK) Logic Programming 6/1



Organisation

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, se-
mantics

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, efficient programs, complexity

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, answer set programming

GM (Institute of Computer Science @ UIBK) Logic Programming 6/1



Organisation

Logic Programs

GM (Institute of Computer Science @ UIBK) Logic Programming 7/1



Introduction

Attempt at a Definition

logic programming is a declarative programming paradigm, that is, the
specification of a problem is made a first-class citizen; the idea can be
summarised as follows:

program set of judgements
computation proof of a goal statement from the program

Advertisment

In its ultimate and purest form, logic programming suggests that
even explicit instructions for operations not be given, but, rather,
the knowledge about the problem and assumptions that are suf-
ficient to solve it be stated explicitly, as logical axioms.

this is very abstract, over-simplified, and becomes false, when subject to
scrutiny ... still logic programming is a pearl

GM (Institute of Computer Science @ UIBK) Logic Programming 8/1



Introduction

Attempt at a Definition

logic programming is a declarative programming paradigm, that is, the
specification of a problem is made a first-class citizen; the idea can be
summarised as follows:

program set of judgements
computation proof of a goal statement from the program

Advertisment

In its ultimate and purest form, logic programming suggests that
even explicit instructions for operations not be given, but, rather,
the knowledge about the problem and assumptions that are suf-
ficient to solve it be stated explicitly, as logical axioms.

this is very abstract, over-simplified, and becomes false, when subject to
scrutiny ... still logic programming is a pearl

GM (Institute of Computer Science @ UIBK) Logic Programming 8/1



Introduction

Attempt at a Definition

logic programming is a declarative programming paradigm, that is, the
specification of a problem is made a first-class citizen; the idea can be
summarised as follows:

program set of judgements
computation proof of a goal statement from the program

Advertisment

In its ultimate and purest form, logic programming suggests that
even explicit instructions for operations not be given, but, rather,
the knowledge about the problem and assumptions that are suf-
ficient to solve it be stated explicitly, as logical axioms.

this is very abstract, over-simplified, and becomes false, when subject to
scrutiny ... still logic programming is a pearl

GM (Institute of Computer Science @ UIBK) Logic Programming 8/1



Introduction

Declarative Programming Languages

Robert Harper saysa

aTYPES Mailing List, April 2013

The term ”declarative” never meant a damn thing, but was often
used, absurdly, to somehow lump together functional program-
ming with logic programming, and separate it from imperative
programming. It never made a lick of sense; it’s just a marketing
term.

Uday S. Reddy says

Indeed, ”declarative” means a lot. But, ”declarative program-
ming language” doesn’t. If somebody claims that some language
is not ”declarative”, it just means that they never thought about
its declarative interpretation, not that it doesn’t exist. Ignorance
is peddled as a fact of reality.

GM (Institute of Computer Science @ UIBK) Logic Programming 9/1



Introduction

Declarative Programming Languages

Robert Harper saysa

aTYPES Mailing List, April 2013

The term ”declarative” never meant a damn thing, but was often
used, absurdly, to somehow lump together functional program-
ming with logic programming, and separate it from imperative
programming. It never made a lick of sense; it’s just a marketing
term.

Uday S. Reddy says

Indeed, ”declarative” means a lot. But, ”declarative program-
ming language” doesn’t. If somebody claims that some language
is not ”declarative”, it just means that they never thought about
its declarative interpretation, not that it doesn’t exist. Ignorance
is peddled as a fact of reality.

GM (Institute of Computer Science @ UIBK) Logic Programming 9/1



Introduction

Declarative Programming Languages (cont’d)

Robert Harper says

I am referring to the term ”declarative programming language”,
and should have been more precise in saying that. It’s died down
now, mostly, but for a while there was an attempt to equate logic
programming languages with functional programming languages
under this term.a

If one wishes to use ”declarative” as description of a denotational
semantics, that’s fine, but I would point out that even Prolog
can only be understood fully in operational terms, e.g. the ”cut”
operator !, which controls the proof search procedure.

aRemark: not true for wikipedia

GM (Institute of Computer Science @ UIBK) Logic Programming 10/1



History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler

...
2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


History and Applications

Timeline

196? procedural view of (Horn) logic R. Kowalski

1972 Programmation en Logique A. Colmerauer & P. Roussel

1983 Warren abstract machine D. Warren

1987 constraint logic programming Jaffar & Maher

1994 answer set programming Dimopoulos, Nebel & Köhler
...

2015 SWI-Prolog, Version 6.4.1 free

SICStus Prolog, Version 4.3.1 SICS

A Few Applications

• speach recognition: Clarissa

• networks: Ericsson Network Resource Manager

• program analysis: Julia

GM (Institute of Computer Science @ UIBK) Logic Programming 11/1

http://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/
http://sicstus.sics.se/ericsson_nrm.html
http://julia.scienze.univr.it/


Basic Constructs

Basic Constructs

Definitions
• terms are built from logical variables, constants and functors

• ground term contains no variables; nonground term contains
variables

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Notation

we confuse function symbols and predicate symbols (= functors) in the
definition of a term; this makes meta-level predicates more natural

GM (Institute of Computer Science @ UIBK) Logic Programming 12/1



Basic Constructs

Basic Constructs

Definitions
• terms are built from logical variables, constants and functors

• ground term contains no variables; nonground term contains
variables

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Notation

we confuse function symbols and predicate symbols (= functors) in the
definition of a term; this makes meta-level predicates more natural

GM (Institute of Computer Science @ UIBK) Logic Programming 12/1



Basic Constructs

Basic Constructs

Definitions
• terms are built from logical variables, constants and functors

• ground term contains no variables; nonground term contains
variables

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Notation

we confuse function symbols and predicate symbols (= functors) in the
definition of a term; this makes meta-level predicates more natural

GM (Institute of Computer Science @ UIBK) Logic Programming 12/1



Basic Constructs

Example (Goals)

father(andreas,boris)

Definitions (Clause)

• a clause or rule is an universally quantified logical formula of the
form

A← B1,B2, . . . ,Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A← is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Institute of Computer Science @ UIBK) Logic Programming 13/1



Basic Constructs

Example (Goals)

father(andreas,boris)

Definitions (Clause)

• a clause or rule is an universally quantified logical formula of the
form

A← B1,B2, . . . ,Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A← is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Institute of Computer Science @ UIBK) Logic Programming 13/1



Basic Constructs

Example (Goals)

father(andreas,boris)

Definitions (Clause)

• a clause or rule is an universally quantified logical formula of the
form

A← B1,B2, . . . ,Bn .

where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A← is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

GM (Institute of Computer Science @ UIBK) Logic Programming 13/1



Basic Constructs

Example (Facts)

father(andreas,boris). female(doris). male(andreas).

father(andreas,christian). female(eva). male(boris).

father(andreas,doris). male(christian).

father(boris,eva). male(franz).

father(franz,georg). male(georg).

mother(helga,doris). mother(anna,eva). mother(doris,franz).

mother(eva,georg).

Example (Rules)

daughter(X,Y) ← father(Y,X), female(X).

daughter(X,Y) ← mother(Y,X), female(X).

grandfather(X,Y) ← father(X,Z), father(Z,Y).

grandfather(X,Y) ← father(X,Z), mother(Z,Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 14/1



Basic Constructs

Example (Facts)

father(andreas,boris). female(doris). male(andreas).

father(andreas,christian). female(eva). male(boris).

father(andreas,doris). male(christian).

father(boris,eva). male(franz).

father(franz,georg). male(georg).

mother(helga,doris). mother(anna,eva). mother(doris,franz).

mother(eva,georg).

Example (Rules)

daughter(X,Y) ← father(Y,X), female(X).

daughter(X,Y) ← mother(Y,X), female(X).

grandfather(X,Y) ← father(X,Z), father(Z,Y).

grandfather(X,Y) ← father(X,Z), mother(Z,Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 14/1



Basic Constructs

Definition (Query)

a query is a conjunction of goals of the following form:

← A1,A2, . . . ,An

Example (Queries)

← father(andreas,boris) ← father(andreas,X)

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

GM (Institute of Computer Science @ UIBK) Logic Programming 15/1



Basic Constructs

Definition (Query)

a query is a conjunction of goals of the following form:

← A1,A2, . . . ,An

Example (Queries)

← father(andreas,boris) ← father(andreas,X)

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

GM (Institute of Computer Science @ UIBK) Logic Programming 15/1



Basic Constructs

Definition (Query)

a query is a conjunction of goals of the following form:

← A1,A2, . . . ,An

Example (Queries)

← father(andreas,boris) ← father(andreas,X)

Observations

1 existential query contains logical variable(s)

2 universal fact contains logical variable(s)

3 conjunctive query is conjunction of goals posed as query

GM (Institute of Computer Science @ UIBK) Logic Programming 15/1



Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Institute of Computer Science @ UIBK) Logic Programming 16/1



Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Institute of Computer Science @ UIBK) Logic Programming 16/1



Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Institute of Computer Science @ UIBK) Logic Programming 16/1



Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Institute of Computer Science @ UIBK) Logic Programming 16/1



Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Institute of Computer Science @ UIBK) Logic Programming 16/1



Basic Constructs

Definitions
• substitution is finite set of pairs

{X1 7→ t1, . . . ,Xn 7→ tn}

with terms t1, . . . , tn and pairwise different variables X1, . . . ,Xn

• application of substitution θ to term t is denoted by tθ

• tθ is instance of t

Examples θ1 = {X 7→ boris}
θ2 = {X 7→ boris, Y 7→ eva}
θ3 = {X 7→ s(Y), Y 7→ 0}

father(andreas, X)θ1 = father(andreas, boris)

father(X, Y)θ2 = father(boris, eva)

list(X, list(X, Y))θ3 = list(s(Y), list(s(Y), 0))

GM (Institute of Computer Science @ UIBK) Logic Programming 16/1



SWI-Prolog

Example (Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X). 0 + X = X
plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X) ← plus(s(0),X,s(s(s(0)))) ← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Example (Addition on Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X). 0 + X = X

plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X) ← plus(s(0),X,s(s(s(0)))) ← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Example (Addition on Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X) ← natural number(X). 0 + X = X

plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X) ← plus(s(0),X,s(s(s(0)))) ← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Example (Addition on Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X) ← natural number(X). 0 + X = X
plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X) ← plus(s(0),X,s(s(s(0)))) ← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Example (Addition on Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X) ← natural number(X). 0 + X = X
plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X)

← plus(s(0),X,s(s(s(0)))) ← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Example (Addition on Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X) ← natural number(X). 0 + X = X
plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X) ← plus(s(0),X,s(s(s(0))))

← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Example (Addition on Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X) ← natural number(X). 0 + X = X
plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X) ← plus(s(0),X,s(s(s(0)))) ← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Example (Addition on Natural Numbers)

natural number(0).

natural number(s(X)) ← natural number(X).

plus(0,X,X) ← natural number(X). 0 + X = X
plus(s(X),Y,s(Z)) ← plus(X,Y,Z). s(X ) + Y = s(X + Y )

← plus(s(0),s(0),X) ← plus(s(0),X,s(s(s(0)))) ← plus(X,X,s(0))

[zid-gpl.uibk.ac.at] swipl

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.7.11)

Copyright (c) 1990-2009 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

GM (Institute of Computer Science @ UIBK) Logic Programming 17/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) ← plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) ← times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) ← plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) ← times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) ← plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) ← times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0

;

backtracking to find further solutions

false

true

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

true ?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

X = s(0), Y = s(0)

; ?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

X = s(0), Y = s(0) ;

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0))))

; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Query

?- times(X,X,Y).

?- plus(X,s(0),0).

X = 0, Y = 0 ; backtracking to find further solutions

false

X = s(0), Y = s(0) ;

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Queries

?- times(X,X,Y). ?- plus(X,s(0),0).

X = 0, Y = 0 ;

false

X = s(0), Y = s(0) ;

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Queries

?- times(X,X,Y). ?- plus(X,s(0),0).

X = 0, Y = 0 ; false

X = s(0), Y = s(0) ;

?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Queries

?- times(X,X,Y). ?- plus(X,s(0),0).

X = 0, Y = 0 ; false

X = s(0), Y = s(0) ; ?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ;

?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Notation
• A :- A1, . . . ,Am. instead of A← A1, . . . ,Am. for rules

• ?- A1, . . . ,Am. instead of ← A1, . . . ,Am for queries

Example

plus(0,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,U), plus(U,Y,Z).

Queries

?- times(X,X,Y). ?- plus(X,s(0),0).

X = 0, Y = 0 ; false

X = s(0), Y = s(0) ; ?- plus(X,s(0),s(s(X))).

X = s(s(0)), Y = s(s(s(s(0)))) ; ?- plus(s(0),X,s(s(X))).

GM (Institute of Computer Science @ UIBK) Logic Programming 18/1



SWI-Prolog

Examples from LICS

Tower of Hanoi in Prolog

hanoi(0,_,_,_).

hanoi(N,X,Y,Z) :-

N > 0, M is N-1,

hanoi(M,X,Z,Y),

move(N,X,Y),

hanoi(M,Z,Y,X).

move(D,X,Y) :-

write(’move disk ’), write(D),

write(’ from ’), write(X),

write(’ to ’), write(Y), nl.

?- hanoi(4,a,c,b).

GM (Institute of Computer Science @ UIBK) Logic Programming 19/1


