ogic

Logic Programming

Georg Moser
Institute of Computer Science @ UIBK

Summer 2015

Example (meta-interpreters for debugging)

solve (true,.D,no_overflow) :—
|
solve (-A,0,overflow ([])).
solve ((A,B),D, Overflow) :—
D> 0,
solve (A,D, OverflowA),
solve_conjunction (OverflowA ,B,D, Overflow).
solve (A,D,no_overflow) :—

D> 0,

system (A), !, A.
solve (A,D, Overflow) :—

D> o0,

clause (A,B),

D1 is D - 1,

solve (B,D1, OverflowB),
return_overflow (OverflowB ,A, Overflow).

GM (Institute of Computer Science @ UIBK Logic Programming 183/1

Summary of Last Lecture

Example
no_doubles(Xs,Ys) :- setof (X,member(X,Xs),Ys).

Example (meta-interpreter with proofs)

solve(true,true) :- !

solve((A,B), (ProofA,ProofB)) :-
',
solve(A,ProofA),
solve(B,ProofB).

solve(A, (A :- Proof)) :-
clause(A,B),

solve(B,Proof).

GM (Institute of Computer Science @ UIBK Logic Programming

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK Logic Programming 184/1

http://cl-informatik.uibk.ac.at

Expert Systems in Prolog o E S
oy £xpert System

Expert Systems
P Sy place_in_oven (Dish,top) :—

expert systems typically consists of pastry (Dish), size(Dish,small).
e knowledee base place_in_oven (Dish, middle) :—
_ & _ pastry (Dish), size(Dish,big).
e inference engine place_in_oven (Dish, middle) :—
this separation is not suitable for a Prolog implementation main_meal (Dish).

place_in_oven (Dish, low) :—
slow_cooker (Dish).

Employ Meta-Interpreters _ _
pastry (Dish) :— type(Dish, cake).

we implement the following features of expert systems using meta- pastry (Dish) :— type(Dish,bread).
interpreters:
e interaction with the user main_meal (Dish) :— type(Dish, 6 meat).
e explanation facility slow_cooker(Dish) :— type(Dish, milk_pudding).

e uncertainty reasoning

GM (Institute of Computer Science @ UIBK Logic Programming GM (Institute of Computer Science @ UIBK} Logic Programming

solvel/1 Interaction (in the Naive)

solvel(trlue) = interact (Goal) :—

solvel ((A,B)) - reset , solvel(Goal).
vel Aso.lvel(A), solvel (B). reset :— retractall(type(_-Dish, _Type)),
solvel(/Z\\: (A1, A2) retractall(size(_-Sish, _Size)),
clause (A,B), solvel(B). retractall(untrue(_Fact)).
solvel (A) :— b . .
?— interact(place_in_oven(dish ,X)).
askable(A), \+ known(A), type (dish cgke)? yes ()
ask (A, Answer), ' \ '

size (dish ,small)? no.
type(dish ,bread)? no.
size (dish ,big)? yes.

respond (Answer ,A).

ask (A, Answer) :— display_query(A),read(Answer). X — middle
askable(type(_Dish, _Type)).
askable(size(_-Dish, _Size)).
Question
respond (yes ,A) :— assert(A). _ what about explanations for questions?
respond (no,A) :— assert(untrue(A)), fail.

GM (Institute of Computer Science @ UIBK Logic Programming 187/1 GM (Institute of Computer Science @ UIBK Logic Programming 188/1

[Overview overview
solve2/1 Interaction with Explanations

solve2 (Goal) :— solve2(Goal ,[]). interact_why (Goal) :— reset, solve2(Goal).

solve2(true, _Rules) :—
I

soIve2((A.B) Rules) :— ?7— interact_why(place_in_oven (dish ,X)).
solve2 (A, Rules), solve2 (B, Rules). t)_/Pe(d!Sh ,cake)? yes.
solve2 (A, Rules) :— size(dish ,small)? no.
A\= (_Al,_A2) type(dish ,bread)? no.
cIause(A,é), ’ 'size(dish ,bi'g)? why . ' . .
solve2 (B,[rule(A,B)|Rules]). if pastry(dish) and size(dish, big)
solve2 (A, Rules) :— then place_in_oven (dish , middle)
askable (A), \+ known(A), SIZe(dllsh ,big)? yes.
ask (A, Answer), respond(Answer,A, Rules). X = middle

respond (why,A, [Rule| Rules]) :—

display_rule (Rule), Question
ask (A, Answer),

respond (Answer ,A, Rules).

how to obtain general explanations

GM (Institute of Computer Science @ UIBK Logic Programming GM (Institute of Computer Science @ UIBK

Logic Programming

[Overview overview
interpret/1 how/1
interpret ((Proofl , Proof2)) :— how(Goal) :— solve(Goal,Proof), interpret(Proof).
interpret(Proofl), interpret(Proof2).
interpret (Proof) :— ?7— interact(place_in_oven(dish ,X)).
fact (Proof, Fact), % required for type and size of dish
nl, write(Fact),
writeln (' is a fact in the database). ?7— how(place_in_oven (dish ,top)).
interpret (Proof) :—
rule (Proof ,Head, Body, Proofl), place_in_oven (dish ,top) is proved using the rule
nl, write(Head), if pastry(dish) and size(dish,6small)
writeln (' is proved using the rule’), then place_in_oven (dish , top)
display_rule(rule(Head, Body)),
interpret (Proofl). pastry(dish) is proved using the rule
if type(dish,bread)
extract_body ((Proofl , Proof2),(Bodyl,Body2)) :— then pastry(dish)
I, extract_body (Proofl,h Bodyl),
extract_body (Proof2 , Body2). type(dish ,bread) is a fact in the database
extract_body ((Goal <— _Proof), Goal).
size(dish ,small) is a fact in the database

GM (Institute of Computer Science @ UIBK Logic Programming 191/1 GM (Institute of Computer Science @ UIBK Logic Programming 192/1

Shortcomings with Explanation .
& P Definition
e the explanation is exhaustive . .
) ..) the certainty of a goal is computed as follows
not intelligible for a knowledge base with 100 rules Y & P
e restrict explanation to one level: cert(G) = min{cert(A), cert(B)} G =(AB)
pastry(dish) can be further explained max{cert(B) - Factor | exists (A: —B, Factor)} G =A
e Prolog computation is mirrored
o take expert knowledge into account: Definition (clauses with certification factor)
interpret(('G0a|'<—— Proof)) :— clause_cf(place_in_oven (Dish, top),
cle?ssn‘lcatlon (Goal), (pastry(Dish), size(Dish,small)),0.7).
wrl'te(GoaI?, o _ clause_cf(place_in_oven (Dish,middle),
writeln (' is a classification example’). (pastry (Dish), size(Dish,big)),1).
))) clause_cf(place_in_oven (Dish, middle),
e in general make use of filtered explanations main_meal (Dish),1).
clause_cf(place_in_oven (Dish,low),
slow_cooker(Dish),0.5).
Remark % otherwise
a more advanced example of expert system is in Chapter 21 in the book clause_cf(Head, Body,1) :— clause(Head, Body).

GM (Institute of Computer Science @ UIBK} Logic Programming GM (Institute of Computer Science @ UIBK Logic Programming

I
solve3/1

solve3(true,1) :—
|

solve3 ((AB) ,C) -
I

solve3(A,C1),

solve3(B,C2),

minimum (C1,C2,C).
solve3(A,C) :—

clause_cf(A,B,Cl1),

solve3(B,C2),

C is Cl = C2.

?7— interact(place_in_oven(dish ,X)).
% required for type and size of dish

?7— solve3(place_in_oven (dish , top),C).
CcC=0.7

GM (Institute of Computer Science @ UIBK Logic Programming

