ogic

Logic Programming

Georg Moser
Institute of Computer Science @ UIBK

Summer 2015

[Overview]
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming, answer set
programming

GM (Institute of Computer Science @ UIBK Logic Programming 197/1

Expert System with Certification Factor

solved /1

solve4 (true,1, _Treshold) :—
!

solve4 ((A,B),C, Treshold) :—
I
solve4 (A,Cl1, Treshold),
solve4 (B,C2, Treshold),
minimum (C1,C2,C).
solve4 (A,C, Treshold) :—
clause_cf(A,B,C1),
Cl > Treshold,
Tresholdl is Treshold / C1,
solve4 (B,C2, Tresholdl),
C is C1 x C2.

GM (Institute of Computer Science @ UIBK Logic Programming

Cryptarithmetic

Definition
e a cryptarithmetic problem is a puzzle in which each letter represents
a unique digit <9

e the object is to find the value of each letter

e first digit cannot be 0

Example
S END
MORE
MONEY
GM (Institute of Computer Science @ UIBK Logic Programming 198/1

http://cl-informatik.uibk.ac.at

First Attempt

generate and test

solve ([[S.E,N,D] ,[M,O,R,E],[M,O,N,E,Y]]) :—
Digits = [D, E, M, N, O, R, S, V],
Carries = [C1,C2,C3,C4],
selects(Digits, [0,1,2,3,4,5,6,7,8,9]),
members(Carries, [0,1]),

M == C4,
O+ 10 = C4 == S + M+ C3,
N+ 10 * C3 == E + O + C2,
E+ 10 « C2 == N + R + C1,
Y + 10 « C1 == D + E,
M> 0, S> 0.

:— solve(X),

X =19, 5 6, 7], [L, 0, 8, 5], [L, 0, 6, 5, 2]].

An Abstract Problem

Discussion

very inefficient

?7— time(solve (X)).

% 133,247,057 inferences ,

% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)
X=1[[9, 5 6, 7], [L, 0, 8, 5], [1, 0, 6, 5, 2]]

explanation
e generate-and-test in it's purest form
e all guesses are performed before the constraints are checked

e arithmetic checks cannot deal with variables

improvement
e move testing into generating
e destroys clean structure of program

e any other ideas?

GM (Institute of Computer Science @ UIBK’ Logic Programming

GM (Institute of Computer Science @ UIBK Logic Programming

Constraint Logic Programming

Constraint Logic Programming

Definitions (CLP on finite domains)
e use module(library(clpfd)) loads the clpfd library
e Xs ins N .. M specifies that all values in Xs must be in the given
range
e all different(Xs) specifies that all values in Xs are differnt
e label(Xs) all variables in Xs are evaluated to become values

o #= #\=, #>, ...like the arithmetic comparison operators, but may
contain (constraint) variables

standard approach
e load the library

e specify all constraints

e call 1abel to start efficient computation of solutions

Second Attempt

constraint logic program

solve ([[S,E,N,D],[M,O,R,E],[M,O,N,E,Y]]) :—
Digits = [D, E, M, N, O, R, S, Y],
Carries = [C1,C2,C3,C4],
Digits ins 0 .. 9, all_different(Digits),
Carries ins 0 .. 1,
M
0+ 10
N + 10
E + 10
Y + 10
M# 0, S # 0
label (Digits).

#=
=
4=
=
H=

EOE

GM (Institute of Computer Science @ UIBK Logic Programming

GM (Institute of Computer Science @ UIBK Logic Programming

Constraint Logic Programming Eight Queens Constraint Logic Programming Eight Queens

8 queens (as before) n-queens (using clp)
queens(Xs) :— template(Xs),solution (Xs). nqueens(N,Qs) :—
length (Qs,N),
template([1/-Y1,2/.Y2,3/.Y3,4/.Y4, Qs ins 1 .. N, all_different(Qs),
5/.Y5,6/.Y6,7/.Y7,8/_Y8]). constraint_queens(Qs),
label (Qs).
solution ([]).
solution ([X/Y]| Others]) :— constraint_queens ([]).
solution (Others), constraint_queens ([Q|Qs]) :—
member(Y, [1,2,3,4,5,6,7,8]), noattack(Q,Qs,1),
noattack (X/Y, Others). constraint_queens(Qs).
noattack(-,[]). noattack (-,[].,-).
noattack (X/Y,[X1/Y1]|Others]) :— noattack (X,[Q]|Qs] ,N) :—
Y =\= v, X #\= Qi
Y1 - Y =\= X1 — X, X #\= QN,
Y1 - Y =\=X- X1, M is N+1,
noattack (X/Y, Others). noattack (X, Qs,M).
GM (Institute of Computer Science @ UIBK Logic Programming GM (Institute of Computer Science @ UIBK Logic Programming

Definition . .
) _) auxiliary predicates
e Sudoku is a well-known logic puzzle; usually played on a 9 x 9 grid .
o flatten/2 flattens a list
o V cells: cells € {1,...,9} .
)) e show/1 prints the current puzzle
e YV rows: all entries are different
e V colums: all entries are different
. : row/1
e V blocks: all entries are different
rows ([]).
Main Loop (using clp) rows ([R|Rs]) :—
sudoku (Puzzle) :— all_different(R), rows(Rs).
show (Puzzle),
flatten (Puzzle, Cells),
Cells ins 1 .. 9, row/1 (alternative)
rows (Puzzle),
cols(Puzzle), rows(Rs) :— maplist(all_distinct ,Rs).
blocks(Puzzle),
label (Cells),
show (Puzzle).

GM (Institute of Computer Science @ UIBK Logic Programming / GM (Institute of Computer Science @ UIBK

Logic Programming

Constraint Logic Programming Sudoku

cols/1
cols ([[T[-1)-

cols ([

[X1|R1],

[X2|R2],

[X3|R3],

[X4|R4],

[X5]R5],

[X6|R6],

[X7|R7],

[X8|R8],

[X9|Ro]]) i~
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
cols ([R1,R2,R3,R4,R5,R6,R7,R8,R9]).

cols/1 (alternative)

use maplist/2

GM (Institute of Computer Science @ UIBK Logic Programming

Constraint Logic Programming Sudoku

Demo

GM (Institute of Computer Science @ UIBK Logic Programming

blocks/1
blocks ([])-
blocks ([[].[].[]IRs]) :— blocks(Rs).

blocks ([[X1,X2,X3|R1],
[X4,X5,X6|R2],
[X7,X8,X9|R3] |Rs]) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]) ,
blocks ([R1,R2,R3|Rs]).

Example

:— sudoku ([[1,-,-,-, -, -, -, -, -],
[-,-,2,7,4,_,_,_,_],
[o,_. -, L J 4],
[l.
(7.5, -, oo, l.
[o, .- -.-.9.6,_,_],
[-.4,-,.,-,6,_,_-,_-],
R A
- 1,..3,-11).

GM (Institute of Computer Science @ UIBK} Logic Programming

Answer Set Programming

The New Kid on the Block

Answer Set Programming

e novel approach to modeling and solving search and optimisation
problems

e — programming, but a specification language

e — Turing complete

purely declarative

restricted to finite models

Success Stories
e team building for cargo at Gioia Tauro Seaport
e expert system in space shuttle

e natural language processing

GM (Institute of Computer Science @ UIBK Logic Programming

http://peace.eas.asu.edu/aaai12tutorial

Propositional Setting

Definitions
e atoms, facts, rules are defined as before
e only constants (= propositions) are allowed as atoms
e negation is negation as failure
e disjunctions may appear in the head

e an answer set is a set of atoms corresponding to the minimal model
of the program

Example (Negation as Failure)

light_on :— power_on, not broken.
power_on .

answer set: {power_on, light_on}

GM (Institute of Computer Science @ UIBK] Logic Programming

Answer Set Programming

Example (Disjunctive Heads)

open | closed :— door.

answer sets: {open}, {closed}

Example
a | b.
a | c.
answer sets: {a} and {b, c}

a | b.
a — b.

answer set: {a}, but not {b} nor {a, b}

GM (Institute of Computer Science @ UIBK Logic Programming

Answer Set Programming

Definition
constraints are negative assertions, representing fact that must not occur
in any model of the program

Example

a :— not a, b.

any answer set must not contain b and simplifies to
— b.

Additional Features
e finite choice functions: {facty, facty, facts}.

e choice and counting: 1{facty, facty, fact3}2.
“1" or “2" may be missing

First-Order Setting

Definition
e extension of first-order language

e no function symbols

Example (3-colouring)

red(X) | green(X) | blue(X).

— red(X), red(Y), edge(X,Y).

:— green(X), green(Y), edge(X,Y).
:— blue(X), blue(Y), edge(X,Y).

Example ((part of) 8-queens problem)
:— not (1 = count(Y : queen(X,Y))), row(X)

expresses that exactly one queen appears in every row and column

GM (Institute of Computer Science @ UIBK Logic Programming

GM (Institute of Computer Science @ UIBK Logic Programming

Answer Set Programming Answer Set Programming

Grounders and Solvers Prolog and Answer Set Programming
ASP grounded . e proof search e model search
ST () answer se
Grounder Solver e Turing complete e finite domain
e control e specification language
Grounders o efficiency e generality

e DLV (DLV Systems, Calabria)
e Gringo (University of Potsdam)

e Iparse (University of Helsinki) Example
hanoi (0,-,-,-,[])-
hanoi(N,X,Y,Z,Ls) :—
Solvers N> 0, Mis N— 1,
e clasp (University of Potsdam) hanoi (M,X,Z,Y,Ls0),
e cmodels (University of Austin) izzi?(é'\(/ll‘\s(oklzmotzél;"x’z)] Ls1),
e smodels (University of Helsinki) append (Ls1 , Lso Ls)_'

GM (Institute of Computer Science @ UIBK Logic Programming /1 GM (Institute of Computer Science @ UIBK

Logic Programming

Example

disk (1..n). peg(a;b;c).
transition (0.. pathlength —1). situation (0.. pathlength).
location (Peg) :— peg(Peg). location (Disk) :— disk(Disk).
#domain disk (X;Y). #domain peg(P;P1;P2).

#domain transition(T). #domain situation(1).
#domain location(L;L1).

on(X.LTHD) 1= on(,LT). not otherloc (X,L T+1). Thank You for Your Attention!

otherloc(X,L, 1) :— on(X L1,1), L1l=L
— on(X,L, 1), on(X, L1 1), L'—Ll
A

inpeg (X,P, 1) :— on(X), inpeg(L,P,1). inpeg (P,P,1).
top(P,L, 1) :— mpeg(L ,1), not covered(L,1).
covered(L,l) :— on(X).

— on(X,Y, 1), X>Y.

on(X,L,T+1) :— move(P1,P2,T), top(P1,X,T), top(P2,L,T).

:— move(P1,P2,T), top(P1,P1,T). movement(P1,P2) :— P1 != P2.
1 {move(A,B,T) : movement(A,B) } 1.

on(n,a,0). on(X,X+1,0) :— X<n.
onewrong :— not inpeg(X,c,pathlength).
:— onewrong.

GM (Institute of Computer Science @ UIBK Logic Programming / GM (Institute of Computer Science @ UIBK

Logic Programming

http://www.dlvsystem.com
http://potassco.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
https://www.cs.utexas.edu/users/tag/cmodels/
http://www.tcs.hut.fi/Software/smodels/

