

Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

Summary of Last Lecture

Definition

- goals (aka formulas) are constants or compound terms
- goals are typically non-ground

Definitions (Clause)

- a clause or rule is a universally quantified logical formula of the form $A \leftarrow B_1, B_2, \dots, B_n$ where A and the B_i 's are goals
- A is called the head of the clause; the B_i 's are called the body
- a rule of the form $A \leftarrow$ is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses

```
Example (cont'd)
Tower of Hanoi in Prolog
  % hanoi(N,X,Y,Z) <-- a tower of N disks is moved from</pre>
  %
                        peg X to peg Y using peg Z as storage
  hanoi(0, ..., ...).
  hanoi(N,X,Y,Z) :-
      N > 0, M is N-1,
      hanoi(M,X,Z,Y),
      move(N,X,Y),
      hanoi(M.Z.Y.X).
  move(D,X,Y) :=
      write('move disk '), write(D),
      write(' from '), write(X),
```

```
write(' to '), write(Y), nl.
```

```
?- hanoi(4,a,c,b).
```

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Outline of the Lecture

Logic Programs introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

```
Example (Multiplication)
```

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ \texttt{times}(0,X,0).\\ \texttt{times}(s(X),Y,Z) \ \leftarrow \ \texttt{times}(X,Y,U), \ plus(U,Y,Z). \end{array}
```

```
plus(s(s(0)),s(0),s(s(s(0))))
```

```
Example (Multiplication)
```

logic program

```
\begin{array}{l} plus(0,X,X) \, .\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z) \, .\\ times(0,X,0) \, .\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z) \, . \end{array}
```

```
\texttt{plus(s(s(0)),s(0),s(s(s(0))))} \quad X \mapsto s(0), \ Y \mapsto s(0), \ Z \mapsto s(s(0))
```

```
Example (Multiplication)
```

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ times(0,X,0).\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z). \end{array}
```

```
\begin{aligned} & \texttt{plus}(\texttt{s}(\texttt{s}(\texttt{0})),\texttt{s}(\texttt{0}),\texttt{s}(\texttt{s}(\texttt{s}(\texttt{0})))) \quad X \mapsto s(\texttt{0}), \ Y \mapsto s(\texttt{0}), \ Z \mapsto s(s(\texttt{0})) \\ & \texttt{plus}(\texttt{s}(\texttt{0}),\texttt{s}(\texttt{0}),\texttt{s}(\texttt{s}(\texttt{0}))) \end{aligned}
```

```
Example (Multiplication)
```

logic program

```
\begin{array}{l} plus(0,X,X) \, .\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z) \, .\\ times(0,X,0) \, .\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z) \, . \end{array}
```

```
plus(s(s(0)), s(0), s(s(s(0))))
plus(s(0), s(0), s(s(0))) \qquad X \mapsto 0, \ Y \mapsto s(0), \ Z \mapsto s(0)
```

```
Example (Multiplication)
```

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ times(0,X,0).\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z). \end{array}
```

```
\begin{array}{ll} plus(s(s(0)), s(0), s(s(s(0)))) \\ plus(s(0), s(0), s(s(0))) & X \mapsto 0, \\ plus(0, s(0), s(0)) \end{array}
```

$$X\mapsto 0$$
, $Y\mapsto s(0)$, $Z\mapsto s(0)$

```
Example (Multiplication) logic program
```

```
\begin{array}{l} plus(0,X,X) \\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z) \\ times(0,X,0) \\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z) \\ \end{array}
```

```
plus(s(s(0)), s(0), s(s(s(0))))

plus(s(0), s(0), s(s(0)))

plus(0, s(0), s(0)) \qquad X \mapsto s(0)
```

```
Example (Multiplication)
```

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ \texttt{times}(0,X,0).\\ \texttt{times}(s(X),Y,Z) \ \leftarrow \ \texttt{times}(X,Y,U), \ plus(U,Y,Z). \end{array}
```

goal

```
plus(s(s(0)),s(0),s(s(s(0))))
plus(s(0),s(0),s(s(0)))
plus(0,s(0),s(0))
```

solved

Example

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ \texttt{times}(0,X,0).\\ \texttt{times}(s(X),Y,Z) \ \leftarrow \ \texttt{times}(X,Y,U), \ plus(U,Y,Z). \end{array}
```

goal

plus(s(s(0)),s(0),X)

Example

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).\\ times(0,X,0).\\ times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z). \end{array}
```

goal

plus(s(s(0)),s(0),X)

Example

logic program

```
\begin{array}{l} plus(0,X,X) \, .\\ plus(s(X_1),Y_1,s(Z_1)) \ \leftarrow \ plus(X_1,Y_1,Z_1) \, .\\ times(0,X,0) \, .\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z) \, . \end{array}
```

goal

 $\texttt{plus}(\texttt{s(0))},\texttt{s(0)},\texttt{X}) \qquad X_1 \mapsto \texttt{s(0)}, \ Y_1 \mapsto \texttt{s(0)}, \ X \mapsto \texttt{s(Z_1)}$

Example

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X_1),Y_1,s(Z_1)) \ \leftarrow \ plus(X_1,Y_1,Z_1).\\ \texttt{times}(0,X,0).\\ \texttt{times}(s(X),Y,Z) \ \leftarrow \ \texttt{times}(X,Y,U), \ plus(U,Y,Z). \end{array}
```

goal

```
plus(s(s(0)),s(0),X)
plus(s(0),s(0),Z<sub>1</sub>)
```

 $X \mapsto s(Z_1)$

Example

logic program

```
\begin{array}{l} plus(0,X,X) \, .\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z) \, .\\ times(0,X,0) \, .\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U) \, , \ plus(U,Y,Z) \, . \end{array}
```

goal

```
plus(s(s(0)),s(0),X)
plus(s(0),s(0),Z<sub>1</sub>)
```

 $X \mapsto s(Z_1)$

Example

logic program

```
\begin{array}{l} plus(0,X,X) \\ plus(s(X_2),Y_2,s(Z_2)) &\leftarrow plus(X_2,Y_2,Z_2) \\ times(0,X,0) \\ times(s(X),Y,Z) &\leftarrow times(X,Y,U), \ plus(U,Y,Z) \\ \end{array}
```

goal

 $\begin{array}{ll} \texttt{plus}(\texttt{s}(\texttt{s}(\texttt{0})),\texttt{s}(\texttt{0}),\texttt{X}) & X \mapsto s(Z_1) \\ \texttt{plus}(\texttt{s}(\texttt{0}),\texttt{s}(\texttt{0}),\texttt{Z}_1) & X_2 \mapsto \texttt{0}, \ Y_2 \mapsto s(\texttt{0}), \ Z_1 \mapsto s(Z_2) \end{array}$

Example

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X_2),Y_2,s(Z_2)) \ \leftarrow \ plus(X_2,Y_2,Z_2).\\ times(0,X,0).\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z). \end{array}
```

goal

plus(s(s(0)),s(0),X)
plus(s(0),s(0),Z₁)
plus(0,s(0),Z₂)

 $X\mapsto s(Z_1)\ Z_1\mapsto s(Z_2)$

Example

logic program

```
\begin{array}{l} plus(0,X,X) \\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z) \\ times(0,X,0) \\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z) \\ \end{array}
```

goal

plus(s(s(0)),s(0),X)
plus(s(0),s(0),Z₁)
plus(0,s(0),Z₂)

 $X\mapsto s(Z_1)\ Z_1\mapsto s(Z_2)$

Example

logic program

```
\begin{array}{l} plus(0,X_3,X_3).\\ plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).\\ times(0,X,0).\\ times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z). \end{array}
```

goal

 $\begin{array}{ll} \text{plus}(s(s(0)), s(0), X) & X \mapsto s(Z_1) \\ \text{plus}(s(0), s(0), Z_1) & Z_1 \mapsto s(Z_2) \\ \text{plus}(0, s(0), Z_2) & X_3 \mapsto s(0), \ Z_2 \mapsto s(0) \end{array}$

Example

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ \texttt{times}(0,X,0).\\ \texttt{times}(s(X),Y,Z) \ \leftarrow \ \texttt{times}(X,Y,U), \ plus(U,Y,Z). \end{array}
```

goal

```
plus(s(s(0)),s(0),X)
plus(s(0),s(0),Z<sub>1</sub>)
plus(0,s(0),Z<sub>2</sub>)
```

 $egin{aligned} X \mapsto s(Z_1) \ Z_1 \mapsto s(Z_2) \ Z_2 \mapsto s(0) \end{aligned}$

solution

Example

logic program

```
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ \texttt{times}(0,X,0).\\ \texttt{times}(s(X),Y,Z) \ \leftarrow \ \texttt{times}(X,Y,U), \ plus(U,Y,Z). \end{array}
```

goal

```
plus(s(s(0)),s(0),X)
plus(s(0),s(0),Z<sub>1</sub>)
plus(0,s(0),Z<sub>2</sub>)
```

 $egin{aligned} X &\mapsto s(Z_1) \ Z_1 &\mapsto s(Z_2) \ Z_2 &\mapsto s(0) \end{aligned}$

solution $X \mapsto s(s(s(0)))$

```
Example
logic program
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ times(0,X,0).\\ times(s(X),Y,Z) \ \leftarrow \ times(X,Y,U), \ plus(U,Y,Z). \end{array}
```

times(X,X,Y)

```
Example
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).
times(0,X<sub>1</sub>,0).
times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).
```

```
\texttt{times}(\texttt{X},\texttt{X},\texttt{Y}) \qquad \qquad X\mapsto \texttt{0}, \ X_1\mapsto \texttt{0}, \ Y\mapsto \texttt{0}
```

```
Example
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).
times(0,X,0).
times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).
```

```
\texttt{times}(\texttt{X},\texttt{X},\texttt{Y}) \hspace{1cm} X \mapsto \texttt{0}, \hspace{1cm} Y \mapsto \texttt{0}
```

```
Example
logic program
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \ \leftarrow \ plus(X,Y,Z).\\ times(0,X,0).\\ times(s(X_1),Y_1,Z_1) \ \leftarrow \ times(X_1,Y_1,U_1), \ plus(U_1,Y_1,Z_1). \end{array}
```

```
\texttt{times(X,X,Y)} \qquad \qquad X\mapsto s(X_1), \ Y_1\mapsto s(X_1), \ Z_1\mapsto Y
```

```
Example
logic program
\begin{array}{l} plus(0,X,X).\\ plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).\\ times(0,X,0).\\ times(s(X_1),Y_1,Z_1) \leftarrow times(X_1,Y_1,U_1), \ plus(U_1,Y_1,Z_1). \end{array}
```

```
\begin{array}{ll} \texttt{times}(\texttt{X},\texttt{X},\texttt{Y}) & X\mapsto s(X_1) \\ \texttt{times}(\texttt{X}_1,\texttt{s}(\texttt{X}_1),\texttt{U}_1), \\ \texttt{plus}(\texttt{U}_1,\texttt{s}(\texttt{X}_1),\texttt{Y}) \end{array}
```

```
Example
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).
times(0,X<sub>2</sub>,0).
times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).
```

 $\begin{array}{ll} \texttt{times}(\texttt{X},\texttt{X},\texttt{Y}) & X \mapsto s(X_1) \\ \texttt{times}(\texttt{X}_1,\texttt{s}(\texttt{X}_1),\texttt{U}_1), & X_1 \mapsto \texttt{0}, \ X_2 \mapsto s(\texttt{0}), \ U_1 \mapsto \texttt{0} \\ \texttt{plus}(\texttt{U}_1,\texttt{s}(\texttt{X}_1),\texttt{Y}) \end{array}$

```
Example
logic program
   plus(0,X,X).
   plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).
   times(0, X, 0).
   times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).
goal
   times(X, X, Y)
                                       X \mapsto s(X_1)
   \texttt{times}(\texttt{X}_1,\texttt{s}(\texttt{X}_1),\texttt{U}_1), \qquad X_1 \mapsto \texttt{0}.
                                                                    U_1 \mapsto 0
         plus(U_1,s(X_1),Y)
```

plus(0,s(0),Y)

Example logic program $plus(0,X_3,X_3)$. $plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z)$. times(0,X,0). $times(s(X),Y,Z) \leftarrow times(X,Y,U)$, plus(U,Y,Z).

goal

 $\begin{array}{ll} \texttt{times}(\texttt{X},\texttt{X},\texttt{Y}) & X \mapsto s(X_1) \\ \texttt{times}(\texttt{X}_1,\texttt{s}(\texttt{X}_1),\texttt{U}_1), & X_1 \mapsto \texttt{0}, & U_1 \mapsto \texttt{0} \\ \texttt{plus}(\texttt{U}_1,\texttt{s}(\texttt{X}_1),\texttt{Y}) & \\ \texttt{plus}(\texttt{0},\texttt{s}(\texttt{0}),\texttt{Y}) & X_3 \mapsto s(\texttt{0}), & Y \mapsto s(\texttt{0}) \end{array}$

Example logic program plus(0,X,X). $plus(s(X), Y, s(Z)) \leftarrow plus(X, Y, Z).$ times(0, X, 0). $times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).$ goal times(X, X, Y) $X \mapsto s(X_1)$ times(X_1 , s(X_1), U₁), $X_1 \mapsto 0$, $U_1 \mapsto 0$ $plus(U_1,s(X_1),Y)$ $Y \mapsto s(0)$ plus(0,s(0),Y)

solution $X \mapsto s(0), Y \mapsto s(0)$

```
Example
logic program
\frac{plus(0,X_2,X_2)}{plus(s(X),Y,s(Z))} \leftarrow plus(X,Y,Z).times(0,X,0).times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).
```

 $\begin{array}{ll} \texttt{times}(\texttt{X},\texttt{X},\texttt{Y}) & X \mapsto s(X_1) \\ \texttt{times}(\texttt{X}_1,\texttt{s}(\texttt{X}_1),\texttt{U}_1), & U_1 \mapsto \texttt{0}, \ X_2 \mapsto s(X_1), \ Y \mapsto s(X_1) \\ \texttt{plus}(\texttt{U}_1,\texttt{s}(\texttt{X}_1),\texttt{Y}) \end{array}$

Example logic program plus(0,X,X). $plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).$ times(0, X, 0). $times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).$ goal times(X, X, Y) $X \mapsto s(X_1)$ $\texttt{times}(\texttt{X}_1,\texttt{s}(\texttt{X}_1),\texttt{U}_1), \qquad U_1\mapsto 0.$ $Y \mapsto s(X_1)$ $plus(U_1,s(X_1),Y)$ $times(X_1,s(X_1),0)$

Example logic program plus(0,X,X). $plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).$ $times(0, X_3, 0).$ $times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).$ goal times(X, X, Y) $X \mapsto s(X_1)$ $U_1\mapsto 0$. $Y \mapsto s(X_1)$ $times(X_1,s(X_1),U_1),$

 $X_1\mapsto 0$, $X_3\mapsto s(0)$

 $plus(U_1,s(X_1),Y)$

 $times(X_1,s(X_1),0)$

Example		
logic program		
plus(0,X,X). $plus(s(X),Y,s(Z)) \leftarrow p$ times(0,X,0). times(s(X),Y,Z) \leftarrow tim	lus(X,Y,Z). es(X,Y,U), plus(U	J,Y,Z).
goal		
<pre>times(X,X,Y)</pre>	$X\mapsto s(X_1)$	
$times(X_1, s(X_1), U_1),$	$U_1\mapsto 0$,	$Y\mapsto s(X_1)$
$pius(0_1, s(x_1), y)$		
$times(X_1,s(X_1),0)$	$X_1 \mapsto 0$	
solution $X \mapsto s(0), Y \in$	ightarrow s(0)	
1 goal in sequence of goals

- **1** goal in sequence of goals
- 2 rule in logic program

- **1** goal in sequence of goals
- 2 rule in logic program
- 3 substitution

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta \sigma = \{X_1 \mapsto t_1 \sigma, \dots, X_n \mapsto t_n \sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \dots, X_n\}\}$$

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta\sigma = \{X_1 \mapsto t_1\sigma, \ldots, X_n \mapsto t_n\sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \ldots, X_n\}\}$$

$$\theta = \{X \mapsto g(Y, Z), Y \mapsto a\}$$
$$\sigma = \{X \mapsto f(Y), Z \mapsto f(X)\}$$

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta\sigma = \{X_1 \mapsto t_1\sigma, \ldots, X_n \mapsto t_n\sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \ldots, X_n\}\}$$

$$\begin{split} \theta &= \{X \mapsto g(Y, Z), Y \mapsto a\} \quad \theta \sigma = \{X \mapsto g(Y, f(X)), Y \mapsto a, Z \mapsto f(X)\} \\ \sigma &= \{X \mapsto f(Y), Z \mapsto f(X)\} \end{split}$$

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta\sigma = \{X_1 \mapsto t_1\sigma, \ldots, X_n \mapsto t_n\sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \ldots, X_n\}\}$$

$$\begin{split} \theta &= \{ X \mapsto g(Y,Z), Y \mapsto a \} \quad \theta \sigma = \{ X \mapsto g(Y,f(X)), Y \mapsto a, Z \mapsto f(X) \} \\ \sigma &= \{ X \mapsto f(Y), Z \mapsto f(X) \} \quad \sigma \theta = \{ X \mapsto f(a), Z \mapsto f(g(Y,Z)), Y \mapsto a \} \end{split}$$

• substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable: $\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$ $\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$ $\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable: $\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$

$$\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$$
mgu

$$\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}$$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable:

$$\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$$

$$\{U \mapsto a\}$$

$$\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$$
mgu

$$\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} \qquad \{U \mapsto g(U)\}$$

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable:

$$\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$$
 { $U \mapsto a$ }

$$\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$$
 mgu

$$\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} \qquad \{U \mapsto g(U)\}$$

Theorem

• unifiable terms have mgu

U)

- substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z, g(U), h(U)) are unifiable:

$$\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$$
 { $U \mapsto a$ }

$$\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$$
 mgu

$$\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\} \qquad \{U \mapsto g(U)\}$$

Theorem

- unifiable terms have mgu
- ∃ algorithm to compute mgu

• sequence
$$E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$$
 is called an equality problem

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

• if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

Unification Algorithm

 $u \stackrel{?}{=} u, E \Rightarrow E$

 $f(s_1,\ldots,s_n) \stackrel{?}{=} f(t_1,\ldots,t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1,\ldots,s_n \stackrel{?}{=} t_n, E$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$
$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1,\ldots,s_n) \stackrel{?}{=} g(t_1,\ldots,t_n), E \Rightarrow \bot \quad f \neq g$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \ldots, s_n) \stackrel{?}{=} f(t_1, \ldots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \ldots, s_n \stackrel{?}{=} t_n, E$$
$$f(s_1, \ldots, s_n) \stackrel{?}{=} g(t_1, \ldots, t_n), E \Rightarrow \bot \quad f \neq g$$
$$X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in Var(E), X \notin Var(t)$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \mathcal{V}ar(E), X \notin \mathcal{V}ar(t)$$

$$X \stackrel{?}{=} t, E \Rightarrow \bot \quad X \neq t, X \in \mathcal{V}ar(t)$$

• sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem

- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin \mathcal{V}ar(v_j)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

$$u \stackrel{?}{=} u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \mathcal{V}ar(E), X \notin \mathcal{V}ar(t)$$

$$X \stackrel{?}{=} t, E \Rightarrow \bot \quad X \neq t, X \in \mathcal{V}ar(t)$$

$$t \stackrel{?}{=} X, E \Rightarrow X \stackrel{?}{=} t, E \quad t \notin \mathcal{V}$$

1 equality problems *E* is unifiable iff the unification algorithm stops with a solved form

- **1** equality problems *E* is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

Example

 $f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U))$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

Example

 $f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U))$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

Example

 $f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U)) \Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),X \stackrel{?}{=} h(U)$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U)) \Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),X \stackrel{?}{=} h(U)$$
$$\Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),Z \stackrel{?}{=} h(U)$$

- **1** equality problems *E* is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X,g(Y),X) \stackrel{?}{=} f(Z,g(U),h(U)) \Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),X \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z,g(Y) \stackrel{?}{=} g(U),Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z,Y \stackrel{?}{=} U,Z \stackrel{?}{=} h(U)$$

- **1** equality problems *E* is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

- equality problems E is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

$$f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$
mgu

- 1 goal in sequence of goals
- 2 rule in logic program
- 3 substitution
Two Choices

- 1 goal in sequence of goals
- 2 rule in logic program

substitution – avoid choice by always taking mgu

Three Choices

- 1 goal in sequence of goals
- rule in logic program
 substitution avoid choice by always taking mgu

Computation Model of Logic Programs

• the choice of goal is arbitrary

• the choice of rules is essential

Three Choices

- **1** goal in sequence of goals
- rule in logic program
 substitution avoid choice by always taking mgu

Computation Model of Logic Programs

- the choice of goal is arbitrary if there is a successful computation for a specific order, then there is a successful computation for any other order
- the choice of rules is essential

Three Choices

- **1** goal in sequence of goals
- rule in logic program
 substitution avoid choice by always taking mgu

Computation Model of Logic Programs

- the choice of goal is arbitrary if there is a successful computation for a specific order, then there is a successful computation for any other order
- the choice of rules is essential not every choice will lead to a successful computation; thus the computation model is nondeterministic

Exercise 1

Consider the following implementation that attempts to solve the tower of Hanoi puzzle. Is this program correct? Please explain your answer:

```
hanoi(0,_,_,_).
hanoi(N,X,Y,Z) :-
N > 0, M is N-1,
hanoi(M,X,Z,Y),
move(N,X,Z),
hanoi(M,Y,Z,X).
move(D,X,Y) :-
write('move_disk_'), write(D),
write('_from_'), write(X),
write('_to_'), write(Y), nl.
```

Exercise 2

Consider lists with arbitrary entries and implement a binary predicate member(X, Xs) that checks whether X belongs to the list Xs.

Exercise 3

Consider lists with arbitrary entries and implement a ternary predicate append(Xs, Ys, Zs) that is true, if Zs = Xs@Ys.