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Summary of Last Lecture

Summary of Last Lecture

Definition

• goals (aka formulas) are constants or compound terms

• goals are typically non-ground

Definitions (Clause)

• a clause or rule is a universally quantified logical formula of the form

A← B1,B2, . . . ,Bn .
where A and the Bi ’s are goals

• A is called the head of the clause; the Bi ’s are called the body

• a rule of the form A← is called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses
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Summary of Last Lecture

Example (cont’d)

Tower of Hanoi in Prolog

% hanoi(N,X,Y,Z) <-- a tower of N disks is moved from

% peg X to peg Y using peg Z as storage

hanoi(0,_,_,_).

hanoi(N,X,Y,Z) :-

N > 0, M is N-1,

hanoi(M,X,Z,Y),

move(N,X,Y),

hanoi(M,Z,Y,X).

move(D,X,Y) :-

write(’move disk ’), write(D),

write(’ from ’), write(X),

write(’ to ’), write(Y), nl.

?- hanoi(4,a,c,b).
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Outline

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming
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Basic Constructs

Some Examples

Example (Multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) ← plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) ← times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0))))

X 7→ s(0), Y 7→ s(0), Z 7→ s(s(0))

plus(s(0),s(0),s(s(0))) X 7→ 0, Y 7→ s(0), Z 7→ s(0)

plus(0,s(0),s(0)) X 7→ s(0)

solved
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) ← plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) ← times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),X)

X1 7→ s(0), Y1 7→ s(0),

X 7→ s(Z1)

plus(s(0),s(0),Z1)

X2 7→ 0, Y2 7→ s(0),

Z1 7→ s(Z2)

plus(0,s(0),Z2)

X3 7→ s(0),

Z2 7→ s(0)

solution X 7→ s(s(s(0)))
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Basic Constructs

Renaming of Rules is Needed

Example
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Basic Constructs

Example
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Basic Constructs

Example

logic program
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Basic Constructs

Example

logic program

plus(0,X2,X2).

plus(s(X),Y,s(Z)) ← plus(X,Y,Z).
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, X3 7→ s(0)

solution X 7→ s(0), Y 7→ s(0)
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Basic Constructs

Three Choices

1 goal in sequence of goals

2 rule in logic program

3 substitution
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Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z ),Y 7→ a}

θσ = {X 7→ g(Y , f (X )),Y 7→ a,Z 7→ f (X )}

σ = {X 7→ f (Y ),Z 7→ f (X )}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z )),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 28/1



Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z ),Y 7→ a}

θσ = {X 7→ g(Y , f (X )),Y 7→ a,Z 7→ f (X )}

σ = {X 7→ f (Y ),Z 7→ f (X )}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z )),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 28/1



Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z ),Y 7→ a} θσ = {X 7→ g(Y , f (X )),Y 7→ a,Z 7→ f (X )}

σ = {X 7→ f (Y ),Z 7→ f (X )}

σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z )),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 28/1



Unification

Definition

composition of substitutions

θ = {X1 7→ t1, . . . ,Xn 7→ tn}
and

σ = {Y1 7→ s1, . . . ,Yk 7→ sk}

is substitution

θσ = {X1 7→ t1σ, . . . ,Xn 7→ tnσ} ∪ {Yi 7→ si | Yi /∈ {X1, . . . ,Xn}}

Example

θ = {X 7→ g(Y ,Z ),Y 7→ a} θσ = {X 7→ g(Y , f (X )),Y 7→ a,Z 7→ f (X )}

σ = {X 7→ f (Y ),Z 7→ f (X )} σθ = {X 7→ f (a),Z 7→ f (g(Y ,Z )),Y 7→ a}

GM (Institute of Computer Science @ UIBK) Logic Programming 28/1



Unification

Definition
• substitution θ is at least as general as substitution σ if ∃µ θµ = σ

• unifier of set S of terms is substitution θ such that ∀s, t ∈ S sθ = tθ

• most general unifier (mgu) is at least as general as any other unifier

Example

terms f (X , g(Y ),X ) and f (Z , g(U), h(U)) are unifiable

:

{X 7→ h(a),Y 7→ a,Z 7→ h(a),U 7→ a}

{U 7→ a}

{X 7→ h(U),Y 7→ U,Z 7→ h(U)}

mgu

{X 7→ h(g(U)),Y 7→ g(U),Z 7→ h(g(U)),U 7→ g(U)}

{U 7→ g(U)}

Theorem
• unifiable terms have mgu

• ∃ algorithm to compute mgu
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Unification

Definition
• sequence E = u1

?
= v1, . . . , un

?
= vn is called an equality problem

• if E = X1
?
= v1, . . . ,Xn

?
= vn, with Xi pairwise distinct and

Xi 6∈ Var(vj) for all i , j , then E is in solved form

• let E = X1
?
= v1, . . . ,Xn

?
= vn be a equality problem in solved form

E induces substitution σE = {X1 7→ v1, . . . ,Xn 7→ vn}

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒ ⊥ f 6= g

X
?
= t,E ⇒ X

?
= t,E{X 7→ t} X ∈ Var(E ),X 6∈ Var(t)

X
?
= t,E ⇒ ⊥ X 6= t,X ∈ Var(t)

t
?
= X ,E ⇒ X

?
= t,E t 6∈ V
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Unification

Theorem

1 equality problems E is unifiable iff the unification algorithm stops
with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is mgu of E

Example

f (X , g(Y ),X )
?
= f (Z , g(U), h(U))

⇒ X
?
= Z , g(Y )

?
= g(U),X

?
= h(U)

⇒ X
?
= Z , g(Y )

?
= g(U),Z

?
= h(U)

⇒ X
?
= Z ,Y

?
= U,Z

?
= h(U)

⇒ X
?
= h(U),Y

?
= U,Z

?
= h(U) mgu
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Unification

Three Choices

1 goal in sequence of goals

2 rule in logic program

3 substitution

– avoid choice by always taking mgu

Computation Model of Logic Programs

• the choice of goal is arbitrary

if there is a successful computation for a specific order, then there is
a successful computation for any other order

• the choice of rules is essential

not every choice will lead to a successful computation; thus the
computation model is nondeterministic
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Homework

Exercise 1

Consider the following implementation that attempts to solve the tower of
Hanoi puzzle. Is this program correct? Please explain your answer:

h a n o i ( 0 , , , ) .
h a n o i (N, X, Y, Z) :−

N > 0 , M i s N−1,
h a n o i (M, X, Z , Y) ,
move (N, X, Z ) ,
h a n o i (M, Y, Z , X ) .

move (D, X, Y) :−
write ( ’ move d i s k ’ ) , write (D) ,
write ( ’ from ’ ) , write (X) ,
write ( ’ to ’ ) , write (Y) , n l .
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Homework

Exercise 2

Consider lists with arbitrary entries and implement a binary predicate
member(X ,Xs) that checks whether X belongs to the list Xs.

Exercise 3

Consider lists with arbitrary entries and implement a ternary predicate
append(Xs,Ys,Zs) that is true, if Zs = Xs@Ys.
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