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Summary of Last Lecture

Definition
e goals (aka formulas) are constants or compound terms

e goals are typically non-ground

Definitions (Clause)
e a clause or rule is a universally quantified logical formula of the form

A(—Bl,Bg,...,Bn.
where A and the B;'s are goals

e Ais called the head of the clause; the B;'s are called the body

e a rule of the form A <« s called a fact; we write facts simply A.

Definition

a logic program is a finite set of clauses
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Example (cont'd)

Tower of Hanoi in Prolog

% hanoi(N,X,Y,Z) <-- a tower of N disks is moved from
% peg X to peg Y using peg Z as storage
hanoi(0,_,_,_).
hanoi(N,X,Y,Z) :-
N >0, Mis N-1,
hanoi(M,X,Z,Y),
move (N,X,Y),
hanoi(M,Z,Y,X).

move(D,X,Y) :-
write(’move disk ’), write(D),
write(’ from ’), write(X),
write(’ to ’), write(Y), nl.

?- hanoi(4,a,c,b).
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ROBEIRENEESEEEEEE
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming
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Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming



Basic Constructs

Some Examples

Example (Multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) ¢ times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0))))
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Basic Constructs

Some Examples

Example (Multiplication)

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) ¢ times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0)))) X —=s(0), Y —s(0), Z~ s(s(0))
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Basic Constructs

Some Examples

Example (Multiplication)
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) + plus(X,Y,Z).

times (0,X,0).
times(s(X),Y,Z) ¢ times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0)))) X —=s(0), Y —s(0), Z s(s(0))
plus(s(0),s(0),s(s(0)))
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Basic Constructs

Some Examples

Example (Multiplication)
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).
times(s(X),Y,Z) ¢ times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0))))
plus(s(0),s(0),s(s(0))) X =0, Y—s(0), Z~s(0)
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Basic Constructs

Some Examples

Example (Multiplication)
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) + plus(X,Y,Z).

times (0,X,0).
times(s(X),Y,Z) ¢ times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0))))
plus(s(0),s(0),s(s(0))) X0, Y—s(0), Z~s(0)
plus(0,s(0),s(0))
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Basic Constructs

Some Examples

Example (Multiplication)
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) + plus(X,Y,Z).

times (0,X,0).
times(s(X),Y,Z) ¢ times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0))))
plus(s(0),s(0),s(s(0)))
plus(0,s(0),s(0)) X~ s(0)
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Basic Constructs

Some Examples

Example (Multiplication)
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) + plus(X,Y,Z).

times (0,X,0).
times(s(X),Y,Z) ¢ times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),s(s(s(0))))
plus(s(0),s(0),s(s(0)))
plus(0,s(0),s(0))

solved
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),X)
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),X)
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(Xy),Y1,s(Z1)) « plus(Xy,Y:1,Z1).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),X) Xy~ s(0), Y1~ s(0), X s(Z)
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Basic Constructs

Renaming of Rules is Needed

Example
logic program
plus(0,X,X).
plus(s(X1),Y1,s(Z1)) < plus(X;,Y1,Z1).

times (0,X,0).
times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z1)

GM (Institute of Computer Science @ UIBK] Logic Programming



Basic Constructs

Renaming of Rules is Needed

Example
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) <« plus(X,Y,Z).

times (0,X,0).
times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z;)
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(Xp),Y2,s5(Z2)) <« plus(X2,Y2,Zp).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z1) Xo =0, Yarss(0), Z1— s(22)
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(Xy),Y2,8(Zp)) < plus(Xy,Y2,Zp).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z1) Z1 = s(2)

plus(0,s(0),Z3)
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z1) Z1 = s(2)

plus(0,s(0),Z,)

GM (Institute of Computer Science @ UIBK) Logic Programming



Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X3,X3).

plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z1) Z1 = s(2)
plus(O,s(O) ,Zo) X3 — S(O), o 5(0)
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z1) Z1 = s(2)
plus(0,s(0),Z) 2, — s(0)

solution
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Basic Constructs

Renaming of Rules is Needed

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(Z)) « plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
plus(s(s(0)),s(0),X) X = s(Z)
plus(s(0),s(0),Z1) Z1 = s(2)
plus(0,s(0),Zy) Zy = s(0)

solution X+ s(s(s(0)))
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

times (X,X,Y)
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X%1,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

times (X,X,Y) X—=0, X1—0, Y—=0
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal

times (X,X,Y) X =0, Yi—0
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X1),Y1,Z1) ¢« times(Xy,Y1,U1), plus(Uy,Yq1,Z7).

goal

times (X,X,Y) X — S(Xl), Y1 — S(Xl), Z1—=Y
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Basic Constructs

Example
logic program
plus(0,X,X).
plus(s(X),Y,s(Z)) <« plus(X,Y,Z).

times (0,X,0).
times(s(X1),Y1,Z1) < times(Xy{,Y:,U1), pluS(Ul,Yl,Zl).

goal

times (X,X,Y) X — s(X1)
times(X;,s(X1),Up),
plus(U;,s(X1),Y)
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X%,,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (X1,s(X1),U7), X1 —0, Xgi—)S(O), U —0

plus(U;,s(X1),Y)
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (X1,s(X1),Uy), X1 —0, U —0

plus(U;,s(X1),Y)
plus(0,s(0),Y)
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Basic Constructs

Example

logic program

plus(0,X3,X3) .

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (X1,s(X1),Uy), X1 —0, U —0
plus(U;,s(X1),Y)
plus(0,s(0),Y) X3 — s(0), Y+ s(0)
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (X1,s(X1),Uy), X1 —0, U —0
plus(U;,s(X1),Y)
plus(0,s(0),Y) Y — s(0)

solution X —s(0), Y+ s(0)
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Basic Constructs

Example

logic program

plus(0,X2,X%p) .

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (X1,s(X1),U7), U — 0, Xgi—)S(Xl), Y'—)S(Xl)

plus(Uy,s(X1),Y)
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (Xq,s(X1),U1), Ui — 0, Y = s(X1)

plus(U,s(X1),Y)
times (X1,s(X;),0)
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X3,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (X1,s(X1),Up), Up—0, Y = s(X1)
plus(U;,s(X1),Y)
times (X;,s(X1),0) X1+ 0, X5+ 5(0)
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Basic Constructs

Example

logic program

plus(0,X,X).

plus(s(X),Y,s(2)) + plus(X,Y,Z).

times (0,X,0).

times(s(X),Y,Z) < times(X,Y,U), plus(U,Y,Z).

goal
times (X,X,Y) X — s(X1)
times (X1,s(X1),U7), U — 0, Y+—>S(X1)
plus(U;,s(X1),Y)
times (X1,s(X1),0) X1 —0

solution X —s(0), Y+ s(0)
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Basic Constructs

Three Choices

goal in sequence of goals
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Basic Constructs

Three Choices

goal in sequence of goals

rule in logic program
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Basic Constructs

Three Choices
goal in sequence of goals
rule in logic program

substitution
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SR
Definition
composition of substitutions
0={Xy—t1,..., Xn > tn}
and
o={Y1—=s1,..., Y s}
is substitution

GU:{X1P—>tld,...,an—)tnO'}U{Y,'f—)S,'lY,'¢{X1,...,Xn}}
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SR
Definition
composition of substitutions
0={Xy—t1,..., Xn > tn}
and
o={Y1—=s1,..., Y s}
is substitution

90:{X1r—>tld,...,an—)tnO'}U{Y,'f—)S,'lY,'¢{X1,...,Xn}}

Example

0={X—g(Y,2),Y —a}
o={X > f(Y),Z— f(X)}
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SR
Definition
composition of substitutions
0={Xy—t1,..., Xn > tn}
and
o={Y1—=s1,..., Y s}
is substitution

90:{X1r—>tld,...,an—)tnO'}U{Y,'f—)S,'lY,'¢{X1,...,Xn}}

Example

0={X—g(Y,Z),Y—a} Oo={X—g(Y,f(X),YaZf(X)
o={X F(Y),Z = f(X)}
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SR
Definition
composition of substitutions
0={Xy—t1,..., Xn > tn}
and
o={Y1—=s1,..., Y s}
is substitution

90:{X1r—>tld,...,an—)tnO'}U{Y,'f—)S,'lY,'¢{X1,...,Xn}}

Example

0={X—g(Y,Z),Y—a} Oo={X—g(Y,f(X),YaZf(X)
o={X > F(Y),Z— f(X)} o0={X f(a),Z fg(Y.2)),Y r a}

GM (Institute of Computer Science @ UIBK) Logic Programming



Definition
e substitution @ is at least as general as substitution o if 3u Qu = o
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Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0
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Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0

e most general unifier (mgu) is at least as general as any other unifier
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Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0

e most general unifier (mgu) is at least as general as any other unifier

Example
terms f(X, g(Y), X) and f(Z,g(U), h(U)) are unifiable

GM (Institute of Computer Science @ UIBK) Logic Programming



Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0

e most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z,g(U), h(U)) are unifiable:
{X = h(a),Y — a,Z — h(a),U — a}
{X = h(U),Y — U,Z— h(U)}
{X = h(g(V)),Y = g(U),Z — h(g(U)),U — g(U)}
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Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0

e most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z,g(U), h(U)) are unifiable:
{X = h(a),Y — a,Z — h(a),U — a}
{X = h(U),Y = U, Z+— h(U)} mgu
{X = h(g(V)),Y = g(U),Z — h(g(U)),U — g(U)}
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Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0

e most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z,g(U), h(U)) are unifiable:

{X = h(a),Y — a,Z — h(a),U — a} {Uw a}
{X = h(U),Y = U, Z+— h(U)} mgu

{X = h(g(V)),Y — g(U),Z = h(g(U)),U—g(U)}  {Ur g(U)}
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Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0

e most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z,g(U), h(U)) are unifiable:
{X = h(a),Y — a,Z — h(a),U — a} {Uw a}
{X = h(U),Y = U, Z+— h(U)} mgu

{X = h(g(V)),Y — g(U),Z = h(g(U)),U—g(U)}  {Ur g(U)}

Theorem
e unifiable terms have mgu
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Definition
e substitution @ is at least as general as substitution o if du Ou = o
e unifier of set S of terms is substitution 6 such that Vs,t € S s = t0

e most general unifier (mgu) is at least as general as any other unifier

Example

terms f(X, g(Y), X) and f(Z,g(U), h(U)) are unifiable:
{X = h(a),Y — a,Z — h(a),U — a} {Uw a}
{X = h(U),Y = U, Z+— h(U)} mgu

{X = h(g(V)),Y — g(U),Z = h(g(U)),U—g(U)}  {Ur g(U)}

Theorem
e unifiable terms have mgu

e - algorithm to compute mgu
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Definition
? ? . .
e sequence E =u; = vy,...,u, = v, is called an equality problem
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Definition
? ? . .
e sequence E =u; = vy,...,u, = v, is called an equality problem

o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form
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Definition
e sequence £ =1 2 Viy ..., Up 2 vy, is called an equality problem
o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form

? ? . .
o let E =X =wvy,...,X, = v, be a equality problem in solved form
E induces substitution o = {X; — vi,..., X, +— v,}
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Definition
e sequence £ =1 2 Viy ..., Up 2 vy, is called an equality problem
o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form

? ? . .
o let E =X =wvy,...,X, = v, be a equality problem in solved form
E induces substitution o = {X; — vi,..., X, +— v,}

Unification Algorithm
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Definition
e sequence £ =1 2 Viy ..., Up 2 vy, is called an equality problem
o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form

? ? . .
o let E =X =wvy,...,X, = v, be a equality problem in solved form
E induces substitution o = {X; — vi,..., X, +— v,}

Unification Algorithm
uz u,E=E
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o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form

? ? . .
o let E =X =wvy,...,X, = v, be a equality problem in solved form
E induces substitution o = {X; — vi,..., X, +— v,}

Unification Algorithm

uéu,E:>E
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o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
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o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form
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E induces substitution o = {X; — vi,..., X, +— v,}

Unification Algorithm
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XLt E=XZLtE{X—t} XeVar(E),X ¢ Var(t)
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e sequence E =u; = vy,...,u, = v, is called an equality problem

o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form

? ? . .
o let E =X =wvy,...,X, = v, be a equality problem in solved form
E induces substitution o = {X; — vi,..., X, +— v,}

Unification Algorithm
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.
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Definition
e sequence £ =1 2 Viy ..., Up 2 vy, is called an equality problem
o if E=Xi = vi,..., X, = v, with X; pairwise distinct and
Xi & Var(v;) for all i, j, then E is in solved form

? ? . .
o let E =X =wvy,...,X, = v, be a equality problem in solved form
E induces substitution o = {X; — vi,..., X, +— v,}

Unification Algorithm

u;u,E:>E
f(sl,...,s,,);f(tl,...,t,,),E:>51;tl,...,s,,;t,,,E
f(siy....sn)=g(tr,....tn),E=L f#g

XLt E=XZLtE{X—t} XeVar(E),X ¢ Var(t)

XLt E=1 X #t,X € Var(t)

tZX,E=>XZtE tgV

~
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Theorem

equality problems E is unifiable iff the unification algorithm stops
with a solved form
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equality problems E is unifiable iff the unification algorithm stops
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if E =* E’ such that E' is a solved form, then og: is mgu of E

Example

F(X,g(Y),X) = £(Z,g(U). h(U))
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Theorem

equality problems E is unifiable iff the unification algorithm stops
with a solved form

if E =* E’ such that E' is a solved form, then og: is mgu of E

Example

F(X,g(Y),X) = £(Z,g(U), h(V)) = X =Z,g(Y)=g(U),X = h(V)
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equality problems E is unifiable iff the unification algorithm stops
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if E =* E’ such that E' is a solved form, then og: is mgu of E
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Theorem

equality problems E is unifiable iff the unification algorithm stops
with a solved form

if E =* E’ such that E' is a solved form, then og: is mgu of E

Example
F(X,g(Y),X) £ F(Z,g(U),h(U)) = X =Z,g(Y)Zg(U),X = h(U)
= XZZ,g(Y)<g(U),Z = h(U)

= XLz, YyZu,z<hU)
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Theorem

equality problems E is unifiable iff the unification algorithm stops
with a solved form

if E =* E’ such that E' is a solved form, then og: is mgu of E

Example
F(X,g(Y),X) £ F(Z,g(U),h(U)) = X =Z,g(Y)Zg(U),X = h(U)
= XZZ,g(Y)<g(U),Z = h(U)

= XZZ,YyZU,Z<hU)

[~

= XZhU),Y LU ZLhU) mgu
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pURESHOREE
Three Choices

goal in sequence of goals
rule in logic program
substitution
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Two Choices
goal in sequence of goals
rule in logic program

substitution - avoid choice by always taking mgu
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Three Choices
goal in sequence of goals
rule in logic program

substitution - avoid choice by always taking mgu

Computation Model of Logic Programs

e the choice of goal is arbitrary
if there is a successful computation for a specific order, then there is
a successful computation for any other order

e the choice of rules is essential

not every choice will lead to a successful computation; thus the
computation model is nondeterministic
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Exercise 1

Consider the following implementation that attempts to solve the tower of
Hanoi puzzle. Is this program correct? Please explain your answer:

hanoi(0,_,_,_.).

hanoi(N,X,Y,Z) :—
N> 0, M is N-1,
hanoi(M,X,Z,Y),
move (N, X, Z),
hanoi (M,Y,Z,X).

move (D, X,Y) :—
write ( 'move_disk."'), write(D),
write('_from."), write(X),
write('_-to."), write(Y), nl.

GM (Institute of Computer Science @ UIBK)
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Exercise 2

Consider lists with arbitrary entries and implement a binary predicate
member (X, Xs) that checks whether X belongs to the list Xs.

Exercise 3

Consider lists with arbitrary entries and implement a ternary predicate
append(Xs, Ys, Zs) that is true, if Zs = Xs@Ys.
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