Logic Programming

Georg Moser

Institute of Computer Science @ UIBK
Summer 2015

summary of Last Lecture

Example (cont'd)

Tower of Hanoi in Prolog

```
% hanoi(N,X,Y,Z) <-- a tower of N disks is moved from
% peg X to peg Y using peg Z as storag
hanoi(0,_,_,_).
hanoi(N,X,Y,Z) :
    N > 0, M is N-1,
    hanoi(M,X,Z,Y),
    move(N,X,Y),
    hanoi(M, Z,Y,X).
move(D,X,Y) :-
    write('move disk '), write(D),
    write(' from '), write(X)
    write(' to '), write(Y), nl
?- hanoi(4,a,c,b).
```


Summary of Last Lecture

Definition

- goals (aka formulas) are constants or compound terms
- goals are typically non-ground

Definitions (Clause)

- a clause or rule is a universally quantified logical formula of the form

$$
A \leftarrow B_{1}, B_{2}, \ldots, B_{n}
$$

where A and the B_{i} 's are goals

- A is called the head of the clause; the B_{i} 's are called the body
- a rule of the form $A \leftarrow$ is called a fact; we write facts simply A.

Definition
a logic program is a finite set of clauses

Outine

Outline of the Lecture

Logic Programs
introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language
programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques
nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Some Examples

Example (Multiplication)

```
logic program
plus ( \(0, X, X\) ).
plus(s(X),Y,s(Z)) \(\leftarrow\) plus \((X, Y, Z)\).
times \((0, X, 0)\).
times(s(X),Y,Z) \(\leftarrow\) times \((X, Y, U), p l u s(U, Y, Z)\).
```

```
goal
```

goal
plus(s(s(0)),s(0),s(s(s(0))))\quadX\mapstos(0),Y
plus(s(s(0)),s(0),s(s(s(0))))\quadX\mapstos(0),Y
plus(s(0),s(0),s(s(0))) X}\mapsto0,Y\mapstos(0),Z\mapstos(0
plus(s(0),s(0),s(s(0))) X}\mapsto0,Y\mapstos(0),Z\mapstos(0
plus(0,s(0),s(0)) X

```
    plus(0,s(0),s(0)) X
```

solved

Example
logic program

$$
\begin{aligned}
& \text { plus }\left(0, X_{3}, X_{3}\right) \text {. } \\
& \text { plus(s(X),Y,s(Z)) } \leftarrow \text { plus(X,Y,Z). } \\
& \text { times }\left(0, X_{2}, 0\right) \text {. } \\
& \text { times }\left(\mathrm{s}\left(\mathrm{X}_{1}\right), \mathrm{Y}_{1}, \mathrm{Z}_{1}\right) \leftarrow \operatorname{times}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{U}_{1}\right), \mathrm{plus}\left(\mathrm{U}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}\right) \text {. } \\
& \text { goal }
\end{aligned}
$$

solution $\quad X \mapsto s(0), \quad Y \mapsto s(0)$

Renaming of Rules is Needed

Example

logic program
plus $\left(0, X_{3}, X_{3}\right)$.
plus $\left(\mathrm{s}\left(\mathrm{X}_{2}\right), \mathrm{Y}_{2}, \mathrm{~s}\left(\mathrm{Z}_{2}\right)\right) \leftarrow \operatorname{plus}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}\right)$.
times $(0, X, 0)$.
times(s(X),Y,Z) \leftarrow times $(X, Y, U), p l u s(U, Y, Z)$.
goal

$$
\begin{array}{ll}
\text { plus }(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0), \mathrm{X}) & X_{1} \mapsto s(0), Y_{1} \mapsto s(0), X \mapsto s\left(Z_{1}\right) \\
\text { plus }\left(\mathrm{s}(0), \mathrm{s}(0), \mathrm{Z}_{1}\right) & X_{2} \mapsto 0, Y_{2} \mapsto s(0), Z_{1} \mapsto s\left(Z_{2}\right) \\
\text { plus }\left(0, \mathrm{~s}(0), \mathrm{Z}_{2}\right) & X_{3} \mapsto s(0), Z_{2} \mapsto s(0)
\end{array}
$$

solution $\quad X \mapsto s(s(s(0)))$

Example
logic program
plus $\left(0, X_{2}, X_{2}\right)$.
plus(s(X),Y,s(Z)) \leftarrow plus (X,Y,Z).
times $\left(0, X_{3}, 0\right)$.
times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).
goal

$$
\begin{array}{ll}
\operatorname{times}(X, X, Y) & X \mapsto s\left(X_{1}\right) \\
\operatorname{times}\left(X_{1}, \mathrm{~s}\left(\mathrm{X}_{1}\right), \mathrm{U}_{1}\right), & U_{1} \mapsto 0, X_{2} \mapsto s\left(X_{1}\right. \\
\operatorname{plus}\left(\mathrm{U}_{1}, \mathrm{~s}\left(\mathrm{X}_{1}\right), \mathrm{Y}\right) & \\
\operatorname{times}\left(\mathrm{X}_{1}, \mathrm{~s}\left(\mathrm{X}_{1}\right), 0\right) & X_{1} \mapsto 0, X_{3} \mapsto s(0)
\end{array}
$$

solution $\quad X \mapsto s(0), \quad Y \mapsto s(0)$

Definition

composition of substitutions

$$
\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}
$$

and

$$
\sigma=\left\{Y_{1} \mapsto s_{1}, \ldots, Y_{k} \mapsto s_{k}\right\}
$$

is substitution

$$
\theta \sigma=\left\{X_{1} \mapsto t_{1} \sigma, \ldots, X_{n} \mapsto t_{n} \sigma\right\} \cup\left\{Y_{i} \mapsto s_{i} \mid Y_{i} \notin\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Example

$$
\begin{array}{rlrl}
\theta & =\{X \mapsto g(Y, Z), Y \mapsto a\} & \theta \sigma & =\{X \mapsto g(Y, f(X)), Y \mapsto a, Z \mapsto f(X)\} \\
\sigma & =\{X \mapsto f(Y), Z \mapsto f(X)\} & \sigma \theta=\{X \mapsto f(a), Z \mapsto f(g(Y, Z)), Y \mapsto a\}
\end{array}
$$

Definition

- substitution θ is at least as general as substitution σ if $\exists \mu \theta \mu=\sigma$
- unifier of set S of terms is substitution θ such that $\forall s, t \in S s \theta=t \theta$
- most general unifier (mgu) is at least as general as any other unifier

Example
terms $f(X, g(Y), X)$ and $f(Z, g(U), h(U))$ are unifiable:

$$
\begin{aligned}
& \{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\} \\
& \{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\} \\
& \{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}
\end{aligned}
$$

Theorem

- unifiable terms have mgu
- \exists algorithm to compute mgu

Definition

- sequence $E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}$ is called an equality problem
- if $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$, with X_{i} pairwise distinct and $X_{i} \notin \mathcal{V} \operatorname{ar}\left(v_{j}\right)$ for all i, j, then E is in solved form
- let $E=X_{1} \stackrel{?}{=} v_{1}, \ldots, X_{n} \stackrel{?}{=} v_{n}$ be a equality problem in solved form E induces substitution $\sigma_{E}=\left\{X_{1} \mapsto v_{1}, \ldots, X_{n} \mapsto v_{n}\right\}$

Unification Algorithm

$$
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
X \stackrel{?}{=} t, E & \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \operatorname{Var}(E), X \notin \operatorname{Var}(t) \\
X \stackrel{?}{=} t, E & \Rightarrow \perp \quad X \neq t, X \in \mathcal{V} \operatorname{ar}(t) \\
t \stackrel{?}{=} X, E & \Rightarrow X \stackrel{?}{=} t, E \quad t \notin \mathcal{V}
\end{aligned}
$$

Theorem

1 equality problems E is unifiable iff the unification algorithm stops with a solved form

2 if $E \Rightarrow^{*} E^{\prime}$ such that E^{\prime} is a solved form, then $\sigma_{E^{\prime}}$ is mgu of E

Example

$$
\begin{aligned}
f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) & \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U) \\
& \Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U) \quad \mathrm{mg} u
\end{aligned}
$$

Homework

Exercise 1

Consider the following implementation that attempts to solve the tower of Hanoi puzzle. Is this program correct? Please explain your answer:

```
hanoi(0,_,_, ) .
hanoi(N,X,Y,Z) :-
    N > 0, M is N-1,
    hanoi(M, X, Z,Y),
    move(N,X,Z),
    hanoi(M,Y,Z,X).
move(D,X,Y) :-
    write('move\lrcornerdisk」'), write(D)
    write('sfromb'), write(X),
    write('stou'), write(Y), nl
```


Two Choices

1 goal in sequence of goals
$[$ rule in logic program
substitution - avoid choice by always taking mgu

Computation Model of Logic Programs

- the choice of goal is arbitrary
if there is a successful computation for a specific order, then there is a successful computation for any other order
- the choice of rules is essential not every choice will lead to a successful computation; thus the computation model is nondeterministic

Exercise 2

Consider lists with arbitrary entries and implement a binary predicate member $(X, X s)$ that checks whether X belongs to the list X s.

Exercise 3

Consider lists with arbitrary entries and implement a ternary predicate $\operatorname{append}(X s, Y s, Z s)$ that is true, if $Z s=X s @ Y s$.

