

Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

Example (cont'd)

Tower of Hanoi in Prolog

```
% hanoi(N,X,Y,Z) <-- a tower of N disks is moved from
% peg X to peg Y using peg Z as storage
hanoi(0,_,_,).
hanoi(N,X,Y,Z) :-
N > 0, M is N-1,
hanoi(M,X,Z,Y),
move(N,X,Y),
hanoi(M,Z,Y,X).
```

```
move(D,X,Y) :-
    write('move disk '), write(D),
    write(' from '), write(X),
    write(' to '), write(Y), nl.
```

```
?- hanoi(4,a,c,b).
```

mmary of Last Lecture

Summary of Last Lecture

Definition

- goals (aka formulas) are constants or compound terms
- goals are typically non-ground

Definitions (Clause)

• a clause or rule is a universally quantified logical formula of the form $A \leftarrow B_1, B_2, \dots, B_n$.

where A and the B_i 's are goals

- A is called the head of the clause; the B_i 's are called the body
- a rule of the form $A \leftarrow$ is called a fact; we write facts simply A.

Logic Programming

Definition

a logic program is a finite set of clauses

GM (Institute of Computer Science @ UIBK)

20/1

utline

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Some Examples

Example (Multiplication)

logic program

```
plus(0,X,X).
plus(s(X), Y, s(Z)) \leftarrow plus(X, Y, Z).
times(0, X, 0).
times(s(X), Y, Z) \leftarrow times(X, Y, U), plus(U, Y, Z).
```

goal

plus(s(s(0)), s(0), s(s(s(0)))) $X \mapsto s(0), Y \mapsto s(0), Z \mapsto s(s(0))$ plus(s(0),s(0),s(s(0))) $X \mapsto 0, Y \mapsto s(0), Z \mapsto s(0)$ plus(0,s(0),s(0)) $X \mapsto s(0)$

solved

GM (Institute of Computer Science @ UIBK Logic Programming 23/1

Basic Constructs

Example

logic program

```
plus(0, X_3, X_3).
plus(s(X), Y, s(Z)) \leftarrow plus(X, Y, Z).
times(0, X_2, 0).
times(s(X_1), Y_1, Z_1) \leftarrow times(X_1, Y_1, U_1), plus(U_1, Y_1, Z_1).
```

goal

```
X \mapsto s(X_1), Y_1 \mapsto s(X_1), Z_1 \mapsto Y
times(X,X,Y)
                              X_1 \mapsto 0, X_2 \mapsto s(0), U_1 \mapsto 0
times(X_1,s(X_1),U_1),
     plus(U_1,s(X_1),Y)
                         X_3 \mapsto s(0), Y \mapsto s(0)
plus(0,s(0),Y)
```

 $X \mapsto s(0), Y \mapsto s(0)$ solution

Renaming of Rules is Needed

Example

logic program

 $plus(0,X_3,X_3).$ $plus(s(X_2), Y_2, s(Z_2)) \leftarrow plus(X_2, Y_2, Z_2).$ times(0, X, 0). $times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).$

goal

```
plus(s(s(0)),s(0),X) X_1 \mapsto s(0), Y_1 \mapsto s(0), X \mapsto s(Z_1)
plus(s(0), s(0), Z<sub>1</sub>) X_2 \mapsto 0, Y_2 \mapsto s(0), Z_1 \mapsto s(Z_2)
plus(0,s(0),Z<sub>2</sub>) X_3 \mapsto s(0), Z_2 \mapsto s(0)
```

Logic Programming

```
X \mapsto s(s(s(0)))
solution
```

GM (Institute of Computer Science @ UIBK

Basic Constructs

Example

logic program

```
plus(0, X_2, X_2).
plus(s(X), Y, s(Z)) \leftarrow plus(X, Y, Z).
times(0,X_3,0).
times(s(X),Y,Z) \leftarrow times(X,Y,U), plus(U,Y,Z).
```

goal

 $X\mapsto s(X_1)$ times(X,X,Y)times(X₁,s(X₁),U₁), $U_1 \mapsto 0, X_2 \mapsto s(X_1), Y \mapsto s(X_1)$ $plus(U_1,s(X_1),Y)$ $times(X_1,s(X_1),0) \qquad X_1\mapsto 0, \ X_3\mapsto s(0)$

 $X \mapsto s(0), Y \mapsto s(0)$ solution

Three Choices

- **1** goal in sequence of goals
- 2 rule in logic program
- 3 substitution

GM (Institute of Computer Science @ UIBK

Unification

Definition

• substitution θ is at least as general as substitution σ if $\exists \mu \ \theta \mu = \sigma$

Logic Programming

- unifier of set S of terms is substitution θ such that $\forall s, t \in S \ s\theta = t\theta$
- most general unifier (mgu) is at least as general as any other unifier

Example
terms
$$f(X, g(Y), X)$$
 and $f(Z, g(U), h(U))$ are unifiable:
 $\{X \mapsto h(a), Y \mapsto a, Z \mapsto h(a), U \mapsto a\}$
 $\{X \mapsto h(U), Y \mapsto U, Z \mapsto h(U)\}$ mgu
 $\{X \mapsto h(g(U)), Y \mapsto g(U), Z \mapsto h(g(U)), U \mapsto g(U)\}$

Theorem

- unifiable terms have mgu
- \exists algorithm to compute mgu

nification

Definition

composition of substitutions

$$\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$$

and

$$\sigma = \{Y_1 \mapsto s_1, \ldots, Y_k \mapsto s_k\}$$

is substitution

$$\theta\sigma = \{X_1 \mapsto t_1\sigma, \ldots, X_n \mapsto t_n\sigma\} \cup \{Y_i \mapsto s_i \mid Y_i \notin \{X_1, \ldots, X_n\}\}$$

Example

$$\begin{aligned} \theta &= \{ X \mapsto g(Y, Z), Y \mapsto a \} \quad \theta \sigma &= \{ X \mapsto g(Y, f(X)), Y \mapsto a, Z \mapsto f(X) \} \\ \sigma &= \{ X \mapsto f(Y), Z \mapsto f(X) \} \quad \sigma \theta &= \{ X \mapsto f(a), Z \mapsto f(g(Y, Z)), Y \mapsto a \} \end{aligned}$$

Logic Programming

GM (Institute of Computer Science @ UIBK)

28/1

nification

27/1

Definition

- sequence $E = u_1 \stackrel{?}{=} v_1, \ldots, u_n \stackrel{?}{=} v_n$ is called an equality problem
- if $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$, with X_i pairwise distinct and $X_i \notin Var(v_i)$ for all i, j, then E is in solved form
- let $E = X_1 \stackrel{?}{=} v_1, \dots, X_n \stackrel{?}{=} v_n$ be a equality problem in solved form *E* induces substitution $\sigma_E = \{X_1 \mapsto v_1, \dots, X_n \mapsto v_n\}$

Unification Algorithm

$$u \doteq u, E \Rightarrow E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} f(t_1, \dots, t_n), E \Rightarrow s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n, E$$

$$f(s_1, \dots, s_n) \stackrel{?}{=} g(t_1, \dots, t_n), E \Rightarrow \bot \quad f \neq g$$

$$X \stackrel{?}{=} t, E \Rightarrow X \stackrel{?}{=} t, E\{X \mapsto t\} \quad X \in \mathcal{V}ar(E), X \notin \mathcal{V}ar(t)$$

$$X \stackrel{?}{=} t, E \Rightarrow \bot \quad X \neq t, X \in \mathcal{V}ar(t)$$

$$t \stackrel{?}{=} X, E \Rightarrow X \stackrel{?}{=} t, E \quad t \notin \mathcal{V}$$

GM (Institute of Computer Science @ UIBK) Logic Programmi

Jnificatior

Theorem

- **1** equality problems *E* is unifiable iff the unification algorithm stops with a solved form
- **2** if $E \Rightarrow^* E'$ such that E' is a solved form, then $\sigma_{E'}$ is mgu of E

Example

$$f(X, g(Y), X) \stackrel{?}{=} f(Z, g(U), h(U)) \Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), X \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, g(Y) \stackrel{?}{=} g(U), Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} Z, Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$

$$\Rightarrow X \stackrel{?}{=} h(U), Y \stackrel{?}{=} U, Z \stackrel{?}{=} h(U)$$
 mgu

nification

Two Choices

- **1** goal in sequence of goals
- 2 rule in logic program
- substitution

```
- avoid choice by always taking mgu
```

Computation Model of Logic Programs

- the choice of goal is arbitrary if there is a successful computation for a specific order, then there is a successful computation for any other order
- the choice of rules is essential not every choice will lead to a successful computation; thus the computation model is nondeterministic

Logic Programming

GM (Institute of Computer Science @ UIBK)

Homework

Exercise 1

Consider the following implementation that attempts to solve the tower of Hanoi puzzle. Is this program correct? Please explain your answer:

Logic Programming

```
hanoi(0,_,_,_).
hanoi(N,X,Y,Z) :-
N > 0, M is N-1,
hanoi(M,X,Z,Y),
move(N,X,Z),
hanoi(M,Y,Z,X).
move(D,X,Y) :-
write('move_disk_'), write(D),
```

```
write('_from_'), write(D),
write('_from_'), write(X),
write('_to_'), write(Y), nl.
```

Exercise 2

GM (Institute of Computer Science @ UIBK

Consider lists with arbitrary entries and implement a binary predicate member(X, Xs) that checks whether X belongs to the list Xs.

Exercise 3

Consider lists with arbitrary entries and implement a ternary predicate append(Xs, Ys, Zs) that is true, if Zs = Xs@Ys.

31/1