
Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

Summary of Last Lecture

Summary of Last Lecture

Two Choices

1 goal in sequence of goals

2 rule in logic program

substitution – avoid choice by always taking mgu

Computation Model of Logic Programs

• the choice of goal is arbitrary
if there is a successful computation for a specific order, then there is
a successful computation for any other order

• the choice of rules is essential
not every choice will lead to a successful computation; thus the
computation model is nondeterministic

GM (Institute of Computer Science @ UIBK) Logic Programming 35/1

Summary of Last Lecture

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming , constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming 36/1

Database Programming Making Implicit Information Explicit

Example

father(andreas,boris). female(doris). male(andreas).

father(andreas,christian). female(eva). male(boris).

father(andreas,doris). male(christian).

father(boris,eva). mother(doris,franz). male(franz).

father(franz,georg). mother(eva,georg). male(georg).

Naming Conventions

• predicates are often denoted together with their arity: father/2

• for each predicate a relation scheme is defined: father(Father,Child)

• relation schemes are denoted in italics

• variables should have mnemonic names; each new word in a variable
is started with a capital letter: NieceOrNephew

• in predicates words are separated by underscores: schedule conflict

• relation schemes are also used in commenting code

GM (Institute of Computer Science @ UIBK) Logic Programming 37/1

http://cl-informatik.uibk.ac.at

Database Programming Making Implicit Information Explicit

Example

daughter(X,Y) ← father(Y,X), female(X).

daughter(X,Y) ← mother(Y,X), female(X).

grandfather(X,Y) ← father(X,Z), father(Z,Y).

grandfather(X,Y) ← father(X,Z), mother(Z,Y).

parent(X,Y) ← father(X,Y).

parent(X,Y) ← mother(X,Y).

Relation Schemes

daughter(Daughter,Parent) parent(Parent,Child)
grandfather(Grandfather,GrandChild)

Example

brother(Brother,Sib) ←
parent(Parent,Brother), parent(Parent,Sib), male(Brother).

GM (Institute of Computer Science @ UIBK) Logic Programming 38/1

Database Programming Making Implicit Information Explicit

Example

andreas 6= boris. andreas 6= georg. ...

andreas 6= christian. boris 6= christian.

andreas 6= franz. boris 6= franz.

brother(Brother,Sib) ←
parent(Parent,Brother), parent(Parent,Sib),

male(Brother), Brother 6= Sib.

Example

mother(Woman) ← mother(Woman,Child).

Observation

overloading with the same predicate name, but different arity, is fine

GM (Institute of Computer Science @ UIBK) Logic Programming 39/1

Database Programming Making Implicit Information Explicit

Structured Data and Data Abstraction

Example (Unstructured Data)

course(discrete mathematics,tuesday,8,11,sandor,szedmak,

victor franz hess,d).

Example (Structured Data)

course(discrete mathematics,time(tuesday,8,11),

lecturer(sandor,szedmak),location(victor franz hess,d)).

Example

lecturer(Lecturer,Course) ←
course(Course,Time,Lecturer,Location).

duration(Course,Length) ←
course(Course,time(Day,Start,Finish),Lecturer,Location),

plus(Start,Length,Finish).

GM (Institute of Computer Science @ UIBK) Logic Programming 40/1

Database Programming Making Implicit Information Explicit

Example (cont’d)

teaches(Lecturer,Day) ←
course(Course,time(Day,Start,Finish),Lecturer,Location).

occupied(Location,Day,Time) ←
course(Course,time(Day,Start,Finish),Lecturer,Location),

Start 6 Time, Time 6 Finish.

Why structure Data?

• helps to organise data

• rules can be written abstractly, hiding irrelevant detail

• modularity is improved

The Art of Prolog says

We believe that the appearance of a program is important, par-
ticularly when attempting difficult problems

GM (Institute of Computer Science @ UIBK) Logic Programming 41/1

Database Programming Making Implicit Information Explicit

Recursive Rules

Example

grandpartent(Ancestor,Descendant) ←
parent(Ancestor,Person), parent(Person,Descendant).

greatgrandpartent(Ancestor,Descendant) ←
parent(Ancestor,Person), grandpartent(Person,Descendant).

greatgreatgrandpartent(Ancestor,Descendant) ←
parent(Ancestor,Person), greatgrandpartent(Person,Descendant).
...

Example

ancestor(Ancestor,Descendant) ←
parent(Ancestor,Person), ancestor(Person,Descendant).

ancestor(Ancestor,Descendent) ← parent(Ancestor,Descendent).

GM (Institute of Computer Science @ UIBK) Logic Programming 42/1

Relational Database Model

Logic Programs and the Relational Database Model

Observation

the basic operations of relational algebras, namely:

1 union

2 difference

3 cartesian product

4 projection

5 selection

6 intersection

can easily be expressed within logic programming

Example

r union s(X1,...,Xn) ← r(X1,...,Xn).

r union s(X1,...,Xn) ← s(X1,...,Xn).

GM (Institute of Computer Science @ UIBK) Logic Programming 43/1

Recursive Programming

Recursive Programming

Definition
• a type is a (possible infinite) set of terms

• types are conveniently defined by unary relations

Example
male(X). female(X).

Definition
• to define complex types, recursive logic programs may be necessary

• the latter types are called recursive types

• recursive types, defined by unary recursive programs, are called
simple recursive types

• a program defining a type is a type definition; a call to a predicate
defining a type is a type condition

GM (Institute of Computer Science @ UIBK) Logic Programming 44/1

Recursive Programming

Simple Recursive Types

Example

is tree(nil).

is tree(tree(Element,Left,Right)) ←
is tree(Left),

is tree(Right).

Definition
• a type is complete if closed under the instance relation

• with every complete type T one associates an incomplete type IT
which is a set of terms with instances in T and instances not in T

Example

• the type {0, s(0), s(s(0)), . . . } is complete

• the type {X , 0, s(0), s(s(0)), . . . } is incomplete

GM (Institute of Computer Science @ UIBK) Logic Programming 45/1

Recursive Programming

Arithmetic

Example

natural number(0).

natural number(s(X)) ← natural number(X).

Example

plus(0,X,X) ← natural number(X)..

plus(s(X),Y,s(Z)) ← plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) ← times(X,Y,U), plus(U,Y,Z).

Example

factorial(0,s(0)).

factorial(s(N),F) ← factorial(N,F1), times(s(N),F1,F).

GM (Institute of Computer Science @ UIBK) Logic Programming 46/1

Recursive Programming

Example
0 6 X ← natural number(X).

s(X) 6 s(Y) ← X 6 Y.

minimum(N1,N2,N1) ← N1 6 N2.

minimum(N1,N2,N2) ← N2 6 N1.

Example
mod(X,Y,Z) ← Z < Y, times(Y,Q,W), plus(W,Z,X).

mod(X,Y,X) ← X < Y.

mod(X,Y,Z) ← plus(X1,Y,X), mod(X1,Y,Z).

Example
ackermann(0,N,s(N)).

ackermann(s(M),0,Val) ← ackermann(M,s(0),Val).

ackermann(s(M),s(N),Val) ← ackermann(s(M),N,Val1),

ackermann(M,Val1,Val).

GM (Institute of Computer Science @ UIBK) Logic Programming 47/1

Recursive Programming

Lists

Notation
• [] empty list

• [H|T] list with head H and tail T

• [A] [A|[]] list with one element

• [A,B] [A|[B|[]]] list with two elements

• [A,B|T] [A|[B|T]] list with at least two elements

Example

is list([]). is list([X|Xs]) ← is list(Xs).

Notation (cont’d)

formal object cons pair syntax element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

GM (Institute of Computer Science @ UIBK) Logic Programming 48/1

Recursive Programming

Example
member(X,[X|Xs]).

member(X,[Y|Xs]) ← member(X,Xs). ← member(X,[a,b,a]).

Example
append(Xs,Ys,Zs) ← append([],Ys,Ys).

Xs = [], append([H|Ts],Ys,[H|Zs]) ←
Zs = Ys. append(Ts,Ys,Zs).

append(Xs,Ys,Zs) ←
Xs = [H|Ts],

append(Ts,Ys,Us),

Zs = [H|Us].

Example
prefix([],Xs). suffix(Xs,Xs).

prefix([X|Xs],[X|Ys]) ← suffix(Xs,[Y|Ys]) ←
prefix(Xs,Ys). suffix(Xs,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 49/1

Recursive Programming

Example (Uses of append)

prefix(Xs,Ys) ← append(Xs,As,Ys).

suffix(Xs,Ys) ← append(As,Xs,Ys).

member(X,Ys) ← append(As,[X|Xs],Ys).

Example

reverse([],[]).

reverse([X|Xs],Zs) ← reverse(Xs,Ys), append(Ys,[X],Zs).

reverse(Xs,Ys) ← reverse(Xs,[],Ys).

reverse([X|Xs],Acc,Ys) ← reverse(Xs,[X|Acc],Ys).

reverse([],Ys,Ys).

Example

length([],0).

length([X|Xs],s(N)) ← length(Xs,N).

GM (Institute of Computer Science @ UIBK) Logic Programming 50/1

Composing Recursive Programs

Composing Recursive Programs

Example

delete/3 removes all occurrences of an element from a list

Approach

1 craft the predicate with one (procedural) use in mind

2 afterwards see, if alternative uses make declarative sense

Example

delete([X|Xs],Z,?) ← X = Z , delete(Xs,Z,Ys).

delete([X|Xs],Z,?) ← X 6= Z , delete(Xs,Z,Ys).

delete([],X,[]).

delete([X|Xs],X,Ys) ← delete(Xs,X,Ys).

delete([X|Xs],Z,[X|Ys]) ← X 6= Z, delete(Xs,Z,Ys).

delete([],X,[]).

GM (Institute of Computer Science @ UIBK) Logic Programming 51/1

Composing Recursive Programs

Example

delete2([X|Xs],X,Ys) ← delete2(Xs,X,Ys).

delete2([X|Xs],Z,[X|Ys]) ← delete2(Xs,Z,Ys).

delete2([],X,[]).

← delete2([a,b,c,b],b,[a,c])

true

← delete2([a,b,c,b],b,[a,b,c,d])

true

Example

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) ← select(X,Ys,Zs)

← delete([a],b,[a])

true

← select([a],b,X)

false

GM (Institute of Computer Science @ UIBK) Logic Programming 52/1

Sorting

Example

permutationsort(Xs,Ys) ← permutation(Xs,Ys), ordered(Ys).

permutation(Xs,[Z|Zs]) ← select(Z,Xs,Ys), permutation(Ys,Zs).

permutation([],[]).

ordered([X]).

ordered([X,Y|Ys]) ← X 6 Y, ordered([Y|Ys]).

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) ← select(X,Ys,Zs).

Example

insertionsort([X|Xs],Ys) ← insertionsort(Xs,Zs),

insert(X,Zs,Ys).

insertionsort([],[]).

insert(X,[],[X]).

insert(X,[Y|Ys],[Y|Zs]) ← X > Y, insert(X,Ys,Zs).

insert(X,[Y|Ys],[X,Y|Ys]) ← X 6 Y.

GM (Institute of Computer Science @ UIBK) Logic Programming 53/1

Sorting

Example

quicksort([X|Xs],Ys) ←
partition(Xs,X,Littles,Bigs),

quicksort(Littles,Ls), quicksort(Bigs,Rs),

append(Ls,[X|Rs],Ys).

partition([X|Xs],Y,[X|Ls],Bs) ←
X =< Y, partition(Xs,Y,Ls,Bs).

partition([X|Xs],Y,Ls,[X|Bs]) ←
X > Y, partition(Xs,Y,Ls,Bs).

partition([],Y,[],[]).

Example (Recursive Datastructures)

isotree(nil,nil).

isotree(tree(X,Left1,Right1),tree(X,Left2,Right2)) ←
isotree(Left1,Left2), isotree(Right1,Right2).

isotree(tree(X,Left1,Right1),tree(X,Left2,Right2)) ←
isotree(Left1,Right2), isotree(Right1,Left2).

GM (Institute of Computer Science @ UIBK) Logic Programming 54/1

