ogic

Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Definitions
e SLD-derivation of logic program P and goal clause G consists of
maximal sequence Gg, Gy, G, ... of goal clauses
sequence Gy, Ci, Gy, ... of variants of rules in P
sequence fg, 01,05, ... of substitutions
such that
e Gp=G

e G;y1 is resolvent of G; and C; with mgu 6;
e (; has no variables in common with G, G, ..., Ci_1
e SLD-refutation is finite SLD-derivation ending in O
e computed answer substitution of SLD-refutation of P and G with

substitutions 6g, 01, ..., 0, is restriction of 8y07 - - - 0, to variables
in G

GM (Institute of Computer Science @ UIBK) Logic Programming

Summary of Last Lecture

Definitions
e an interpretation is a subset of the Herbrand base
e an interpretation / is a model if it is closed under rules:
VA~ By,....B, A€l if By,...,Byel
e the minimal model of P is the intersection of all models; the
minimal model is unique

Definition
the declarative semantics of P (aka its meaning) is the minimal model
of P

GM (Institute of Computer Science @ UIBK) Logic Programming

Summary of Last Lecture

Definitions
e an interpretation is a subset of the Herbrand base
e an interpretation / is a model if it is closed under rules:
VA~ By,....B, A€l if By,...,Byel
e the minimal model of P is the intersection of all models; the
minimal model is unique

Definition
the declarative semantics of P (aka its meaning) is the minimal model
of P

Definitions
the operational semantics describes the meaning of a program
procedurally

GM (Institute of Computer Science @ UIBK) Logic Programming

Summary of Last Lecture

Definitions
e an interpretation is a subset of the Herbrand base
e an interpretation / is a model if it is closed under rules:
VA~ By,....B, A€l if By,...,Byel
e the minimal model of P is the intersection of all models; the
minimal model is unique

Definition
the declarative semantics of P (aka its meaning) is the minimal model
of P

Definition

the denotational semantics assign meanings to programs based on
associating with the program a function over the domain computed by
the program

GM (Institute of Computer Science @ UIBK) Logic Programming

ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure Prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming

ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure Prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming

The Execution Model of Prolog

One Choice
goal in sequence of goals - any choice will do
rule in logic program

substitution - avoid choice by always taking mgu

GM (Institute of Computer Science @ UIBK] Logic Programming

The Execution Model of Prolog

One Choice
goal in sequence of goals - any choice will do
rule in logic program

substitution - avoid choice by always taking mgu

Execution

e Prolog programs are executed using SLD resolution
e leftmost and topdown selection
o depth-first search with backtracking

e unification without occur check

GM (Institute of Computer Science @ UIBK) Logic Programming

The Execution Model of Prolog

Prolog Mode for Emacs

Bruda's Prolog Mode
goto http://bruda.ca/emacs/prolog_mode_for_emacs

download prolog.el, compile and put into sub-directory site-lisp
put the following into .emacs:

(autoload 'run—prolog "prolog”

"Start_a_Prolog_sub—process.” t)
(autoload ’'prolog—mode "prolog”
"Major_.mode_for_editing _.Prolog_programs.” t)

(setq prolog—system ’'swi)
(setq auto—mode—alist
(cons (cons "\\.pl" ’'prolog—mode) auto—mode—alist))

GM (Institute of Computer Science @ UIBK) Logic Programming

http://bruda.ca/emacs/prolog_mode_for_emacs

Comparison to Conventional Programming Languages
Fact

a programming language is characterised by its control and data manipu-
lation mechanisms

GM (Institute of Computer Science @ UIBK) Logic Programming

Comparison to Conventional Programming Languages

Fact
a programming language is characterised by its control and data manipu-
lation mechanisms

Control procedure A
call By
call B,
call B,
A+ By,B, end

GM (Institute of Computer Science @ UIBK) Logic Programming

Comparison to Conventional Programming Languages

Comparison to Conventional Programming Languages

Fact

a programming language is characterised by its control and data manipu-
lation mechanisms

Control procedure A
call By
call B,
call B,
A+ By,B, end

Observations
goal invocation corresponds to procedure invocation

differences show when backtracking occurs

GM (Institute of Computer Science @ UIBK) Logic Programming

Comparison to Conventional Programming Languages

Data Structures

data structures manipulated by logic programs (= terms) correspond
to general record structures

like LISP, Prolog is a declaration free, typeless language

Prolog does not support destructive assignment where the content
of the initialised variable can change

GM (Institute of Computer Science @ UIBK)

Logic Programming

Comparison to Conventional Programming Languages

Data Structures

data structures manipulated by logic programs (= terms) correspond
to general record structures

like LISP, Prolog is a declaration free, typeless language

Prolog does not support destructive assignment where the content
of the initialised variable can change

Data Manipulation

data manipulation is achieved via unification
unification subsumes

single assignment

parameter passing

record allocation

°
L]
°
e read/write-once field access in records

GM (Institute of Computer Science @ UIBK) Logic Programming

Rule Order
Observation J

The rule order determines the order in which solutions are found

GM (Institute of Computer Science @ UIBK) Logic Programming

Rule Order

Observation

The rule order determines the order in which solutions are found

Example
parent (terach,abraham) . parent (abraham, isaac) .
parent (isaac, jakob) . parent (jakob,benjamin) .

ancestor(X,Y) <« parent(X,Y).
ancestor(X,Z) <« parent(X,Y), ancestor(Y,Z).

Example
append ([X|Xs],Ys, [X1Zs]) < append([],Ys,Ys).

append (Xs,Ys,Zs) . append ([X|Xs],¥s, [X|Zs]) <+
append([],Ys,Ys). append (Xs,Ys,Zs) .

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example
is 1list([]). is_list([X[|Xs]) <« is_list(Xs).

Definitions
e a list is complete if every instances satisfies the above type for lists

e otherwise it is incomplete

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example
is 1list([]). is_list([X[|Xs]) <« is_list(Xs).

Definitions
e a list is complete if every instances satisfies the above type for lists

e otherwise it is incomplete

Example
e the lists [a,b,c] and [a,X,c] are complete
e the list [a,bl|Xs] is not

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example
is 1list([]). is_list([X[|Xs]) <« is_list(Xs).

Definitions
e a list is complete if every instances satisfies the above type for lists

e otherwise it is incomplete

Example
e the lists [a,b,c] and [a,X,c] are complete
e the list [a,bl|Xs] is not

Definition

a domain is a set of goals closed under the instance relation

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Observation
Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition
a termination domain of a program P is a domain D such that P
terminates on all goals in D

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition
a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example

consider adding married/2 to the family database, and the following
“obvious” closure under commutativity:

married(X,Y) < married(Y,X).

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition
a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example

consider adding married/2 to the family database, and the following
“obvious” closure under commutativity:

married(X,Y) < married(Y,X).

NB: recursive rules which have the recursive goal as the first goal in the
body are called left recursive

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example

aremarried(X,Y) < married(X,Y).
aremarried(X,Y) < married(Y,X).

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example

aremarried(X,Y) < married(X,Y).
aremarried(X,Y) < married(Y,X).

Example

consider append/3, where the fact comes after the rule

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example

aremarried(X,Y) < married(X,Y).
aremarried(X,Y) < married(Y,X).

Example

consider append/3, where the fact comes after the rule
append terminates if the first argument is a complete list

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example

aremarried(X,Y) < married(X,Y).
aremarried(X,Y) < married(Y,X).

Example

consider append/3, where the fact comes after the rule
append terminates if the first argument is a complete list

append terminates if the third argument is complete

GM (Institute of Computer Science @ UIBK) Logic Programming

Termination

Example

aremarried(X,Y) < married(X,Y).
aremarried(X,Y) < married(Y,X).

Example

consider append/3, where the fact comes after the rule
append terminates if the first argument is a complete list

append terminates if the third argument is complete
append terminates iff the first or third argument is complete

GM (Institute of Computer Science @ UIBK) Logic Programming

Example

aremarried(X,Y) < married(X,Y).
aremarried(X,Y) < married(Y,X).

Example

consider append/3, where the fact comes after the rule
append terminates if the first argument is a complete list

append terminates if the third argument is complete
append terminates iff the first or third argument is complete

Proof of the First Fact.
e consider generic call: < append(Xs,Ys,Zs),
where Xs is complete list; define ||<— append (Xs,Ys,Zs) || = ||Xs]|

e ||G|| decreases in every successor node of goal G in the SLD tree
|

GM (Institute of Computer Science @ UIBK) Logic Programming

Goal Order

Goal Order
Observation J

Goal order determines the SLD tree

GM (Institute of Computer Science @ UIBK) Logic Programming

Goal Order

Observation
Goal order determines the SLD tree

Example

grandparent (X,Z) < parent(X,Y), parent(Y,Z).
grandparent2(X,Z) < parent(Y,Z), parent(X,Y).

GM (Institute of Computer Science @ UIBK] Logic Programming

Goal Order

Observation
Goal order determines the SLD tree

Example

grandparent (X,Z) < parent(X,Y), parent(Y,Z).
grandparent2(X,Z) < parent(Y,Z), parent(X,Y).

Example

reverse([X|Xs],Zs) < reverse(Xs,Ys), append(Ys, [X],Zs).
reverse([],[1).

GM (Institute of Computer Science @ UIBK) Logic Programming

Goal Order

Observation
Goal order determines the SLD tree

Example

grandparent (X,Z) < parent(X,Y), parent(Y,Z).
grandparent2(X,Z) < parent(Y,Z), parent(X,Y).

Example

reverse([X|Xs],Zs) < reverse(Xs,Ys), append(Ys, [X],Zs).
reverse([],[1).

Example

sublist(Xs,AsXsBs) <
append (AsXs,Bs,AsXsBs), append(As,Xs,AsXs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Goal Order

Observation
Goal order determines the SLD tree

Example

grandparent (X,Z) < parent(X,Y), parent(Y,Z).
grandparent2(X,Z) < parent(Y,Z), parent(X,Y).

Example

reverse([X|Xs],Zs) < reverse(Xs,Ys), append(Ys, [X],Zs).
reverse([],[1).

Example

sublist(Xs,AsXsBs) <
append (As,Xs,AsXs), append(AsXs,Bs,AsXsBs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Redundant Solutions

Example

minimum(N;,No,N;) <+ Ny < No.
minimum(N;,No,No) < No < Nj.

< minium(2,2,M)

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Redundant Solutions

Example

minimum(Ny,No,N7) < Ni < Nop.
minimum(N;,No,No) < No < Nj.
< minium(2,2,M)

Example

minimum(Ny,No,N7) < Ny < Nop.
minimum(Ny,N,,Np) < Np < Ny.

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Redundant Solutions

Example

minimum(Ny,No,N7) < Ni < Nop.
minimum(N;,No,No) < No < Nj.
< minium(2,2,M)

Example

minimum(Ny,No,N7) < Ny < Nop.
minimum(Ny,N,,Np) < Np < Ny.

Observation
similar care is necessary with the definition of partition, etc.

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Example

member (X, [X|Xs]).
member (X, [Y|Xs]) < member(X,Xs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Example

member (X, [X|Xs]).
member (X, [Y|Xs]) < member(X,Xs).

?- member (X, [a,b,a]).

X — a

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Example

member (X, [X|Xs]).
member (X, [Y|Xs]) < member(X,Xs).

?- member (X, [a,b,a]).
X — a ;
X+— b

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Example

member (X, [X|Xs]).
member (X, [Y|Xs]) < member(X,Xs).

?- member (X, [a,b,a]).
X — a ;

X—= b ;

X = a

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Example

member (X, [X|Xs]).
member (X, [Y|Xs]) < member(X,Xs).

?- member (X, [a,b,a]).
X — a ;
X—= b ;
X — a;

false

GM (Institute of Computer Science @ UIBK) Logic Programming

Redundant Solutions

Example

member (X, [X|Xs]).
member (X, [Y|Xs]) < member(X,Xs).

?- member (X, [a,b,a]).
X — a ;

X—= b ;

X — a;

false

Example

member_check (X, [X]Xs]).
member _check (X, [Y|Ys]) <+ X # Y, member_check(X,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Recursive Programming in Pure Prolog

Fact
some care is necessary in pruning the search tree

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Recursive Programming in Pure Prolog
Fact

some care is necessary in pruning the search tree

Example

select (X, [X|Xs],Xs).
select (X, [Y|Ys],[Y|Zs]) < select(X,Ys,Zs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Recursive Programming in Pure Prolog
Fact

some care is necessary in pruning the search tree

Example

select (X, [X|Xs],Xs).
select (X, [Y|Ys],[Y|Zs]) < select(X,Ys,Zs).

Example

select_first (X, [X|Xs],Xs).
select first(X,[YI|Ys],[YI|Zs]) < X # Y, select_first(X,Ys,Zs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Recursive Programming in Pure Prolog

Fact
some care is necessary in pruning the search tree

Example

select (X, [X|Xs],Xs).
select (X, [Y|Ys],[Y|Zs]) < select(X,Ys,Zs).

Example

select_first (X, [X|Xs],Xs).
select first(X,[Y|Ys],[YI|Zs]) + X # Y, select first(X,Ys,Zs).

Observation
select(a, [a,b,a,c], [a,b,c]) is in the meaning of the 1st program;
select_first(a, [a,b,a,c], [a,b,c]) is not in the meaning of the 2nd

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Example

members ([X|Xs],Ys) < member(X,Ys), members(Xs,Ys).
members ([],Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Example

members ([X|Xs],Ys) < member(X,Ys), members(Xs,Ys).
members ([],Ys).

Example

selects([X|Xs],Ys) <+ select(X,Ys,Ys1), selects(Xs,Ysl).
selects([],Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Example

members ([X|Xs],Ys) < member(X,Ys), members(Xs,Ys).
members ([],Ys).

Example

selects([X[|Xs],Ys) <« select(X,Ys,Ys1), selects(Xs,Ysl).
selects([],Ys).

Observations
members/2 ignores the multiplicity of elements
members/2 terminates iff 1st argument is complete
the first restriction is lifted, the second altered with selects/2
selects/2 terminates iff 2nd argument is complete

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Example

% no_doubles(Xs,Ys) <—

% Ys is the list obtained by removing duplicate
% elements from the list Xs

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Example

% no_doubles(Xs,Ys) <—

% Ys is the list obtained by removing duplicate
% elements from the list Xs

Example

non_member (X, [Y|Ys]) + X # Y, non_member(X,Ys).
non_member (X, [1) .

GM (Institute of Computer Science @ UIBK) Logic Programming

Recursive Programming in Pure Prolog

Example

% no_doubles(Xs,Ys) <—

% Ys is the list obtained by removing duplicate
% elements from the list Xs

Example

non_member (X, [Y|Ys]) + X # Y, non_member(X,Ys).
non_member (X, [1) .

no_doubles([X|Xs],Ys)

member (X,Xs), no_doubles(Xs,Ys).
no_doubles([X|Xs], [X|Ys]) «+

non_member (X,Xs), no_doubles(Xs,Ys).
no_doubles([1,[1).

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation
e append/3

e member/2

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation
e append/3
e member/2

e last/2

?- last([a,b,c,d],X).
X=4d

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation
e append/3
e member/2

e last/2

?- last([a,b,c,d],X). 7- last(X,a).
X=4d

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation

e append/3

e member/2

e last/2
?- last([a,b,c,d],X). 7- last(X,a).
X=d X = [a]

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation

e append/3

e member/2

e last/2
?- last([a,b,c,d],X). 7- last(X,a).
X=d X = [a] ;

X

[G324,a]

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation

e append/3
e member/2
e last/2
?- last([a,b,c,d],X). 7- last(X,a).
X=d X = [a] ;
X = [G324,a] ;
X = [G324, G327,al

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation

e append/3
e member/2
e last/2
?- last([a,b,c,d],X). 7- last(X,a).
X=d X = [a] ;
X = [G324,a] ;
X = [G324, G327,al

e reverse/2

7- reverse([a,b,c,d],X).
X = [d,C,b,a]

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation

e append/3
e member/2
e last/2
?- last([a,b,c,d],X). 7- last(X,a).
X=d X = [a] ;
X = [G324,a] ;
X = [G324, G327,al

e reverse/2

7- reverse([a,b,c,d],X).
X = [d,C,b,a]

e select/3
7- select(b, [a,b,c,d],X).
X = [a,c,d]

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation

e append/3
e member/2
e last/2
?- last([a,b,c,d],X). 7- last(X,a).
X=d X = [a] ;
X = [G324,a] ;
X = [G324, G327,al
e reverse/2
7- reverse([a,b,c,d],X).
X = [d,c,b,al
e select/3
7- select(b, [a,b,c,d],X). 7- select(b, [a,b,c,b,d],X).
X = [a,c,d] X = [a,c,b,d]

GM (Institute of Computer Science @ UIBK) Logic Programming

Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation
e append/3
member/?2
last/2
?- last([a,b,c,d],X). 7- last(X,a).
X=d X = [a] ;

X [G324,a] ;
X [G324, G327,al

e reverse/2
7- reverse([a,b,c,d],X).
X = [d,C,b,a]

select/3

7- select(b, [a,b,c,d],X). 7- select(b, [a,b,c,b,d],X).
X = [a,c,d] X = [a,c,b,d]

length/2

?- length([a,b,c,d],X).
X =4

GM (Institute of Computer Science @ UIBK) Logic Programming

