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Summary of Last Lecture

Summary of Last Lecture

Definitions
• SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence G0,G1,G2, . . . of goal clauses

2 sequence C0,C1,C2, . . . of variants of rules in P

3 sequence θ0, θ1, θ2, . . . of substitutions

such that
• G0 = G

• Gi+1 is resolvent of Gi and Ci with mgu θi

• Ci has no variables in common with G ,C0, . . . ,Ci−1

• SLD-refutation is finite SLD-derivation ending in 2

• computed answer substitution of SLD-refutation of P and G with
substitutions θ0, θ1, . . . , θm is restriction of θ0θ1 · · · θm to variables
in G
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Summary of Last Lecture

Definitions
• an interpretation is a subset of the Herbrand base

• an interpretation I is a model if it is closed under rules:

∀A← B1, . . . ,Bn A ∈ I , if B1, . . . ,Bn ∈ I

• the minimal model of P is the intersection of all models; the
minimal model is unique

Definition

the declarative semantics of P (aka its meaning) is the minimal model
of P
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• an interpretation I is a model if it is closed under rules:

∀A← B1, . . . ,Bn A ∈ I , if B1, . . . ,Bn ∈ I

• the minimal model of P is the intersection of all models; the
minimal model is unique

Definition

the declarative semantics of P (aka its meaning) is the minimal model
of P

Definitions

the operational semantics describes the meaning of a program
procedurally
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Summary of Last Lecture

Definitions
• an interpretation is a subset of the Herbrand base

• an interpretation I is a model if it is closed under rules:

∀A← B1, . . . ,Bn A ∈ I , if B1, . . . ,Bn ∈ I

• the minimal model of P is the intersection of all models; the
minimal model is unique

Definition

the declarative semantics of P (aka its meaning) is the minimal model
of P

Definition

the denotational semantics assign meanings to programs based on
associating with the program a function over the domain computed by
the program
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Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure Prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming 72/1



Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure Prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming 72/1



The Execution Model of Prolog

The Execution Model of Prolog

One Choice

goal in sequence of goals – any choice will do

2 rule in logic program

substitution – avoid choice by always taking mgu

Execution
• Prolog programs are executed using SLD resolution

• leftmost and topdown selection

• depth-first search with backtracking

• unification without occur check

GM (Institute of Computer Science @ UIBK) Logic Programming 73/1



The Execution Model of Prolog

The Execution Model of Prolog

One Choice

goal in sequence of goals – any choice will do

2 rule in logic program

substitution – avoid choice by always taking mgu

Execution
• Prolog programs are executed using SLD resolution

• leftmost and topdown selection

• depth-first search with backtracking

• unification without occur check

GM (Institute of Computer Science @ UIBK) Logic Programming 73/1



The Execution Model of Prolog

Prolog Mode for Emacs

Bruda’s Prolog Mode

1 goto http://bruda.ca/emacs/prolog_mode_for_emacs

2 download prolog.el, compile and put into sub-directory site-lisp

3 put the following into .emacs:

( au to l oad ’ run−pro log ” p r o l o g ”
” S t a r t a Pro log sub−process . ” t )

( au to l oad ’ prolog−mode ” p r o l o g ”
”Major mode f o r e d i t i n g Pro log programs . ” t )

( s e t q pro log−system ’ sw i )
( s e t q auto−mode−al i st

( cons ( cons ” \\ . p l ” ’ prolog−mode ) auto−mode−al i st ) )
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Comparison to Conventional Programming Languages

Comparison to Conventional Programming Languages

Fact

a programming language is characterised by its control and data manipu-
lation mechanisms

Control

A← B1, . . . ,Bn

procedure A
call B1

call B2
...
call Bn

end

Observations

1 goal invocation corresponds to procedure invocation

2 differences show when backtracking occurs
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Comparison to Conventional Programming Languages

Data Structures

1 data structures manipulated by logic programs (= terms) correspond
to general record structures

2 like LISP, Prolog is a declaration free, typeless language

3 Prolog does not support destructive assignment where the content
of the initialised variable can change

Data Manipulation

1 data manipulation is achieved via unification

2 unification subsumes
• single assignment
• parameter passing
• record allocation
• read/write-once field access in records
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Rule Order

Rule Order

Observation

The rule order determines the order in which solutions are found

Example

parent(terach,abraham). parent(abraham,isaac).

parent(isaac,jakob). parent(jakob,benjamin).

ancestor(X,Y) ← parent(X,Y).

ancestor(X,Z) ← parent(X,Y), ancestor(Y,Z).

Example

append([X|Xs],Ys,[X|Zs]) ← append([],Ys,Ys).

append(Xs,Ys,Zs). append([X|Xs],Ys,[X|Zs]) ←
append([],Ys,Ys). append(Xs,Ys,Zs).
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Termination

Example

is list([]). is list([X|Xs]) ← is list(Xs).

Definitions
• a list is complete if every instances satisfies the above type for lists

• otherwise it is incomplete

Example

• the lists [a,b,c] and [a,X,c] are complete

• the list [a,b|Xs] is not

Definition

a domain is a set of goals closed under the instance relation
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Termination

Termination

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition

a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example

consider adding married/2 to the family database, and the following
“obvious” closure under commutativity:

married(X,Y) ← married(Y,X).

NB: recursive rules which have the recursive goal as the first goal in the
body are called left recursive

GM (Institute of Computer Science @ UIBK) Logic Programming 79/1



Termination

Termination

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition

a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example

consider adding married/2 to the family database, and the following
“obvious” closure under commutativity:

married(X,Y) ← married(Y,X).

NB: recursive rules which have the recursive goal as the first goal in the
body are called left recursive

GM (Institute of Computer Science @ UIBK) Logic Programming 79/1



Termination

Termination

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition

a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example

consider adding married/2 to the family database, and the following
“obvious” closure under commutativity:

married(X,Y) ← married(Y,X).

NB: recursive rules which have the recursive goal as the first goal in the
body are called left recursive

GM (Institute of Computer Science @ UIBK) Logic Programming 79/1



Termination

Termination

Observation

Prolog may fail to find a solution to a goal, even though the goal has a
finite computation

Definition

a termination domain of a program P is a domain D such that P
terminates on all goals in D

Example

consider adding married/2 to the family database, and the following
“obvious” closure under commutativity:

married(X,Y) ← married(Y,X).

NB: recursive rules which have the recursive goal as the first goal in the
body are called left recursive

GM (Institute of Computer Science @ UIBK) Logic Programming 79/1



Termination

Example

are married(X,Y) ← married(X,Y).

are married(X,Y) ← married(Y,X).

Example

consider append/3, where the fact comes after the rule

1 append terminates if the first argument is a complete list

2 append terminates if the third argument is complete

3 append terminates iff the first or third argument is complete

Proof of the First Fact.
• consider generic call: ← append(Xs,Ys,Zs),

where Xs is complete list; define ‖← append(Xs,Ys,Zs)‖ = ‖Xs‖
• ‖G‖ decreases in every successor node of goal G in the SLD tree
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Goal Order

Goal Order

Observation

Goal order determines the SLD tree

Example

grandparent(X,Z) ← parent(X,Y), parent(Y,Z).

grandparent2(X,Z) ← parent(Y,Z), parent(X,Y).

Example

reverse([X|Xs],Zs) ← reverse(Xs,Ys), append(Ys,[X],Zs).

reverse([],[]).

Example

sublist(Xs,AsXsBs) ←
append(As,Xs,AsXs), append(AsXs,Bs,AsXsBs).
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Redundant Solutions

Redundant Solutions

Example

minimum(N1,N2,N1) ← N1 6 N2.

minimum(N1,N2,N2) ← N2 6 N1.

← minium(2,2,M)

Example

minimum(N1,N2,N1) ← N1 6 N2.

minimum(N1,N2,N2) ← N2 < N1.

Observation

similar care is necessary with the definition of partition, etc.
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Redundant Solutions

Example

member(X,[X|Xs]).

member(X,[Y|Xs]) ← member(X,Xs).

?- member(X,[a,b,a]).

X 7→ a

;

X 7→ b ;

X 7→ a ;

false

Example

member check(X,[X|Xs]).

member check(X,[Y|Ys]) ← X 6= Y, member check(X,Ys).
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Recursive Programming in Pure Prolog

Recursive Programming in Pure Prolog
Fact

some care is necessary in pruning the search tree

Example

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Zs]) ← select(X,Ys,Zs).

Example

select first(X,[X|Xs],Xs).

select first(X,[Y|Ys],[Y|Zs]) ← X 6= Y, select first(X,Ys,Zs).

Observation

select(a,[a,b,a,c],[a,b,c]) is in the meaning of the 1st program;
select first(a,[a,b,a,c],[a,b,c]) is not in the meaning of the 2nd
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Recursive Programming in Pure Prolog

Example

members([X|Xs],Ys) ← member(X,Ys), members(Xs,Ys).

members([],Ys).

Example

selects([X|Xs],Ys) ← select(X,Ys,Ys1), selects(Xs,Ys1).

selects([],Ys).

Observations

1 members/2 ignores the multiplicity of elements

2 members/2 terminates iff 1st argument is complete

3 the first restriction is lifted, the second altered with selects/2

4 selects/2 terminates iff 2nd argument is complete
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Recursive Programming in Pure Prolog

Example

% no doub l e s (Xs , Ys ) <−−
% Ys i s the l i s t ob t a i n ed by removing d u p l i c a t e
% e l ement s from the l i s t Xs

Example

non member(X,[Y|Ys]) ← X 6= Y, non member(X,Ys).

non member(X,[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
non member(X,Xs), no doubles(Xs,Ys).

no doubles([],[]).
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Example
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Built-in Predicates for List Manipulation

Built-in Predicates for List Manipulation

• append/3

• member/2

• last/2

?- last([a,b,c,d],X).

?- last(X,a).

X = d

X = [a] ;

X = [ G324,a] ;

X = [ G324, G327,a]

• reverse/2

?- reverse([a,b,c,d],X).

X = [d,c,b,a]

• select/3

?- select(b,[a,b,c,d],X).

?- select(b,[a,b,c,b,d],X).

X = [a,c,d]

X = [a,c,b,d]

• length/2

?- length([a,b,c,d],X).

X = 4
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