Logic Programming

Georg Moser

Institute of Computer Science @ UIBK
Summer 2015

Summary of Last Lecture

Definitions

- SLD-derivation of logic program P and goal clause G consists of

1 maximal sequence $G_{0}, G_{1}, G_{2}, \ldots$ of goal clauses
2 sequence $C_{0}, C_{1}, C_{2}, \ldots$ of variants of rules in P
3 sequence $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$ of substitutions
such that

- $G_{0}=G$
- G_{i+1} is resolvent of G_{i} and C_{i} with mgu θ_{i}
- C_{i} has no variables in common with $G, C_{0}, \ldots, C_{i-1}$
- SLD-refutation is finite SLD-derivation ending in \square
- computed answer substitution of SLD-refutation of P and G with substitutions $\theta_{0}, \theta_{1}, \ldots, \theta_{m}$ is restriction of $\theta_{0} \theta_{1} \cdots \theta_{m}$ to variables in G

Definitions

- an interpretation is a subset of the Herbrand base
- an interpretation I is a model if it is closed under rules:

$$
\forall A \leftarrow B_{1}, \ldots, B_{n} \quad A \in I \text {, if } B_{1}, \ldots, B_{n} \in I
$$

- the minimal model of P is the intersection of all models; the minimal model is unique

Definition

the declarative semantics of P (aka its meaning) is the minimal model of P

Definitions

- an interpretation is a subset of the Herbrand base
- an interpretation I is a model if it is closed under rules:

$$
\forall A \leftarrow B_{1}, \ldots, B_{n} \quad A \in I \text {, if } B_{1}, \ldots, B_{n} \in I
$$

- the minimal model of P is the intersection of all models; the minimal model is unique

Definition

the declarative semantics of P (aka its meaning) is the minimal model of P

Definitions

the operational semantics describes the meaning of a program procedurally

Definitions

- an interpretation is a subset of the Herbrand base
- an interpretation I is a model if it is closed under rules:

$$
\forall A \leftarrow B_{1}, \ldots, B_{n} \quad A \in I \text {, if } B_{1}, \ldots, B_{n} \in I
$$

- the minimal model of P is the intersection of all models; the minimal model is unique

Definition

the declarative semantics of P (aka its meaning) is the minimal model of P

Definition

the denotational semantics assign meanings to programs based on associating with the program a function over the domain computed by the program

Outline of the Lecture

Logic Programs
introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language
programming in pure Prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Outline of the Lecture

Logic Programs
introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language
programming in pure Prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

The Execution Model of Prolog

One Choice
goal in sequence of goals - any choice will do
2 rule in logic program
substitution - avoid choice by always taking mgu

The Execution Model of Prolog

One Choice goal in sequence of goals - any choice will do
2 rule in logic program
substitution - avoid choice by always taking mgu

Execution

- Prolog programs are executed using SLD resolution
- leftmost and topdown selection
- depth-first search with backtracking
- unification without occur check

Prolog Mode for Emacs

Bruda's Prolog Mode

1 goto http://bruda.ca/emacs/prolog_mode_for_emacs
2 download prolog.el, compile and put into sub-directory site-lisp
3 put the following into .emacs:

```
(autoload 'run-prolog "prolog"
    "Start」a」Prolog sub-process." t)
(autoload 'prolog-mode "prolog"
    "Major_mode_for_editing_Prolog_programs." t)
(setq prolog-system 'swi)
(setq auto-mode-alist
    (cons (cons " \\.pl" 'prolog-mode) auto-mode-alist))
```


Comparison to Conventional Programming Languages

Fact
a programming language is characterised by its control and data manipulation mechanisms

Comparison to Conventional Programming Languages

Fact

a programming language is characterised by its control and data manipulation mechanisms

Control
procedure A
call B_{1}
call B_{2}
\vdots
end
call B_{n}

Comparison to Conventional Programming Languages

Fact

a programming language is characterised by its control and data manipulation mechanisms

Control
procedure A
call B_{1}
call B_{2}
\vdots
end
call B_{n}
$A \leftarrow B_{1}, \ldots, B_{n}$
end

Observations
1 goal invocation corresponds to procedure invocation
2 differences show when backtracking occurs

Data Structures

1 data structures manipulated by logic programs (= terms) correspond to general record structures
2 like LISP, Prolog is a declaration free, typeless language
3 Prolog does not support destructive assignment where the content of the initialised variable can change

Data Structures

1 data structures manipulated by logic programs (= terms) correspond to general record structures
2 like LISP, Prolog is a declaration free, typeless language
3 Prolog does not support destructive assignment where the content of the initialised variable can change

Data Manipulation

1 data manipulation is achieved via unification
2 unification subsumes

- single assignment
- parameter passing
- record allocation
- read/write-once field access in records

Rule Order

Observation

The rule order determines the order in which solutions are found

Rule Order

Observation

The rule order determines the order in which solutions are found

Example

parent (terach, abraham).
parent(abraham,isaac). parent(isaac,jakob). parent(jakob,benjamin).

```
ancestor(X,Y) \leftarrow parent(X,Y).
ancestor (X,Z) \leftarrow parent(X,Y), ancestor(Y,Z).
```


Example

```
append([X|Xs],Ys,[X|Zs]) \leftarrow
        append(Xs,Ys,Zs).
append([],Ys,Ys).
append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) \leftarrow
    append(Xs,Ys,Zs).
```


Example is_list([]). is_list([X|Xs]) \leftarrow is_list(Xs).

Definitions

- a list is complete if every instances satisfies the above type for lists
- otherwise it is incomplete

Example is_list([]). is_list([X|Xs]) \leftarrow is_list(Xs).

Definitions

- a list is complete if every instances satisfies the above type for lists
- otherwise it is incomplete

Example

- the lists [a,b,c] and [a, X, c] are complete
- the list $[\mathrm{a}, \mathrm{b} \mid \mathrm{Xs}$] is not

Example is_list([]). is_list([X|Xs]) \leftarrow is_list(Xs).

Definitions

- a list is complete if every instances satisfies the above type for lists
- otherwise it is incomplete

Example

- the lists [a,b,c] and [a, X, c] are complete
- the list [a,b|Xs] is not

Definition
a domain is a set of goals closed under the instance relation

Termination

Observation
Prolog may fail to find a solution to a goal, even though the goal has a finite computation

Termination

Observation
Prolog may fail to find a solution to a goal, even though the goal has a finite computation

Definition

a termination domain of a program P is a domain D such that P terminates on all goals in D

Termination

Observation
Prolog may fail to find a solution to a goal, even though the goal has a finite computation

Definition

a termination domain of a program P is a domain D such that P terminates on all goals in D

Example

consider adding married/2 to the family database, and the following "obvious" closure under commutativity:

```
married(X,Y) \leftarrow married(Y,X).
```


Termination

Observation
Prolog may fail to find a solution to a goal, even though the goal has a finite computation

Definition

a termination domain of a program P is a domain D such that P terminates on all goals in D

Example

consider adding married/2 to the family database, and the following "obvious" closure under commutativity:
$\operatorname{married}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{married}(\mathrm{Y}, \mathrm{X})$.
NB: recursive rules which have the recursive goal as the first goal in the body are called left recursive

Example

```
are_married(X,Y) \leftarrow married(X,Y).
are_married(X,Y) \leftarrow married(Y,X).
```


Example

```
are_married(X,Y) \leftarrow married(X,Y).
are_married(X,Y) \leftarrow married(Y,X).
```


Example

consider append/3, where the fact comes after the rule

Example

```
are_married(X,Y) \leftarrow married(X,Y).
are_married(X,Y) \leftarrow married(Y,X).
```


Example

consider append/3, where the fact comes after the rule
1 append terminates if the first argument is a complete list

Example

```
are_married(X,Y) \leftarrow married(X,Y).
are_married(X,Y) \leftarrow married(Y,X).
```


Example

consider append/3, where the fact comes after the rule
1 append terminates if the first argument is a complete list
2 append terminates if the third argument is complete

Example

```
are_married(X,Y) \leftarrow married(X,Y).
are_married(X,Y) \leftarrow married(Y,X).
```


Example

consider append/3, where the fact comes after the rule
1 append terminates if the first argument is a complete list
2 append terminates if the third argument is complete
3 append terminates iff the first or third argument is complete

Example

```
are_married(X,Y) \leftarrow married(X,Y).
are_married(X,Y) \leftarrow married(Y,X).
```


Example

consider append/3, where the fact comes after the rule
1 append terminates if the first argument is a complete list
2 append terminates if the third argument is complete
3 append terminates iff the first or third argument is complete

Proof of the First Fact.

- consider generic call: \leftarrow append (Xs,Ys,Zs), where Xs is complete list; define $\|\leftarrow \operatorname{append}(\mathrm{Xs}, \mathrm{Ys}, \mathrm{Zs})\|=\|\mathrm{Xs}\|$
- \|G\| decreases in every successor node of goal G in the SLD tree

Goal Order

Observation
Goal order determines the SLD tree

Goal Order

Observation

Goal order determines the SLD tree

Example

$$
\begin{aligned}
& \text { grandparent }(X, Z) \leftarrow \operatorname{parent}(X, Y), \operatorname{parent}(Y, Z) . \\
& \text { grandparent } 2(X, Z) \leftarrow \operatorname{parent}(Y, Z), \operatorname{parent}(X, Y) .
\end{aligned}
$$

Goal Order

Observation

Goal order determines the SLD tree

Example
grandparent $(X, Z) \leftarrow \operatorname{parent}(X, Y), \operatorname{parent}(Y, Z)$. grandparent2 $(X, Z) \leftarrow \operatorname{parent}(Y, Z), \operatorname{parent}(X, Y)$.

Example

```
reverse([X|Xs],Zs) \leftarrow reverse(Xs,Ys), append(Ys,[X],Zs).
reverse([],[]).
```


Goal Order

Observation

Goal order determines the SLD tree

Example

grandparent $(X, Z) \leftarrow \operatorname{parent}(X, Y), \operatorname{parent}(Y, Z)$. grandparent2 $(X, Z) \leftarrow \operatorname{parent}(Y, Z), \operatorname{parent}(X, Y)$.

Example

```
reverse([X|Xs],Zs) \leftarrow reverse(Xs,Ys), append(Ys,[X],Zs).
reverse([],[]).
```


Example

```
sublist(Xs,AsXsBs) \leftarrow
    append(AsXs,Bs,AsXsBs), append(As,Xs,AsXs).
```


Goal Order

Observation

Goal order determines the SLD tree

Example

grandparent $(X, Z) \leftarrow \operatorname{parent}(X, Y), \operatorname{parent}(Y, Z)$. grandparent2 $(X, Z) \leftarrow \operatorname{parent}(Y, Z), \operatorname{parent}(X, Y)$.

Example

```
reverse([X|Xs],Zs) \leftarrow reverse(Xs,Ys), append(Ys,[X],Zs).
reverse([],[]).
```

Example
sublist (Xs,AsXsBs) \leftarrow
append (As,Xs,AsXs), append(AsXs,Bs,AsXsBs).
\square

\qquad

—
\square -

\square

\qquad

.

Redundant Solutions

Example

\leftarrow minium $(2,2, M)$
Example
$\leftarrow \operatorname{minium}(2,2, M)$

$$
\begin{aligned}
& \operatorname{minimum}\left(N_{1}, N_{2}, N_{1}\right) \leftarrow N_{1} \leqslant N_{2} \\
& \operatorname{minimum}\left(N_{1}, N_{2}, N_{2}\right) \leftarrow N_{2} \leqslant N_{1}
\end{aligned}
$$ \rightarrow

```
\[
\begin{aligned}
& \operatorname{minimum}\left(N_{1}, N_{2}, N_{1}\right) \leftarrow N_{1} \leqslant N_{2} \\
& \operatorname{minimum}\left(N_{1}, N_{2}, N_{2}\right) \leftarrow N_{2}<N_{1}
\end{aligned}
\]
Example
M
```


$=$

(

Redundant Solutions

```
Example
minimum}(\mp@subsup{N}{1}{},\mp@subsup{N}{2}{},\mp@subsup{N}{1}{})\leftarrow\mp@subsup{N}{1}{}\leqslant\mp@subsup{N}{2}{}
minimum}(\mp@subsup{N}{1}{},\mp@subsup{N}{2}{},\mp@subsup{N}{2}{})\leftarrow\mp@subsup{N}{2}{}\leqslant\mp@subsup{N}{1}{}
\leftarrow \mp@code { m i n i u m ( 2 , 2 , M ) }
```

```
Example
minimum \(\left(N_{1}, N_{2}, N_{1}\right) \leftarrow N_{1} \leqslant N_{2}\).
minimum \(\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{2}\right) \leftarrow \mathrm{N}_{2}<\mathrm{N}_{1}\).
```


Observation

similar care is necessary with the definition of partition, etc.

member $(\mathrm{X},[\mathrm{X} \mid \mathrm{Xs}])$.
member $(\mathrm{X},[\mathrm{Y} \mid \mathrm{Xs}]) \leftarrow$ member $(\mathrm{X}, \mathrm{Xs})$.
Institute of Computer Science © UIBK;

$\mathrm{X},[\mathrm{X} \mid \mathrm{Xs}])$.
$\mathrm{X},[\mathrm{Y} \mid \mathrm{Xs}]) \leftarrow$ member $(\mathrm{X}, \mathrm{Xs})$.

Logic Programming
$\mathrm{X},[\mathrm{X} \mid \mathrm{Xs}]) \cdot$
$\mathrm{X},[\mathrm{Y} \mid \mathrm{Xs}]) \leftarrow$ member $(\mathrm{X}, \mathrm{Xs}) \cdot$
83 ?
\qquad
\qquad

Solutions
ample
bur $(X,[X \mid X s])$.
$\operatorname{ber}(X,[Y \mid X s]) \leftarrow \operatorname{member}(X, X s)$


```
member \((\mathrm{X},[\mathrm{Y} \mid \mathrm{Xs}]) \leftarrow\) member \((\mathrm{X}, \mathrm{Xs})\).member \((X,[Y \mid X s]) \leftarrow\) member \((X, X s)\).
\mapsto a
member(X,[Y|Xs]) \leftarrow member (X,Xs).
(R)
```

```
```

```

```

```
\(\qquad\)
```

 M,
    ```



```

 *
    ```

member ( \(\mathrm{X},[\mathrm{X} \mid \mathrm{Xs}]\) ).

?- member (X, \([\mathrm{a}, \mathrm{b}, \mathrm{a}])\).

\(\mathrm{X} \mapsto \mathrm{a}\)

\[
\mathrm{X} \mapsto \mathrm{a}
\]
,
,
,
- member (X, [a, b, a]).
- member (X, [a, b, a]).
- member (X, [a, b, a]).
\(\mathrm{X} \mapsto \mathrm{a}\)
\(\mathrm{X} \mapsto \mathrm{a}\)
\(\mathrm{X} \mapsto \mathrm{a}\)
member (X, \(\mathrm{X} \mid \mathrm{Xs}]\) )
member (X, \(\mathrm{X} \mid \mathrm{Xs}]\) )
member (X, \(\mathrm{X} \mid \mathrm{Xs}]\) )


 .....  .....  ..... 


-stitute of Computer Science @ UIBK,
0\(\square\)T(
\(\qquad\)
\(\qquad\)



\author{
 \\ }

-

\begin{abstract}
\begin{abstract}
\begin{abstract}
\begin{abstract}
\begin{abstract}
\begin{abstract}


\end{abstract}
\end{abstract}
\end{abstract}
\end{abstract}
\end{abstract}
\end{abstract}

    member \((X,[\mathrm{a}, \mathrm{b}, \mathrm{a}])\).
\(\mapsto \mathrm{a} ;\)
\(\mapsto \mathrm{b} ;\)
\(\mapsto \mathrm{a} ;\)
alse
Ltitute of Computer Science @ UIBK;

        



    -
\(\qquad\)
\(\qquad\)

```

Example
member(X,[X|Xs]).
member(X,[Y|Xs])}\leftarrow\mathrm{ member(X,Xs).
?- member(X,[a,b,a]).
X \mapsto a ;
X \mapsto b ;
X \mapsto a ;
false

```

\section*{Example}
member_check(X,[X|Xs]). member_check \((X,[Y \mid Y s]) \leftarrow X \neq Y\), member_check(X,Ys).

\title{
Recursive Programming in Pure Prolog
}

\section*{Fact}
some care is necessary in pruning the search tree

\section*{Recursive Programming in Pure Prolog}

\section*{Fact}
some care is necessary in pruning the search tree

\section*{Example}
```

select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) \leftarrow select(X,Ys,Zs).

```

\section*{Recursive Programming in Pure Prolog}

\section*{Fact}

\section*{some care is necessary in pruning the search tree}
```

Example
select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) \leftarrow select(X,Ys,Zs).

```

Example
```

select_first(X,[X|Xs],Xs).
select_first(X,[Y|Ys],[Y|Zs]) \leftarrow X \not= Y, select_first(X,Ys,Zs).

```

\section*{Recursive Programming in Pure Prolog}

\section*{Fact}
some care is necessary in pruning the search tree
```

Example
select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) \leftarrow select(X,Ys,Zs).

```

Example
```

select_first(X,[X|Xs],Xs).
select_first(X,[Y|Ys],[Y|Zs]) \leftarrow X \not= Y, select_first(X,Ys,Zs).

```

Observation
select ( \(a,[a, b, a, c],[a, b, c]\) ) is in the meaning of the 1st program; select_first ( \(a,[a, b, a, c],[a, b, c]\) ) is not in the meaning of the 2nd \\ \section*{\section*{Example
members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) membe
members \(([], \mathrm{Ys})\).
GM（Institute of Computer Science © UIBK）
IC \\ \section*{\section*{Example
members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) membe
members \(([], \mathrm{Ys})\).
GM（Institute of Computer Science © UIBK）
IC \\ \\ \\ members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow \operatorname{member}(\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys})\) ．
members \(([], \mathrm{Ys})\).
Institute of Computer Science＠UIBK）
Logic Programming
\(85 / 1\) \\ \\ \\ members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow \operatorname{member}(\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys})\) ．
members \(([], \mathrm{Ys})\).
Institute of Computer Science＠UIBK）
Logic Programming
\(85 / 1\) \\ \\ \\ Example
members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) membe
members \(([], \mathrm{Ys})\) ．
GM（Institute of Computer Science © UIBK） \\ \\ \\ Example
members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) membe
members \(([], \mathrm{Ys})\) ．
GM（Institute of Computer Science © UIBK） \\ \\ \\ Sire Prolog \\ \\ \\ Sire Prolog \\ \\ \\ members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) member \((\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys})\) ．
members \(([], \mathrm{Ys})\).
Logic Programming \\ \\ \\ members \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) member \((\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys})\) ．
members \(([], \mathrm{Ys})\).
Logic Programming \\ \\ \\  \\ \\ \\  \\ \\ \\ \begin{tabular}{l}
\(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) member \((\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys}) \cdot\) \\
\(([], \mathrm{Ys})\). \\
Logic Programming \\
\hline
\end{tabular} \\ \\ \\ \begin{tabular}{l}
\(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) member \((\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys}) \cdot\) \\
\(([], \mathrm{Ys})\). \\
Logic Programming \\
\hline
\end{tabular} \\ \\ \\  \\ \\ \\  \\ \\ \\ \begin{tabular}{l} 
s \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) member \((\mathrm{X}, \mathrm{Ys}), \operatorname{members}(\mathrm{Xs}, \mathrm{Ys})\). \\
\hline[]\(, \mathrm{Ys})\). \\
Logic Programming
\end{tabular} \\ \\ \\ \begin{tabular}{l} 
s \(([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow\) member \((\mathrm{X}, \mathrm{Ys}), \operatorname{members}(\mathrm{Xs}, \mathrm{Ys})\). \\
\hline[]\(, \mathrm{Ys})\). \\
Logic Programming
\end{tabular} \\ \\ \\ \([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow \operatorname{member}(\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys})\).
[]\(, \mathrm{Ys})\).
Logic Programming
muter Science＠UlBK
\(85 / 1\) \\ \\ \\ \([\mathrm{X} \mid \mathrm{Xs}], \mathrm{Ys}) \leftarrow \operatorname{member}(\mathrm{X}, \mathrm{Ys})\), members \((\mathrm{Xs}, \mathrm{Ys})\).
[]\(, \mathrm{Ys})\).
Logic Programming
muter Science＠UlBK
\(85 / 1\) \\ \\ \\ 萺 \\ \\ \\ 萺 \\ \\ \\ 萺 \\ \\ ．} \\ \\ ．}

\section*{Example}
```

members([X|Xs],Ys) \leftarrow member(X,Ys), members(Xs,Ys).
members([],Ys).

```

\section*{Example}
```

selects([X|Xs],Ys) \leftarrow select(X,Ys,Ys1), selects(Xs,Ys1).
selects([],Ys).

```

\section*{Example}
```

members([X|Xs],Ys) \leftarrow member(X,Ys), members(Xs,Ys).
members([],Ys).

```

\section*{Example}
```

selects([X|Xs],Ys) \leftarrow select(X,Ys,Ys1), selects(Xs,Ys1).
selects([],Ys).

```

Observations
1 members/2 ignores the multiplicity of elements
2 members/2 terminates iff 1st argument is complete
3 the first restriction is lifted, the second altered with selects/2
4 selects/2 terminates iff 2 nd argument is complete

\section*{Example}
\begin{tabular}{lc} 
\% & no_doubles \((X s, Y s)<-\) \\
\(\%\) & \(Y s\) is the list obtained by removing duplicate \\
\(\%\) & elements from the list \(X s\)
\end{tabular}

\section*{Example}
```

\% no_doubles(Xs,Ys) <--
\% \quad Ys is the list obtained by removing duplicate
\% elements from the list Xs

```

\section*{Example}
non_member \((X,[Y \mid Y s]) \leftarrow X \neq Y\), non_member \((X, Y s)\). non member ( \(\mathrm{X},[\mathrm{l}\) ).

\section*{Example}
\% no_doubles(Xs, Ys) <--
\% \(\quad\) Ys is the list obtained by removing duplicate \% elements from the list Xs

\section*{Example}
```

non_member(X,[Y|Ys]) \leftarrow X \not= Y, non_member(X,Ys).
non_member(X,[]).
no_doubles([X|Xs],Ys) \leftarrow
member(X,Xs), no_doubles(Xs,Ys).
no_doubles([X|Xs],[X|Ys]) \leftarrow
non_member(X,Xs), no_doubles(Xs,Ys).
no_doubles([],[]).

```

Built-in Predicates for List Manipulation
- append/3
- member/2

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{aligned}
& ?-\quad \operatorname{last}([a, b, c, d], X) . \\
& X=d
\end{aligned}
\]

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{aligned}
& ?-\quad \text { last }([a, b, c, d], X) . \\
& X=-\quad \text { ? last }(X, a) .
\end{aligned}
\]

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{array}{ll}
?-\operatorname{last}([\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}], \mathrm{X}) . & ?-\operatorname{last}(\mathrm{X}, \mathrm{a}) \\
\mathrm{X}=\mathrm{d} & \mathrm{X}=[\mathrm{a}]
\end{array}
\]

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{array}{ll}
?-\operatorname{last}([a, b, c, d], X) . & ?-\operatorname{last}(X, a) . \\
X=d & X=[a] ; \\
& X=\left[\_G 324, a\right]
\end{array}
\]

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{array}{ll}
?-\quad \operatorname{last}([a, b, c, d], X) . & ?-\operatorname{last}(X, a) . \\
X=d & X=[a] ; \\
& X=\left[\_G 324, a\right] ; \\
& X=\left[\_G 324, \quad G 327, a\right]
\end{array}
\]

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{array}{ll}
?-\quad \operatorname{last}([a, b, c, d], X) . & ?-\operatorname{last}(X, a) . \\
X=d & X=[a] ; \\
& X=\left[\_G 324, a\right] ; \\
& X=\left[\_G 324, \quad G 327, a\right]
\end{array}
\]
- reverse/2

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{aligned}
& ?-\quad \text { last }([a, b, c, d], X) . \\
& X=d
\end{aligned}
\]
- reverse/2
\[
\begin{aligned}
& \text { ?- last }(X, a) . \\
& X=[a] ; \\
& X=\left[\_G 324, a\right] ; \\
& \text { X }=[\text { [G324,_G327, a] }
\end{aligned}
\]
- select/3
\[
\begin{aligned}
& ?-\quad \operatorname{select}(b,[a, b, c, d], X) . \\
& X=[a, c, d]
\end{aligned}
\]

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{aligned}
& ?-\quad \text { last }([a, b, c, d], X) . \\
& X=d
\end{aligned}
\]
- reverse/2
\[
\begin{aligned}
& ?-\operatorname{reverse}([a, b, c, d], X) . \\
& X=[d, c, b, a]
\end{aligned}
\]
- select/3
\[
\begin{array}{ll}
?-\quad \operatorname{select}(b,[a, b, c, d], X) . & ?-\operatorname{select}(b,[a, b, c, b, d], X) . \\
X=[a, c, d] & X=[a, c, b, d]
\end{array}
\]
\[
\begin{aligned}
& ?-\quad \text { last }(X, a) . \\
& X=[a] ; \\
& X=\left[\_G 324, a\right] ; \\
& X=\left[\_G 324, \quad\right. \text { G327, a] }
\end{aligned}
\]

\section*{Built-in Predicates for List Manipulation}
- append/3
- member/2
- last/2
\[
\begin{aligned}
& ?-\quad \text { last }([a, b, c, d], X) . \\
& X=d
\end{aligned}
\]
- reverse/2
\[
\begin{aligned}
& ?-\operatorname{reverse}([a, b, c, d], X) . \\
& X=[d, c, b, a]
\end{aligned}
\]
- select/3
\[
\begin{array}{ll}
?-\quad \operatorname{select}(b,[a, b, c, d], X) . & ?-\operatorname{select}(b,[a, b, c, b, d], X) . \\
X=[a, c, d] & X=[a, c, b, d]
\end{array}
\]
\[
\begin{aligned}
& ?-\quad \text { last }(X, a) . \\
& X=[a] ; \\
& X=\left[\_G 324, a\right] ; \\
& X=\left[\_G 324, \quad\right. \text { G327, a] }
\end{aligned}
\]
- length/2
\[
\begin{aligned}
& \text { ?- length }([a, b, c, d], X) . \\
& X=4
\end{aligned}
\]```

