

Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

Summary of Last Lecture

Execution

- Prolog programs are executed using SLD resolution
 - leftmost and topdown selection
 - depth-first search with backtracking
- unification without occur check

Some Observations

- **1** goal invocation corresponds to procedure invocation
- 2 differences show when backtracking occurs
- 3 like LISP, Prolog is a declaration free, typeless language
- 4 data manipulation is achieved via unification

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Arithmetic

Numbers

- integers
- floating point numbers

Arithmetic

Numbers

- integers
- floating point numbers

Definition

Prolog provides an arithmetical interface

Value is Expression

Arithmetic

Numbers

- integers
- floating point numbers

Definition

Prolog provides an arithmetical interface

Value is Expression

Example			
X is 3+5	8 is 3+5	N is N+1	
$X \mapsto 8$	false	nonsensical	

• + - * // (integer division) / (float division)

• + - * // (integer division) / (float division)

• • • •

• • • •

Arithmetic Comparison Relations

• • • •

Arithmetic Comparison Relations

• < =< > >= ?- 3 > 2.

true

• • • •

Arithmetic Comparison Relations

?- 3 > X. ERROR: >/2: Arguments are not sufficiently instantiated

• • • •

Arithmetic Comparison Relations

• =:= (equality)

• • • •

Arithmetic Comparison Relations

$$?-1+2 = 3.$$

false

• • • •

Arithmetic Comparison Relations

true

• • • •

Arithmetic Comparison Relations

- < =< > >=
- =:= (equality)
- =\= (disequality)

• • • •

Arithmetic Comparison Relations

false

• • • •

Arithmetic Comparison Relations

false

• • • •

Arithmetic Comparison Relations

false

Non Standard Predicates

- between(Low, High, Value) is true when
 - **1** Value is an integer, and $Low \leq Value \leq High$
 - **2** Value is a variable, and Value \in [Low, High]

• • • •

Arithmetic Comparison Relations

false

Non Standard Predicates

- between(Low, High, Value) is true when
 - **1** Value is an integer, and $Low \leq Value \leq High$
 - **2** Value is a variable, and Value \in [Low, High]

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
```

```
times(s(N),F1,F).
```

```
Example (Factorials)
factorial(0,s(0)).
```

```
factorial((N),F) \leftarrow
factorial(N,F1),
times((N),F1,F).
```

```
factorial(N,F) ←
N>0, N1 is N-1,
factorial(N1,F1),
F is N * F1.
factorial(0,1).
```

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
times(s(N),F1,F).
```

```
factorial(N,F) \leftarrow
N>0, N1 is N-1,
factorial(N1,F1),
F is N * F1.
factorial(0,1).
```

```
fibonacci(0,1).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    fibonacci(N-1,Y),
    fibonacci(N-2,Z),
    X = Y+Z.
?- fibonacci(3,X).
```

```
false
```

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
times(s(N),F1,F).
```

```
factorial(N,F) ←
    N>0, N1 is N-1,
    factorial(N1,F1),
    F is N * F1.
factorial(0,1).
```

```
fibonacci(0,1).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    fibonacci(N-1,Y),
    fibonacci(N-2,Z),
    X = Y+Z.
?- fibonacci(3,X).
```

```
false
```

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
times(s(N),F1,F).
```

```
factorial(N,F) \leftarrow
N>0, N1 is N-1,
factorial(N1,F1),
F is N * F1.
factorial(0,1).
```

```
fibonacci(0,1).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X = Y+Z.
```

```
?- fibonacci(3,X).
```

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
times(s(N),F1,F).
```

```
factorial(N,F) ←
N>0, N1 is N-1,
factorial(N1,F1),
F is N * F1.
factorial(0,1).
```

```
fibonacci(0,1).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X = Y+Z.
?- fibonacci(3,X).
X ↦ 1+1
true
```

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
times(s(N),F1,F).
```

```
factorial(N,F) ←
N>0, N1 is N-1,
factorial(N1,F1),
F is N * F1.
factorial(0,1).
```

```
fibonacci(0,1).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X = Y+Z.
?- fibonacci(3,X).
X ↦ 1+1
true
```

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
times(s(N),F1,F).
```

```
factorial(N,F) \leftarrow
N>0, N1 is N-1,
factorial(N1,F1),
F is N * F1.
factorial(0,1).
```

```
fibonacci(0,1).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X is Y+Z.
```

```
?- fibonacci(3,X).
```

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) ←
factorial(N,F1),
times(s(N),F1,F).
```

```
factorial(N,F) ←
N>0, N1 is N-1,
factorial(N1,F1),
F is N * F1.
factorial(0,1).
```

```
fibonacci(0,1).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X is Y+Z.
?- fibonacci(3,X).
X ↦ 2
true
```

- a Prolog clause is called iterative if
 - 1 it has one recursive call, and
 - 2 zero or more calls to system predicates, before the recursive call
- a Prolog procedure is iterative if contains only unit clauses and iterative clauses

- a Prolog clause is called iterative if
 - 1 it has one recursive call, and
 - 2 zero or more calls to system predicates, before the recursive call
- a Prolog procedure is iterative if contains only unit clauses and iterative clauses

```
Example (Factorial Iterative, Version 1)

factorial(N,F) \leftarrow factorial(0,N,1,F).

factorial(I,N,T,F) \leftarrow

I < N, I1 is I + 1, T1 is T*I1, factorial(I1,N,T1,F).

factorial(N,N,F,F).
```

- a Prolog clause is called iterative if
 - 1 it has one recursive call, and
 - 2 zero or more calls to system predicates, before the recursive call
- a Prolog procedure is iterative if contains only unit clauses and iterative clauses

```
Example (Factorial Iterative, Version 1)
factorial(N,F) ← factorial(0,N,1,F).
factorial(I,N,T,F) ←
I < N, I1 is I + 1, T1 is T*I1, factorial(I1,N,T1,F).
factorial(N,N,F,F).</pre>
```

- a Prolog clause is called iterative if
 - 1 it has one recursive call, and
 - 2 zero or more calls to system predicates, before the recursive call
- a Prolog procedure is iterative if contains only unit clauses and iterative clauses

```
Example (Factorial Iterative, Version 1)

factorial(N,F) \leftarrow factorial(0,N,1,F).

factorial(I,N,T,F) \leftarrow

I < N, I1 is I + 1, T1 is T*I1, factorial(I1,N,T1,F).

factorial(N,N,F,F).
```

```
Example (Factorial Iterative, Version 2)

factorial(N,F) \leftarrow factorial(N,1,F).

factorial(N,T,F) \leftarrow

N > 0, T1 is T * N, N1 is N-1, factorial(N1,T1,F).

factorial(0,F,F).
```

```
Example (Factorial Iterative, Version 2)

factorial(N,F) \leftarrow factorial(N,1,F).

factorial(N,T,F) \leftarrow

N > 0, T1 is T * N, N1 is N-1, factorial(N1,T1,F).

factorial(0,F,F).
```

```
Example
```

```
between(I,J,I) \leftarrow I \leq J.
between(I,J,K) \leftarrow I < J, I1 is I+1, between(I1,J,K).
```

```
Example (Factorial Iterative, Version 2)
factorial(N,F) ← factorial(N,1,F).
factorial(N,T,F) ←
N > 0, T1 is T * N, N1 is N-1, factorial(N1,T1,F).
factorial(0,F,F).
```

Example

```
\begin{split} & \texttt{between(I,J,I)} \ \leftarrow \ \texttt{I} \ \leqslant \ \texttt{J}. \\ & \texttt{between(I,J,K)} \ \leftarrow \ \texttt{I} \ < \ \texttt{J}, \ \texttt{I1} \ \texttt{is I+1}, \ \texttt{between(I1,J,K)}. \end{split}
```

Example

```
sumlist(Is,Sum) ← sumlist(Is,0,Sum).
sumlist([I|Is],Temp,Sum) ←
Temp1 is Temp + I,sumlist(Is,Temp1,Sum).
sumlist([],Sum,Sum).
```

```
\begin{split} & \texttt{maximum}([X|Xs],\texttt{M}) \leftarrow \texttt{maximum}(Xs,\texttt{X},\texttt{M}) \, . \\ & \texttt{maximum}([X|Xs],\texttt{Y},\texttt{M}) \leftarrow \\ & X \leqslant \texttt{Y}, \texttt{maximum}(Xs,\texttt{Y},\texttt{M}) \, . \\ & \texttt{maximum}([X|Xs],\texttt{Y},\texttt{M}) \leftarrow \\ & X > \texttt{Y}, \texttt{maximum}(Xs,\texttt{X},\texttt{M}) \, . \\ & \texttt{maximum}([],\texttt{M},\texttt{M}) \, . \end{split}
```

```
\begin{array}{ll} {\tt maximum}([X|Xs],{\tt M}) \ \leftarrow \ {\tt maximum}(Xs,{\tt X},{\tt M}) \, . \\ {\tt maximum}([X|Xs],{\tt Y},{\tt M}) \ \leftarrow \\ {\tt X} \ \leqslant \ {\tt Y}, \ {\tt maximum}(Xs,{\tt Y},{\tt M}) \, . \\ {\tt maximum}([X|Xs],{\tt Y},{\tt M}) \ \leftarrow \\ {\tt X} \ > \ {\tt Y}, \ {\tt maximum}(Xs,{\tt X},{\tt M}) \, . \\ {\tt maximum}([],{\tt M},{\tt M}) \, . \end{array}
```

```
length([X|Xs],N) ←
    N > 0, N1 is N - 1, length(Xs,N1).
length([],0).
```

```
\begin{array}{ll} {\tt maximum}([X|Xs],{\tt M}) \ \leftarrow \ {\tt maximum}(Xs,{\tt X},{\tt M}) \, . \\ {\tt maximum}([X|Xs],{\tt Y},{\tt M}) \ \leftarrow \\ {\tt X} \ \leqslant \ {\tt Y}, \ {\tt maximum}(Xs,{\tt Y},{\tt M}) \, . \\ {\tt maximum}([X|Xs],{\tt Y},{\tt M}) \ \leftarrow \\ {\tt X} \ > \ {\tt Y}, \ {\tt maximum}(Xs,{\tt X},{\tt M}) \, . \\ {\tt maximum}([],{\tt M},{\tt M}) \, . \end{array}
```

Example length([X|Xs],N) ← N > 0, N1 is N - 1, length(Xs,N1). length([],0). length([X|Xs],N) ← length(Xs,N1), N is N1 + 1. length([],0).

```
\begin{array}{ll} {\tt maximum}([X|Xs],{\tt M}) \ \leftarrow \ {\tt maximum}(Xs,{\tt X},{\tt M}) \, . \\ {\tt maximum}([X|Xs],{\tt Y},{\tt M}) \ \leftarrow \\ {\tt X} \ \leqslant \ {\tt Y}, \ {\tt maximum}(Xs,{\tt Y},{\tt M}) \, . \\ {\tt maximum}([X|Xs],{\tt Y},{\tt M}) \ \leftarrow \\ {\tt X} \ > \ {\tt Y}, \ {\tt maximum}(Xs,{\tt X},{\tt M}) \, . \\ {\tt maximum}([],{\tt M},{\tt M}) \, . \end{array}
```

Example length([X|Xs],N) ← N > 0, N1 is N - 1, length(Xs,N1). length([],0). length([X|Xs],N) ← length(Xs,N1), N is N1 + 1. length([],0).

Type Predicates

Recall

type predicates are unary relations concerning the type of a term

Type Predicates

Recall

type predicates are unary relations concerning the type of a term

- integer: type check for an integer
- atom: type check for an atom
- compound: type check for a compound term

Type Predicates

Recall

type predicates are unary relations concerning the type of a term

Definition

- integer: type check for an integer
- atom: type check for an atom
- compound: type check for a compound term

```
constant(X) \leftarrow integer(X).
constant(X) \leftarrow atom(X).
```

```
flatten([X|Xs],Ys) ←
   flatten(X,Ys1), flatten(Xs,Ys2),
   append(Ys1,Ys2,Ys).
```

```
Example
flatten([X|Xs],Ys) ←
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) ← constant(X), X ≠ [].
```

```
Example
flatten([X|Xs],Ys) ←
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) ← constant(X), X ≠ [].
flatten([],[]).
```

```
Example
flatten([X|Xs],Ys) ←
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) ← constant(X), X ≠ [].
flatten([],[]).
?- flatten([[a],[b,[c,d]],e],[a,b,c,d,e])
true
```

```
Example
flatten([X|Xs],Ys) ←
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) ← constant(X), X ≠ [].
flatten([],[]).
?- flatten([[a],[b,[c,d]],e],[a,b,c,d,e])
true
```

```
Example
flatten([X|Xs],Ys) ←
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) ← constant(X), X ≠ [].
flatten([],[]).
?- flatten([[a],[b,[c,d]],e],[a,b,c,d,e])
true
```

```
flatten(Xs,Ys) ← flatten(Xs,[],Ys).
flatten([X|Xs],S,Ys) ←
    list(X), flatten(X,[Xs|S],Ys).
```

```
Example
flatten([X|Xs],Ys) ←
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) ← constant(X), X ≠ [].
flatten([],[]).
?- flatten([[a],[b,[c,d]],e],[a,b,c,d,e])
true
```

Example flatten(Xs,Ys) \leftarrow flatten(Xs,[],Ys). flatten([X|Xs],S,Ys) \leftarrow list(X), flatten(X,[Xs|S],Ys). flatten([X|Xs],S,[X,Ys]) \leftarrow constant(X), X \neq [], flatten(Xs,S,Ys).

```
Example
flatten([X|Xs],Ys) ←
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) ← constant(X), X ≠ [].
flatten([],[]).
?- flatten([[a],[b,[c,d]],e],[a,b,c,d,e])
true
```

```
Example
```

```
flatten(Xs,Ys) \leftarrow flatten(Xs,[],Ys).
flatten([X|Xs],S,Ys) \leftarrow
    list(X), flatten(X,[Xs|S],Ys).
flatten([X|Xs],S,[X,Ys]) \leftarrow
    constant(X), X \neq [], flatten(Xs,S,Ys).
flatten([],[X|S],Ys) \leftarrow flatten(X,S,Ys).
flatten([],[],[]).
```

Definition

• functor(*Term*,*F*,*Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arith *Arity*

- functor(*Term*,*F*,*Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arith *Arity*
- $\arg(N, Term, Arg)$ is true, if Arg is the N^{th} argument of Term

Definition

- functor(*Term*, *F*, *Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arith *Arity*
- $\arg(N, Term, Arg)$ is true, if Arg is the N^{th} argument of Term

```
\leftarrow \texttt{functor(father(haran,lot),F,A)}
```

- $\texttt{F} \ \mapsto \ \texttt{father}$
- $\texttt{A}\ \mapsto\ \texttt{2}$

Definition

- functor(*Term*, *F*, *Arity*) is true, if *Term* is a compound term, whose principal functor is *F* with arith *Arity*
- $\arg(N, Term, Arg)$ is true, if Arg is the N^{th} argument of Term

Example

```
\leftarrow \texttt{functor(father(haran,lot),F,A)}
```

```
\texttt{F} \ \mapsto \ \texttt{father}
```

```
\texttt{A}\ \mapsto\ \texttt{2}
```

```
\leftarrow \arg(2, \texttt{father(haran, lot), X}) \\ \text{X} \mapsto \texttt{lot}
```

```
subterm(Term,Term).
subterm(Sub,Term) \leftarrow
    compound(Term),
    functor(Term,F,N),
    subterm(N,Sub,Term).
subterm(N, Sub, Term) \leftarrow
    N > 1,
    N1 is N - 1,
    subterm(N1,Sub,Term).
subterm(N, Sub, Term) \leftarrow
    arg(N,Term,Arg),
    subterm(Sub,Arg).
```

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

```
\leftarrow \texttt{father(haran,lot)} \texttt{=..} \texttt{Xs}
```

```
X \mapsto [father, haran, lot]
```

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

Example

```
\leftarrow father(haran,lot) =.. Xs
```

```
X \mapsto [father,haran,lot]
```

Remark

 programs written with functor and arg can also be written with univ

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

Example

```
\leftarrow father(haran,lot) =.. Xs
```

```
X \mapsto [father,haran,lot]
```

Remark

- programs written with functor and arg can also be written with univ
- programs using univ are typically simpler

- *Term* = . . *List* is true if *List* is a list whose head is the principal functor of *Term*, and whose tail is the list of arguments of *Term*
- the operator = . . is also called univ

Example

```
\leftarrow father(haran,lot) =.. Xs
```

```
X \mapsto [father,haran,lot]
```

Remark

- programs written with functor and arg can also be written with univ
- programs using univ are typically simpler
- programs using functor and arg are more efficient

- Term = . . List is true if List is a list whose head is the principal functor of Term, and whose tail is the list of arguments of Term
- the operator = . . is also called univ

Example

```
\leftarrow father(haran,lot) =.. Xs
```

```
X \mapsto [father,haran,lot]
```

Remark

- programs written with functor and arg can also be written with univ
- programs using univ are typically simpler
- programs using functor and arg are more efficient
- univ can be built from functor and arg

Definition

• meta-logical predicates are extensions of the first-order theory of logic programming

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

1 variables in system predicates do not behave as intended

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can
 - 1 query the state of the proof
 - 2 treat variables as objects
 - 3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

- 1 variables in system predicates do not behave as intended
- 2 (logical) variables can be accidentally instantiated

Definition

• var(Term) is true if Term is at present an uninstantiated variable

- var(Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable

- var(Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable
- ground(*Term*) is true if *Term* does not contain variables

Meta-logical Type Predicates

Definition

- var(Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable
- ground(Term) is true if Term does not contain variables

```
Example
plus(X,Y,Z) ←
    nonvar(X), nonvar(Y), Z is X + Y.
plus(X,Y,Z) ←
    nonvar(X), nonvar(Z), Y is Z - X.
plus(X,Y,Z) ←
    nonvar(Y), nonvar(Z), X is Z - Y.
```

```
unify(X,Y) \leftarrow var(X), var(Y), X = Y.
```

```
unify(X,Y) \leftarrow var(X), var(Y), X = Y.
unify(X,Y) \leftarrow var(X), nonvar(Y), X = Y.
```

unify(X,Y) \leftarrow var(X), var(Y), X = Y. unify(X,Y) \leftarrow var(X), nonvar(Y), X = Y. unify(X,Y) \leftarrow nonvar(X), var(Y), Y = X.

```
unify(X,Y) \leftarrow var(X), var(Y), X = Y.
unify(X,Y) \leftarrow var(X), nonvar(Y), X = Y.
unify(X,Y) \leftarrow nonvar(X), var(Y), Y = X.
unify(X,Y) \leftarrow
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
unify(X,Y) \leftarrow
    nonvar(X), nonvar(Y), compound(X), compound(Y),
    term_unify(X,Y).
term_unify(X,Y) \leftarrow
    functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unifv_args(N,X,Y) \leftarrow
    N > 0, unify_arg(N,X,Y), N1 is N - 1, unify_args(N1,X,Y).
unify_args(0, X, Y).
```

```
unify(X,Y) \leftarrow var(X), var(Y), X = Y.
unify(X,Y) \leftarrow var(X), nonvar(Y), X = Y.
unify(X,Y) \leftarrow nonvar(X), var(Y), Y = X.
unify(X,Y) \leftarrow
    nonvar(X), nonvar(Y), constant(X), constant(Y),
    X = Y.
unify(X,Y) \leftarrow
    nonvar(X), nonvar(Y), compound(X), compound(Y),
    term_unify(X,Y).
term_unify(X,Y) \leftarrow
    functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unifv_args(N,X,Y) \leftarrow
    N > 0, unify_arg(N,X,Y), N1 is N - 1, unify_args(N1,X,Y).
unify_args(0, X, Y).
unify_arg(N,X,Y) \leftarrow
    arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY).
```

Comparing nonground terms

Definition

- X == Y is true if X and Y are identical constants, variables, or compound terms
- X \== Y is true if X and Y are not identical

Comparing nonground terms

Definition

- X == Y is true if X and Y are identical constants, variables, or compound terms
- X \== Y is true if X and Y are not identical

Example

← X == 5

false

Unification with Occurs Check

```
Example
 not_occurs_in(X,Y) \leftarrow
     var(Y), X = Y.
 not_occurs_in(X,Y) \leftarrow
     nonvar(Y), constant(Y).
 not_occurs_in(X,Y) \leftarrow
     nonvar(Y), compound(Y),
     functor(Y,F,N), not_occurs_in(N,X,Y).
 not_occurs_in(N,X,Y) \leftarrow
     N > 0, arg(N, Y, Arg), not_occurs_in(X, Arg), N1 is N - 1,
     not_occurs_in(N1,X,Y).
 not_occurs_in(0,X,Y).
```

Unification with Occurs Check

```
Example
not_occurs_in(X,Y) \leftarrow
     var(Y), X = Y.
 not_occurs_in(X,Y) \leftarrow
     nonvar(Y), constant(Y).
 not_occurs_in(X,Y) \leftarrow
     nonvar(Y), compound(Y),
     functor(Y,F,N), not_occurs_in(N,X,Y).
 not_occurs_in(N,X,Y) \leftarrow
     N > 0, arg(N, Y, Arg), not_occurs_in(X, Arg), N1 is N - 1,
     not_occurs_in(N1,X,Y).
 not_occurs_in(0, X, Y).
 unify(X,Y) \leftarrow var(X), nonvar(Y), not_occurs_in(X,Y), X = Y.
 unify(X,Y) \leftarrow nonvar(X), var(Y), not_occurs_in(Y,X), Y = X.
```