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Summary of Last Lecture

Summary of Last Lecture

Execution
• Prolog programs are executed using SLD resolution

• leftmost and topdown selection

• depth-first search with backtracking

• unification without occur check

Some Observations

1 goal invocation corresponds to procedure invocation

2 differences show when backtracking occurs

3 like LISP, Prolog is a declaration free, typeless language

4 data manipulation is achieved via unification
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Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming
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Arithmetic

Arithmetic

Numbers
• integers

• floating point numbers

Definition

Prolog provides an arithmetical interface

Value is Expression

Example

X is 3+5 8 is 3+5 N is N+1

X 7→ 8 false nonsensical
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Arithmetic

Arithmetic Operations

• + - * // (integer division) / (float division)

• · · ·

Arithmetic Comparison Relations
• < =< > >=

?- 3 > X.

ERROR: >/2: Arguments are not sufficiently instantiated

• =:= (equality)

?- 1+2 =:= 3.

true

• =\= (disequality)

?- 1+2 =\= 2+1.

false

Non Standard Predicates

• between(Low ,High,Value) is true when

1 Value is an integer, and Low 6 Value 6 High
2 Value is a variable, and Value ∈ [Low ,High]

• succ(Int1,Int2) . . .
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Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

fibonacci(N-1,Y),

fibonacci(N-2,Z),

X = Y+Z.

?- fibonacci(3,X).

X 7→ 2

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

fibonacci(N-1,Y),

fibonacci(N-2,Z),

X = Y+Z.

?- fibonacci(3,X).

X 7→ 2

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

fibonacci(N-1,Y),

fibonacci(N-2,Z),

X = Y+Z.

?- fibonacci(3,X).

false

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

fibonacci(N-1,Y),

fibonacci(N-2,Z),

X = Y+Z.

?- fibonacci(3,X).

false

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

N1 is N-1, fibonacci(N1,Y),

N2 is N-2, fibonacci(N2,Z),

X = Y+Z.

?- fibonacci(3,X).

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

N1 is N-1, fibonacci(N1,Y),

N2 is N-2, fibonacci(N2,Z),

X = Y+Z.

?- fibonacci(3,X).

X 7→ 1+1

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

N1 is N-1, fibonacci(N1,Y),

N2 is N-2, fibonacci(N2,Z),

X = Y+Z.

?- fibonacci(3,X).

X 7→ 1+1

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

N1 is N-1, fibonacci(N1,Y),

N2 is N-2, fibonacci(N2,Z),

X is Y+Z.

?- fibonacci(3,X).

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Arithmetic

Example (Factorials)

factorial(0,s(0)).

factorial(s(N),F) ←
factorial(N,F1),

times(s(N),F1,F).

factorial(N,F) ←
N>0, N1 is N-1,

factorial(N1,F1),

F is N * F1.

factorial(0,1).

Example (Fibonacci Numbers)

fibonacci(0,1).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

N1 is N-1, fibonacci(N1,Y),

N2 is N-2, fibonacci(N2,Z),

X is Y+Z.

?- fibonacci(3,X).

X 7→ 2

true

GM (Institute of Computer Science @ UIBK) Logic Programming 92/1



Transforming Recursion into Iteration

Transforming Recursion into Iteration

Definitions
• a Prolog clause is called iterative if

1 it has one recursive call, and
2 zero or more calls to system predicates, before the recursive call

• a Prolog procedure is iterative if contains only unit clauses and
iterative clauses

Example (Factorial Iterative, Version 1)

factorial(N,F) ← factorial(0,N,1,F).

factorial(I,N,T,F) ←
I < N, I1 is I + 1, T1 is T*I1, factorial(I1,N,T1,F).

factorial(N,N,F,F).
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Transforming Recursion into Iteration

Example (Factorial Iterative, Version 2)

factorial(N,F) ← factorial(N,1,F).

factorial(N,T,F) ←
N > 0, T1 is T * N, N1 is N-1, factorial(N1,T1,F).

factorial(0,F,F).

Example

between(I,J,I) ← I 6 J.

between(I,J,K) ← I < J, I1 is I+1, between(I1,J,K).

Example

sumlist(Is,Sum) ← sumlist(Is,0,Sum).

sumlist([I|Is],Temp,Sum) ←
Temp1 is Temp + I,sumlist(Is,Temp1,Sum).

sumlist([],Sum,Sum).
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Transforming Recursion into Iteration

Example

maximum([X|Xs],M) ← maximum(Xs,X,M).

maximum([X|Xs],Y,M) ←
X 6 Y, maximum(Xs,Y,M).

maximum([X|Xs],Y,M) ←
X > Y, maximum(Xs,X,M).

maximum([],M,M).

Example

length([X|Xs],N) ←
N > 0, N1 is N - 1, length(Xs,N1).

length([],0).

length([X|Xs],N) ←
length(Xs,N1), N is N1 + 1.

length([],0).
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Type Predicates

Type Predicates

Recall

type predicates are unary relations concerning the type of a term

Definition
• integer: type check for an integer

• atom: type check for an atom

• compound: type check for a compound term

Example

constant(X) ← integer(X).

constant(X) ← atom(X).
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Type Predicates

Example

flatten([X|Xs],Ys) ←
flatten(X,Ys1), flatten(Xs,Ys2),

append(Ys1,Ys2,Ys).

flatten(X,[X]) ← constant(X), X 6= [].

flatten([],[]).

?- flatten([[a],[b,[c,d]],e],[a,b,c,d,e])

true

Example

flatten(Xs,Ys) ← flatten(Xs,[],Ys).

flatten([X|Xs],S,Ys) ←
list(X), flatten(X,[Xs|S],Ys).

flatten([X|Xs],S,[X,Ys]) ←
constant(X), X 6= [], flatten(Xs,S,Ys).

flatten([],[X|S],Ys) ← flatten(X,S,Ys).

flatten([],[],[]).
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true

Example

flatten(Xs,Ys) ← flatten(Xs,[],Ys).

flatten([X|Xs],S,Ys) ←
list(X), flatten(X,[Xs|S],Ys).

flatten([X|Xs],S,[X,Ys]) ←
constant(X), X 6= [], flatten(Xs,S,Ys).

flatten([],[X|S],Ys) ← flatten(X,S,Ys).

flatten([],[],[]).
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Accessing compound terms

Accessing compound terms

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arith Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Example

← functor(father(haran,lot),F,A)

F 7→ father

A 7→ 2

Example

← arg(2,father(haran,lot),X)

X 7→ lot
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Accessing compound terms

Example

subterm(Term,Term).

subterm(Sub,Term) ←
compound(Term),

functor(Term,F,N),

subterm(N,Sub,Term).

subterm(N,Sub,Term) ←
N > 1,

N1 is N - 1,

subterm(N1,Sub,Term).

subterm(N,Sub,Term) ←
arg(N,Term,Arg),

subterm(Sub,Arg).
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Accessing compound terms

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

Example

← father(haran,lot) =.. Xs

X 7→ [father,haran,lot]

Remark

• programs written with functor and arg can also be written with
univ

• programs using univ are typically simpler

• programs using functor and arg are more efficient

• univ can be built from functor and arg
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Meta-logical Predicates

Meta-logical Predicates

Definition
• meta-logical predicates are extensions of the first-order theory of

logic programming

• meta-logical predicates can

1 query the state of the proof
2 treat variables as objects
3 allow conversion of data structures to goals

Remark

meta-logical type predicates allow us to overcome two difficulties:

1 variables in system predicates do not behave as intended

2 (logical) variables can be accidentally instantiated
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Meta-logical Predicates

Meta-logical Type Predicates

Definition

• var(Term) is true if Term is at present an uninstantiated variable

• nonvar(Term) is true if Term is at present not a variable

• ground(Term) is true if Term does not contain variables

Example

plus(X,Y,Z) ←
nonvar(X), nonvar(Y), Z is X + Y.

plus(X,Y,Z) ←
nonvar(X), nonvar(Z), Y is Z - X.

plus(X,Y,Z) ←
nonvar(Y), nonvar(Z), X is Z - Y.
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Meta-logical Predicates

Example

unify(X,Y) ← var(X), var(Y), X = Y.

unify(X,Y) ← var(X), nonvar(Y), X = Y.

unify(X,Y) ← nonvar(X), var(Y), Y = X.

unify(X,Y) ←
nonvar(X), nonvar(Y), constant(X), constant(Y),

X = Y.

unify(X,Y) ←
nonvar(X), nonvar(Y), compound(X), compound(Y),

term unify(X,Y).

term unify(X,Y) ←
functor(X,F,N), functor(Y,F,N), unify args(N,X,Y).

unify args(N,X,Y) ←
N > 0, unify arg(N,X,Y), N1 is N - 1, unify args(N1,X,Y).

unify args(0,X,Y).

unify arg(N,X,Y) ←
arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY).
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Comparing nonground terms

Comparing nonground terms

Definition
• X == Y is true if X and Y are identical constants, variables, or

compound terms

• X \== Y is true if X and Y are not identical

Example

← X == 5

false
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Comparing nonground terms

Unification with Occurs Check

Example

not occurs in(X,Y) ←
var(Y), X \== Y.

not occurs in(X,Y) ←
nonvar(Y), constant(Y).

not occurs in(X,Y) ←
nonvar(Y), compound(Y),

functor(Y,F,N), not occurs in(N,X,Y).

not occurs in(N,X,Y) ←
N > 0, arg(N,Y,Arg), not occurs in(X,Arg), N1 is N - 1,

not occurs in(N1,X,Y).

not occurs in(0,X,Y).

unify(X,Y) ← var(X), nonvar(Y), not occurs in(X,Y), X = Y.

unify(X,Y) ← nonvar(X), var(Y), not occurs in(Y,X), Y = X.
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