Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

Overview

Outline of the Lecture

Logic Programs
introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language
programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques
nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Summary of Last Lecture

Execution

- Prolog programs are executed using SLD resolution
- leftmost and topdown selection
- depth-first search with backtracking
- unification without occur check

Some Observations

1 goal invocation corresponds to procedure invocation
2 differences show when backtracking occurs
3 like LISP, Prolog is a declaration free, typeless language
4 data manipulation is achieved via unification

Arithmetic

Arithmetic

Numbers

- integers
- floating point numbers

Definition

Prolog provides an arithmetical interface
Value is Expression

Example		
X is $3+5$	8 is $3+5$	N is $\mathrm{N}+1$
$\mathrm{X} \mapsto 8$	false	nonsensical

Arithmetic Operations

- + \quad * // (integer division) / (float division)
- ...

Arithmetic Comparison Relations

- < =< \gg=
- $=:=\quad$ (equality)
- $=\backslash=$ (disequality)

Non Standard Predicates

- between(Low,High, Value) is true when

1 Value is an integer, and Low \leqslant Value \leqslant High
2 Value is a variable, and Value \in [Low, High]

- succ(Int1,Int2) ...

Transorming Recursion into Iteration

Transforming Recursion into Iteration

Definitions

- a Prolog clause is called iterative if

1 it has one recursive call, and
2 zero or more calls to system predicates, before the recursive call

- a Prolog procedure is iterative if contains only unit clauses and iterative clauses

Example (Factorial Iterative, Version 1)

```
factorial(N,F) \leftarrow factorial(0,N,1,F).
```

factorial (I,N,T,F) \leftarrow

$$
\mathrm{I}<\mathrm{N}, \mathrm{I} 1 \text { is } \mathrm{I}+1, \mathrm{~T} 1 \text { is } \mathrm{T} * \mathrm{I} 1 \text {, factorial }(\mathrm{I} 1, \mathrm{~N}, \mathrm{~T} 1, \mathrm{~F}) \text {. }
$$

factorial (N,N,F,F).

```
Example (Factorials)
factorial(0,s(0)).
factorial(s(N),F) \leftarrow
    factorial(N,F1),
    times(s(N),F1,F).
```

Example (Fibonacci Numbers)
fibonacci $(0,1)$.
fibonacci(1,1)
fibonacci(N, X) :-
$\mathrm{N}>1$,
N1 is $\mathrm{N}-1$, fibonacci(N1,Y),
N 2 is $\mathrm{N}-2$, fibonacci($\mathrm{N} 2, \mathrm{Z}$), X is $\mathrm{Y}+\mathrm{Z}$.
?- fibonacci(3,X).
$\mathrm{X} \mapsto 2$
true

Transforming Recursion into Iteration

Example (Factorial Iterative, Version 2)
factorial (N,F) \leftarrow factorial (N, 1, F).
factorial $(N, T, F) \leftarrow$
N > 0, T1 is $\mathrm{T} * \mathrm{~N}, \mathrm{~N} 1$ is $\mathrm{N}-1$, factorial (N1,T1,F).
factorial ($0, F, F$).

Example
between $(I, J, I) \leftarrow I \leqslant J$.
between $(I, J, K) \leftarrow I<J$, I1 is $I+1$, between(I1, J, K).

Example

sumlist (Is, Sum) \leftarrow sumlist(Is, 0 , Sum).
sumlist ([I|Is], Temp, Sum) \leftarrow
Temp1 is Temp + I,sumlist(Is,Temp1,Sum).
sumlist ([], Sum, Sum).

Example

maximum ([X|Xs], M) $\leftarrow \operatorname{maximum}(X s, X, M)$.
maximum ([X|Xs],Y,M) \leftarrow
$\mathrm{X} \leqslant \mathrm{Y}, \operatorname{maximum}(\mathrm{Xs}, \mathrm{Y}, \mathrm{M})$.
maximum ([X|Xs],Y,M) \leftarrow
$\mathrm{X}>\mathrm{Y}$, maximum(Xs,X,M).
maximum ([], M, M).

Example

length ([X|Xs],N) \leftarrow
N > 0, N1 is N - 1, length(Xs,N1)
length ([]$, 0$).
length $([X \mid X s], N) \leftarrow$

$$
\text { length(Xs,N1), } N \text { is N1 + } 1 .
$$

length ([],0).

Example
flatten ([X|Xs],Ys) \leftarrow
flatten(X,Ys1), flatten(Xs,Ys2),
append(Ys1,Ys2,Ys).
flatten $(X,[X]) \leftarrow \operatorname{constant}(X), X \neq[]$
flatten([],[]).
?- flatten([[a], [b, [c, d]],e], [a,b, c, d,e])
true

Example
flatten $(X s, Y s) \leftarrow$ flatten $(X s,[], Y s)$.
flatten([X|Xs],S,Ys) \leftarrow
list(X), flatten(X,[Xs|S],Ys).
flatten([X|Xs],S,[X,Ys]) \leftarrow
constant(X), $X \neq[], f l a t t e n(X s, S, Y s)$.
flatten $([],[X \mid S], Y s) \leftarrow$ flatten $(X, S, Y s)$.
flatten([], [], []).

Type Predicates

Recall

type predicates are unary relations concerning the type of a term
Definition

- integer: type check for an integer
- atom: type check for an atom
- compound: type check for a compound term

Example

```
constant(X) \leftarrow integer(X).
constant(X)}\leftarrow\mathrm{ atom(X).
```


Accessing compound terms

Accessing compound terms

Definition

- functor (Term, F, Arity) is true, if Term is a compound term, whose principal functor is F with arith Arity
- $\arg (N$, Term, $\operatorname{Arg})$ is true, if Arg is the $N^{\text {th }}$ argument of Term

Example
\leftarrow functor(father(haran,lot), F, A)
$\mathrm{F} \mapsto$ father
A $\mapsto 2$

Example
$\leftarrow \arg (2$, father (haran,lot), X)
X \mapsto lot

Example

subterm(Term,Term). subterm(Sub,Term) \leftarrow compound(Term), functor (Term, F, N), subterm(N, Sub, Term).
subterm (N, Sub, Term) \leftarrow
$\mathrm{N}>1$,
N1 is N - 1,
subterm(N1, Sub, Term).
subterm (N,Sub,Term) \leftarrow
\arg ($\mathrm{N}, \mathrm{Term}, \mathrm{Arg}$) ,
subterm(Sub, Arg).

Meta-logical Predicates

Meta-logical Predicates

Definition

- meta-logical predicates are extensions of the first-order theory of logic programming
- meta-logical predicates can

1 query the state of the proof
2 treat variables as objects
3 allow conversion of data structures to goals

Remark meta-logical type predicates allow us to overcome two difficulties:
1 variables in system predicates do not behave as intended
2 (logical) variables can be accidentally instantiated

Definition

- Term $=$. . List is true if List is a list whose head is the principal functor of Term, and whose tail is the list of arguments of Term
- the operator $=\ldots$ is also called univ

Example

\leftarrow father (haran,lot) $=$.. Xs
$\mathrm{X} \mapsto$ [father, haran, lot]

Remark

- programs written with functor and arg can also be written with univ
- programs using univ are typically simpler
- programs using functor and arg are more efficient
- univ can be built from functor and arg
GM (Institute of Computer Science © UIBK; Logic Programming

Meta-logical Predicates

Meta-logical Type Predicates

Definition

- var(Term) is true if Term is at present an uninstantiated variable
- nonvar(Term) is true if Term is at present not a variable
- ground(Term) is true if Term does not contain variables

Example

```
plus(X,Y,Z) \leftarrow
        nonvar(X), nonvar(Y), Z is X + Y.
plus(X,Y,Z) \leftarrow
            nonvar(X), nonvar(Z), Y is Z - X.
plus(X,Y,Z) \leftarrow
        nonvar(Y), nonvar(Z), X is Z - Y.
```


Example

unify $(X, Y) \leftarrow \operatorname{var}(X), \operatorname{var}(Y), X=Y$.
unify(X,Y) $\leftarrow \operatorname{var}(X)$, nonvar(Y), $X=Y$.
$\operatorname{unify}(X, Y) \leftarrow$ nonvar $(X), \operatorname{var}(Y), Y=X$.
unify $(X, Y) \leftarrow$
nonvar(X), nonvar(Y), constant(X), constant(Y), $\mathrm{X}=\mathrm{Y}$.
unify $(X, Y) \leftarrow$
nonvar(X), nonvar(Y), compound(X), compound(Y), term_unify (X, Y).
term_unify $(X, Y) \leftarrow$
functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unify_args(N,X,Y) \leftarrow
$N>0$, unify_arg(N,X,Y), N1 is N - 1, unify_args(N1,X,Y).

Comparing nonground terms

Definition

- $X==Y$ is true if X and Y are identical constants, variables, or compound terms
- $X \backslash==Y$ is true if X and Y are not identical

Example

$$
\begin{aligned}
& \leftarrow X==5 \\
& \text { false }
\end{aligned}
$$

Comparing nonground terms

Unification with Occurs Check

Example

not_occurs_in(X,Y) \leftarrow $\operatorname{var}(\mathrm{Y}), \mathrm{X} \backslash==\mathrm{Y}$.
not_occurs_in(X,Y) \leftarrow
nonvar(Y), constant(Y).
not_occurs_in $(X, Y) \leftarrow$
nonvar(Y), compound(Y),
functor (Y,F,N), not_occurs_in(N,X,Y).
not_occurs_in $(N, X, Y) \leftarrow$
 not_occurs_in(N1, X,Y).
not_occurs_in($0, X, Y$)
unify $(X, Y) \leftarrow \operatorname{var}(X)$, nonvar (Y), not_occurs_in $(X, Y), X=Y$.
$\operatorname{unify}(X, Y) \leftarrow$ nonvar $(X), \operatorname{var}(Y)$, not_occurs_in $(Y, X), Y=X$.

