
Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

http://cl-informatik.uibk.ac.at


Summary of Last Lecture

Summary of Last Lecture

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arith Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

Definition

• var(Term) is true if Term is at present an uninstantiated variable

• nonvar(Term) is true if Term is at present not a variable

• ground(Term) is true if Term does not contain variables
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Summary of Last Lecture

Comparing Nonground Terms

Definition
• X == Y is true if X and Y are identical constants, variables, or

compound terms

• X \== Y is true if X and Y are not identical

Example (Unification with Occurs Check)

← unify with occurs check(X,f(X)).

false

Remark

SWI-Prolog provides the following predicate that implements unification
with occurs check:

unify with occurs check/2

GM (Institute of Computer Science @ UIBK) Logic Programming 107/1



Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming
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Variables as Objects

Example

substitute(Old,New,Old,New).

substitute(Old,New,Term,Term) ←
constant(Term),

Term 6= Old.

substitute(Old,New,Term,Term1) ←
compound(Term),

functor(Term,F,N),

functor(Term1,F,N),

substitute(N,Old,New,Term,Term1).

substitute(N,Old,New,Term,Term1) ←
N > 0,

arg(N,Term,Arg),

substitute(Old,New,Arg,Arg1),

arg(N,Term1,Arg1),

N1 is N - 1,

substitute(N1,Old,New,Term,Term1).

substitute(0,Old,New,Term,Term1).
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Variables as Objects

Variables as Objects

Observation

(logical) variables can be accidentally instantiated

Example

← substitute(a,b,X,X).

false

Example (cont’d)

substitute(Old,New,Term,New) ←
ground(Term), Old = Term.

substitute(Old,New,Term,Term) ←
constant(Term), Term 6= Old.

substitute(Old,New,Var,Var) ←
var(Var).

...
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Variables as Objects

Observation
• the problem comes from a mixing of object-level and meta-level

variables

• one (crude) solution is to avoid logical variables on object level

• another solution is to freeze logical variable so that they become
objects

Freeze and Melt
• the predicate freeze(Term,Frozen) makes a copy of Term into Frozen

• all variables in Term become constants in Frozen

• melt(Frozen,Thawed) is the reversed funcion to freeze

Example

← freeze(f(X,Y),Frozen), ground(Frozen)

Frozen 7→ ...
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Variables as Objects

Example

occurs in(X,Term) ←
subterm(Sub,Term),

X == Sub.

Example

occurs in(X,Term) ←
freeze(X,Xf),

freeze(Term,Termf),

subterm(Xf,Termf).

Observations
• two frozen terms X and Y unify iff X==Y holds

• freeze and melt allow to implement substitute/4 without unintended
variable instantiation
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Meta-Variable Facility

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the
body

Example
X; Y ← X.

X; Y ← Y.

Other Control Predicates

• fail/0 false/0
← fail. ← false.

false false

• true/0
← true.

true
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Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
no doubles(Xs,Ys).

Effect of Cut
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Example (Removal of Duplicates)
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member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

Effect of Cut

p(t11, . . . , t1n) ← A1, . . . ,Ak.

...

p(ti1, . . . , tin) ← B1, . . . ,Bi, !, C1, . . . ,Cj.

...

blocked

p(tm1, . . . , tmn) ← D1, . . . ,Dl.
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Cuts

Examples of (Green) Cuts

Example (Without Cuts)

merge([X|Xs], [Y|Ys],[X|Zs]) ←
X < Y, merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[Y|Ys],[X,Y|Zs]) ←
X = Y, merge(Xs,Ys,Zs).

merge([X|Xs],[Y|Ys],[Y|Zs]) ←
X > Y, merge([X|Xs],Ys,Zs).

merge(Xs,[],Xs) .

merge([],Ys,Ys) .

Example

minimum(X,Y,X) ← X 6 Y, !.

minimum(X,Y,Y) ← X > Y, !.
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Cuts

Fact

(Green) cuts can greatly increase the efficiency by removing redundant
computations

Example

ordered([X]).

ordered([X,Y|Xs]) ← X 6 Y, ordered([Y|Xs]).

sort(Xs,Ys) ←
append(As,[X,Y|Bs],Xs),

X > Y,

append(As,[Y,X|Bs],Xs1),

sort(Xs1,Ys1).

sort(Xs,Xs) ←
ordered(Xs).

← sort([3,2,1],Xs)

Xs 7→ [1,2,3]
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Cuts

Definition (Negation as Failure)

• negation \+ is implemented using cut

• the principle of negation is limited and known as negation as failure

Example

not X ← X, !, fail.

not X.

Observation

if G does not terminate, not(G ) may or may not terminate

Example

married(abraham,sarah).

married(X,Y) ← married(Y,X)

← not married(abraham,sarah).
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Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t cange the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Bad Cut)

minimum(X,Y,X) ← X 6 Y, .

minimum(X,Y,Y).
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X = 2
X = 5
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Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t cange the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Bad Cut)

minimum(X,Y,X) ← X 6 Y, !.

minimum(X,Y,Y).

← minimum(2,5,5)

true
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Cuts

Example of Green and Red Cuts

Example (. . . )

delete([X|Ys],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

Example (Red Cut)

delete([X|Xs],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← !, delete(Ys,X,Zs).

delete([],X,[]).

← \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) ← !.

member(X,[Y|Ys]) ← member(X,Ys).
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Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) ← A, B.

or(A,B) ← A; B.

implies(A,B) ← or(not(A),B).

bind(true).

bind(false).

table(A,B,E) ← bind(A), bind(B), row(A,B,E), fail.

table( , , ) ← nl.

row(A,B, ) ← wr(A), write(’ ’), wr(B), write(’ ’), fail.

row( , ,E) ← E, !, wr(true), nl.

row( , , ) ← wr(false), nl.

wr(true) ← write(’T’).

wr(false) ← write(’F’).

← table(A,B,or(A,implies(B,or(B,and(A,B))))).

← table(A,B,false).
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Cuts

Cut-Fail Combinations

Example (Implementing 6=)

X 6= X → !, fail.

X 6= Y.

Example (Implementing if then else)

if then else(P,Q,R) ← P, !, Q.

if then else(P,Q,R) ← R.

Example (Implementing same vars)

same var(foo,Y) ← var(Y), !, fail.

same var(X,Y) ← var(X), var(Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 121/1



Cuts

Cut-Fail Combinations

Example (Implementing 6=)

X 6= X → !, fail.

X 6= Y.

Example (Implementing if then else)

if then else(P,Q,R) ← P, !, Q.

if then else(P,Q,R) ← R.

Example (Implementing same vars)

same var(foo,Y) ← var(Y), !, fail.

same var(X,Y) ← var(X), var(Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 121/1



Cuts

Cut-Fail Combinations

Example (Implementing 6=)

X 6= X → !, fail.

X 6= Y.

Example (Implementing if then else)

if then else(P,Q,R) ← P, !, Q.

if then else(P,Q,R) ← R.

Example (Implementing same vars)

same var(foo,Y) ← var(Y), !, fail.

same var(X,Y) ← var(X), var(Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 121/1



Extra-Logical Predicates

Extra-Logical Predicates

Definition

predicates in Prolog outside of the logic programming model are called
extra-logical predicates

1 predicates concerned with I/0

2 predicates for accessing and manipulating the program

3 predicates for interfacing the operatiing system

input/output

• read(X ) is true if X unifies with term read from input stream

• write(X ) writes X to output stream; always succeeds

• get(X ) is true if X unifies with the ASCII code of the first character

• put(N) writes character corresponding to ASCII code N to output
stream
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Extra-Logical Predicates

Example

read word list(Ws) ←
get(C),

read word list(C,Ws).

read word list(C,[W|Ws]) ←
word char(C),

read word(C,W,C1),

read word list(C1,Ws).

read word list(C,Ws) ←
fill char(C),

get(C1),

read word list(C1,Ws).

read word list(C,[]) ←
end of words char(C).

read word(C,W,C1) ←
word chars(C,Cs,C1),

name(W,Cs).

word chars(C,[C|Cs],C0) ←
word char(C),

!,

get(C1),

word chars(C1,Cs,C0).

word chars(C,[],C) ←
\+ word char(C).

word char(C) ← 97 6 C, C 6 122.

word char(C) ← 65 6 C, C 6 90.

word char(95).

fill char(32).

end of words char(46).
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