
Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Summary of Last Lecture

Definition

• functor(Term,F ,Arity) is true, if Term is a compound term, whose
principal functor is F with arith Arity

• arg(N,Term,Arg) is true, if Arg is the Nth argument of Term

Definition
• Term =.. List is true if List is a list whose head is the principal

functor of Term, and whose tail is the list of arguments of Term

• the operator =.. is also called univ

Definition

• var(Term) is true if Term is at present an uninstantiated variable

• nonvar(Term) is true if Term is at present not a variable

• ground(Term) is true if Term does not contain variables

GM (Institute of Computer Science @ UIBK) Logic Programming 106/1

Summary of Last Lecture

Comparing Nonground Terms

Definition
• X == Y is true if X and Y are identical constants, variables, or

compound terms

• X \== Y is true if X and Y are not identical

Example (Unification with Occurs Check)

← unify with occurs check(X,f(X)).

false

Remark

SWI-Prolog provides the following predicate that implements unification
with occurs check:

unify with occurs check/2

GM (Institute of Computer Science @ UIBK) Logic Programming 107/1

Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming 108/1

Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming 108/1

Variables as Objects

Example

substitute(Old,New,Old,New).

substitute(Old,New,Term,Term) ←
constant(Term),

Term 6= Old.

substitute(Old,New,Term,Term1) ←
compound(Term),

functor(Term,F,N),

functor(Term1,F,N),

substitute(N,Old,New,Term,Term1).

substitute(N,Old,New,Term,Term1) ←
N > 0,

arg(N,Term,Arg),

substitute(Old,New,Arg,Arg1),

arg(N,Term1,Arg1),

N1 is N - 1,

substitute(N1,Old,New,Term,Term1).

substitute(0,Old,New,Term,Term1).

GM (Institute of Computer Science @ UIBK) Logic Programming 109/1

Variables as Objects

Variables as Objects

Observation

(logical) variables can be accidentally instantiated

Example

← substitute(a,b,X,X).

false

Example (cont’d)

substitute(Old,New,Term,New) ←
ground(Term), Old = Term.

substitute(Old,New,Term,Term) ←
constant(Term), Term 6= Old.

substitute(Old,New,Var,Var) ←
var(Var).

...

GM (Institute of Computer Science @ UIBK) Logic Programming 110/1

Variables as Objects

Variables as Objects

Observation

(logical) variables can be accidentally instantiated

Example

← substitute(a,b,X,X).

false

Example (cont’d)

substitute(Old,New,Term,New) ←
ground(Term), Old = Term.

substitute(Old,New,Term,Term) ←
constant(Term), Term 6= Old.

substitute(Old,New,Var,Var) ←
var(Var).

...

GM (Institute of Computer Science @ UIBK) Logic Programming 110/1

Variables as Objects

Variables as Objects

Observation

(logical) variables can be accidentally instantiated

Example

← substitute(a,b,X,X).

false

Example (cont’d)

substitute(Old,New,Term,New) ←
ground(Term), Old = Term.

substitute(Old,New,Term,Term) ←
constant(Term), Term 6= Old.

substitute(Old,New,Var,Var) ←
var(Var).

...

GM (Institute of Computer Science @ UIBK) Logic Programming 110/1

Variables as Objects

Observation
• the problem comes from a mixing of object-level and meta-level

variables

• one (crude) solution is to avoid logical variables on object level

• another solution is to freeze logical variable so that they become
objects

Freeze and Melt
• the predicate freeze(Term,Frozen) makes a copy of Term into Frozen

• all variables in Term become constants in Frozen

• melt(Frozen,Thawed) is the reversed funcion to freeze

Example

← freeze(f(X,Y),Frozen), ground(Frozen)

Frozen 7→ ...

GM (Institute of Computer Science @ UIBK) Logic Programming 111/1

Variables as Objects

Observation
• the problem comes from a mixing of object-level and meta-level

variables

• one (crude) solution is to avoid logical variables on object level

• another solution is to freeze logical variable so that they become
objects

Freeze and Melt
• the predicate freeze(Term,Frozen) makes a copy of Term into Frozen

• all variables in Term become constants in Frozen

• melt(Frozen,Thawed) is the reversed funcion to freeze

Example

← freeze(f(X,Y),Frozen), ground(Frozen)

Frozen 7→ ...

GM (Institute of Computer Science @ UIBK) Logic Programming 111/1

Variables as Objects

Observation
• the problem comes from a mixing of object-level and meta-level

variables

• one (crude) solution is to avoid logical variables on object level

• another solution is to freeze logical variable so that they become
objects

Freeze and Melt
• the predicate freeze(Term,Frozen) makes a copy of Term into Frozen

• all variables in Term become constants in Frozen

• melt(Frozen,Thawed) is the reversed funcion to freeze

Example

← freeze(f(X,Y),Frozen), ground(Frozen)

Frozen 7→ ...

GM (Institute of Computer Science @ UIBK) Logic Programming 111/1

Variables as Objects

Example

occurs in(X,Term) ←
subterm(Sub,Term),

X == Sub.

Example

occurs in(X,Term) ←
freeze(X,Xf),

freeze(Term,Termf),

subterm(Xf,Termf).

Observations
• two frozen terms X and Y unify iff X==Y holds

• freeze and melt allow to implement substitute/4 without unintended
variable instantiation

GM (Institute of Computer Science @ UIBK) Logic Programming 112/1

Variables as Objects

Example

occurs in(X,Term) ←
subterm(Sub,Term),

X == Sub.

Example

occurs in(X,Term) ←
freeze(X,Xf),

freeze(Term,Termf),

subterm(Xf,Termf).

Observations
• two frozen terms X and Y unify iff X==Y holds

• freeze and melt allow to implement substitute/4 without unintended
variable instantiation

GM (Institute of Computer Science @ UIBK) Logic Programming 112/1

Variables as Objects

Example

occurs in(X,Term) ←
subterm(Sub,Term),

X == Sub.

Example

occurs in(X,Term) ←
freeze(X,Xf),

freeze(Term,Termf),

subterm(Xf,Termf).

Observations
• two frozen terms X and Y unify iff X==Y holds

• freeze and melt allow to implement substitute/4 without unintended
variable instantiation

GM (Institute of Computer Science @ UIBK) Logic Programming 112/1

Meta-Variable Facility

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the
body

Example
X; Y ← X.

X; Y ← Y.

Other Control Predicates

• fail/0 false/0
← fail. ← false.

false false

• true/0
← true.

true

GM (Institute of Computer Science @ UIBK) Logic Programming 113/1

Meta-Variable Facility

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the
body

Example
X; Y ← X.

X; Y ← Y.

Other Control Predicates

• fail/0 false/0
← fail. ← false.

false false

• true/0
← true.

true

GM (Institute of Computer Science @ UIBK) Logic Programming 113/1

Meta-Variable Facility

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the
body

Example
X; Y ← X.

X; Y ← Y.

Other Control Predicates

• fail/0 false/0
← fail. ← false.

false false

• true/0
← true.

true

GM (Institute of Computer Science @ UIBK) Logic Programming 113/1

Meta-Variable Facility

Meta-Variable Facility

Definition

the meta-variable facility allows a variable to appear as a goal or in the
body

Example
X; Y ← X.

X; Y ← Y.

Other Control Predicates

• fail/0 false/0
← fail. ← false.

false false

• true/0
← true.

true

GM (Institute of Computer Science @ UIBK) Logic Programming 113/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
no doubles(Xs,Ys).

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b]

;

X 7→ [b,a,c,b] ;

X 7→ [a,a,c,b] ;

X 7→ [a,b,a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

X 7→ [b,a,c,b]

;

X 7→ [a,a,c,b] ;

X 7→ [a,b,a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

X 7→ [b,a,c,b] ;

X 7→ [a,a,c,b]

;

X 7→ [a,b,a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

X 7→ [b,a,c,b] ;

X 7→ [a,a,c,b] ;

X 7→ [a,b,a,c,b]

;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

X 7→ [b,a,c,b] ;

X 7→ [a,a,c,b] ;

X 7→ [a,b,a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
\+ member(X,Xs),

negation as failure

no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
\+ member(X,Xs),

negation as failure

no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b]

;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
\+ member(X,Xs),

negation as failure

no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs),

!, cut

no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←
\+ member(X,Xs), negation as failure
no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

← no doubles([a,b,a,c,b],X).

X 7→ [a,c,b] ;

false

Effect of Cut

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

Effect of Cut

! succeeds

! fixes all choices between (and including) moment of matching
rule’s head with parent goal and cut

if backtracking reaches !, the cut fails and the search continues from
the last choice made before the clause containing ! was chosen

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

Effect of Cut

! succeeds

! fixes all choices between (and including) moment of matching
rule’s head with parent goal and cut

if backtracking reaches !, the cut fails and the search continues from
the last choice made before the clause containing ! was chosen

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

Effect of Cut

! succeeds

! fixes all choices between (and including) moment of matching
rule’s head with parent goal and cut

if backtracking reaches !, the cut fails and the search continues from
the last choice made before the clause containing ! was chosen

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

Effect of Cut

p(t11, . . . , t1n) ← A1, . . . ,Ak.

...

p(ti1, . . . , tin) ← B1, . . . ,Bi, !, C1, . . . ,Cj.

...

blocked

p(tm1, . . . , tmn) ← D1, . . . ,Dl.

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

Effect of Cut

p(t11, . . . , t1n) ← A1, . . . ,Ak.

...

p(ti1, . . . , tin) ← B1, . . . ,Bi, !, C1, . . . ,Cj.

...

blocked

p(tm1, . . . , tmn) ← D1, . . . ,Dl.

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Example (Removal of Duplicates)

no doubles([],[]).

no doubles([X|Xs],Ys) ←
member(X,Xs), !, cut
no doubles(Xs,Ys).

no doubles([X|Xs],[X|Ys]) ←

no doubles(Xs,Ys).

Effect of Cut

p(t11, . . . , t1n) ← A1, . . . ,Ak.

...

p(ti1, . . . , tin) ← B1, . . . ,Bi, !, C1, . . . ,Cj.

... blocked

p(tm1, . . . , tmn) ← D1, . . . ,Dl.

GM (Institute of Computer Science @ UIBK) Logic Programming 114/1

Cuts

Examples of (Green) Cuts

Example (Without Cuts)

merge([X|Xs], [Y|Ys],[X|Zs]) ←
X < Y, merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[Y|Ys],[X,Y|Zs]) ←
X = Y, merge(Xs,Ys,Zs).

merge([X|Xs],[Y|Ys],[Y|Zs]) ←
X > Y, merge([X|Xs],Ys,Zs).

merge(Xs,[],Xs) .

merge([],Ys,Ys) .

Example

minimum(X,Y,X) ← X 6 Y, !.

minimum(X,Y,Y) ← X > Y, !.

GM (Institute of Computer Science @ UIBK) Logic Programming 115/1

Cuts

Examples of (Green) Cuts

Example (With Cuts)

merge([X|Xs], [Y|Ys],[X|Zs]) ←
X < Y, !, merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[Y|Ys],[X,Y|Zs]) ←
X = Y, !, merge(Xs,Ys,Zs).

merge([X|Xs],[Y|Ys],[Y|Zs]) ←
X > Y, !, merge([X|Xs],Ys,Zs).

merge(Xs,[],Xs) ← !.

merge([],Ys,Ys) ← !.

Example

minimum(X,Y,X) ← X 6 Y, !.

minimum(X,Y,Y) ← X > Y, !.

GM (Institute of Computer Science @ UIBK) Logic Programming 115/1

Cuts

Examples of (Green) Cuts

Example (With Cuts)

merge([X|Xs], [Y|Ys],[X|Zs]) ←
X < Y, !, merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[Y|Ys],[X,Y|Zs]) ←
X = Y, !, merge(Xs,Ys,Zs).

merge([X|Xs],[Y|Ys],[Y|Zs]) ←
X > Y, !, merge([X|Xs],Ys,Zs).

merge(Xs,[],Xs) ← !.

merge([],Ys,Ys) ← !.

Example

minimum(X,Y,X) ← X 6 Y, !.

minimum(X,Y,Y) ← X > Y, !.

GM (Institute of Computer Science @ UIBK) Logic Programming 115/1

Cuts

Fact

(Green) cuts can greatly increase the efficiency by removing redundant
computations

Example

ordered([X]).

ordered([X,Y|Xs]) ← X 6 Y, ordered([Y|Xs]).

sort(Xs,Ys) ←
append(As,[X,Y|Bs],Xs),

X > Y,

append(As,[Y,X|Bs],Xs1),

sort(Xs1,Ys1).

sort(Xs,Xs) ←
ordered(Xs).

← sort([3,2,1],Xs)

Xs 7→ [1,2,3]

GM (Institute of Computer Science @ UIBK) Logic Programming 116/1

Cuts

Fact

(Green) cuts can greatly increase the efficiency by removing redundant
computations

Example

ordered([X]).

ordered([X,Y|Xs]) ← X 6 Y, ordered([Y|Xs]).

sort(Xs,Ys) ←
append(As,[X,Y|Bs],Xs),

X > Y,

append(As,[Y,X|Bs],Xs1),

sort(Xs1,Ys1).

sort(Xs,Xs) ←
ordered(Xs).

← sort([3,2,1],Xs)

Xs 7→ [1,2,3]

GM (Institute of Computer Science @ UIBK) Logic Programming 116/1

Cuts

Fact

(Green) cuts can greatly increase the efficiency by removing redundant
computations

Example

ordered([X]).

ordered([X,Y|Xs]) ← X 6 Y, ordered([Y|Xs]).

sort(Xs,Ys) ←
append(As,[X,Y|Bs],Xs),

X > Y,

append(As,[Y,X|Bs],Xs1),

sort(Xs1,Ys1).

sort(Xs,Xs) ←
ordered(Xs).

← sort([3,2,1],Xs)

Xs 7→ [1,2,3]

GM (Institute of Computer Science @ UIBK) Logic Programming 116/1

Cuts

Fact

(Green) cuts can greatly increase the efficiency by removing redundant
computations

Example

ordered([X]).

ordered([X,Y|Xs]) ← X 6 Y, ordered([Y|Xs]).

sort(Xs,Ys) ←
append(As,[X,Y|Bs],Xs),

X > Y,

append(As,[Y,X|Bs],Xs1),

sort(Xs1,Ys1).

sort(Xs,Xs) ←
ordered(Xs).

← sort([3,2,1],Xs)

Xs 7→ [1,2,3]

GM (Institute of Computer Science @ UIBK) Logic Programming 116/1

Cuts

Fact

(Green) cuts can greatly increase the efficiency by removing redundant
computations

Example

ordered([X]).

ordered([X,Y|Xs]) ← X 6 Y, ordered([Y|Xs]).

sort(Xs,Ys) ←
append(As,[X,Y|Bs],Xs),

X > Y, !,

append(As,[Y,X|Bs],Xs1),

sort(Xs1,Ys1).

sort(Xs,Xs) ←
ordered(Xs), !.

← sort([3,2,1],Xs)

Xs 7→ [1,2,3]

GM (Institute of Computer Science @ UIBK) Logic Programming 116/1

Cuts

Definition (Negation as Failure)

• negation \+ is implemented using cut

• the principle of negation is limited and known as negation as failure

Example

not X ← X, !, fail.

not X.

Observation

if G does not terminate, not(G) may or may not terminate

Example

married(abraham,sarah).

married(X,Y) ← married(Y,X)

← not married(abraham,sarah).

GM (Institute of Computer Science @ UIBK) Logic Programming 117/1

Cuts

Definition (Negation as Failure)

• negation \+ is implemented using cut

• the principle of negation is limited and known as negation as failure

Example

not X ← X, !, fail.

not X.

Observation

if G does not terminate, not(G) may or may not terminate

Example

married(abraham,sarah).

married(X,Y) ← married(Y,X)

← not married(abraham,sarah).

GM (Institute of Computer Science @ UIBK) Logic Programming 117/1

Cuts

Definition (Negation as Failure)

• negation \+ is implemented using cut

• the principle of negation is limited and known as negation as failure

Example

not X ← X, !, fail.

not X.

Observation

if G does not terminate, not(G) may or may not terminate

Example

married(abraham,sarah).

married(X,Y) ← married(Y,X)

← not married(abraham,sarah).

GM (Institute of Computer Science @ UIBK) Logic Programming 117/1

Cuts

Definition (Negation as Failure)

• negation \+ is implemented using cut

• the principle of negation is limited and known as negation as failure

Example

not X ← X, !, fail.

not X.

Observation

if G does not terminate, not(G) may or may not terminate

Example

married(abraham,sarah).

married(X,Y) ← married(Y,X)

← not married(abraham,sarah).

GM (Institute of Computer Science @ UIBK) Logic Programming 117/1

Cuts

Definition (Negation as Failure)

• negation \+ is implemented using cut

• the principle of negation is limited and known as negation as failure

Example

not X ← X, !, fail.

not X.

Observation

if G does not terminate, not(G) may or may not terminate

Example

married(abraham,sarah).

married(X,Y) ← married(Y,X)

← not married(abraham,sarah).

GM (Institute of Computer Science @ UIBK) Logic Programming 117/1

Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t cange the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Bad Cut)

minimum(X,Y,X) ← X 6 Y, .

minimum(X,Y,Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 118/1

Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t cange the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Bad Cut)

minimum(X,Y,X) ← X 6 Y, .

minimum(X,Y,Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 118/1

Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t cange the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (. . .)

minimum(X,Y,X) ← X 6 Y, .

minimum(X,Y,Y).

← minimum(2,5,X)

X = 2
X = 5

GM (Institute of Computer Science @ UIBK) Logic Programming 118/1

Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t cange the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (. . .)

minimum(X,Y,X) ← X 6 Y, !.

minimum(X,Y,Y).

← minimum(2,5,X)

X = 2

GM (Institute of Computer Science @ UIBK) Logic Programming 118/1

Cuts

Green vs Red Cuts

Definition
• a cut is green if the addition of the cut doesn’t cange the meaning

of the program; removing it makes the program potentially
inefficient, but not wrong

• a cut is red if its presence changes the meaning of the program;
removing it, changes the meaning and thus may make the program
wrong

Example (Bad Cut)

minimum(X,Y,X) ← X 6 Y, !.

minimum(X,Y,Y).

← minimum(2,5,5)

true

GM (Institute of Computer Science @ UIBK) Logic Programming 118/1

Cuts

Example of Green and Red Cuts

Example (. . .)

delete([X|Ys],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

Example (Red Cut)

delete([X|Xs],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← !, delete(Ys,X,Zs).

delete([],X,[]).

← \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) ← !.

member(X,[Y|Ys]) ← member(X,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 119/1

Cuts

Example of Green and Red Cuts

Example (Green Cut)

delete([X|Ys],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

Example (Red Cut)

delete([X|Xs],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← !, delete(Ys,X,Zs).

delete([],X,[]).

← \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) ← !.

member(X,[Y|Ys]) ← member(X,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 119/1

Cuts

Example of Green and Red Cuts

Example (Green Cut)

delete([X|Ys],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

Example (. . .)

delete([X|Xs],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← !, delete(Ys,X,Zs).

delete([],X,[]).

← \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) ← !.

member(X,[Y|Ys]) ← member(X,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 119/1

Cuts

Example of Green and Red Cuts

Example (Green Cut)

delete([X|Ys],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

Example (Red Cut)

delete([X|Xs],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← !, delete(Ys,X,Zs).

delete([],X,[]).

← \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) ← !.

member(X,[Y|Ys]) ← member(X,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 119/1

Cuts

Example of Green and Red Cuts

Example (Green Cut)

delete([X|Ys],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

Example (Red Cut)

delete([X|Xs],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← !, delete(Ys,X,Zs).

delete([],X,[]).

← \+ delete([a,b],b,[a,b]).

Example (. . .)

member(X,[X|Xs]) ← !.

member(X,[Y|Ys]) ← member(X,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 119/1

Cuts

Example of Green and Red Cuts

Example (Green Cut)

delete([X|Ys],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← Y 6= X, !, delete(Ys,X,Zs).

delete([],X,[]).

Example (Red Cut)

delete([X|Xs],X,Zs) ← !, delete(Ys,X,Zs).

delete([Y|Ys],X,[Y|Zs]) ← !, delete(Ys,X,Zs).

delete([],X,[]).

← \+ delete([a,b],b,[a,b]).

Example (Red Cut)

member(X,[X|Xs]) ← !.

member(X,[Y|Ys]) ← member(X,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 119/1

Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) ← A, B.

or(A,B) ← A; B.

implies(A,B) ← or(not(A),B).

bind(true).

bind(false).

table(A,B,E) ← bind(A), bind(B), row(A,B,E), fail.

table(, ,) ← nl.

row(A,B,) ← wr(A), write(’ ’), wr(B), write(’ ’), fail.

row(, ,E) ← E, !, wr(true), nl.

row(, ,) ← wr(false), nl.

wr(true) ← write(’T’).

wr(false) ← write(’F’).

← table(A,B,or(A,implies(B,or(B,and(A,B))))).

← table(A,B,false).

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) ← A, B.

or(A,B) ← A; B.

implies(A,B) ← or(not(A),B).

bind(true).

bind(false).

table(A,B,E) ← bind(A), bind(B), row(A,B,E), fail.

table(, ,) ← nl.

row(A,B,) ← wr(A), write(’ ’), wr(B), write(’ ’), fail.

row(, ,E) ← E, !, wr(true), nl.

row(, ,) ← wr(false), nl.

wr(true) ← write(’T’).

wr(false) ← write(’F’).

← table(A,B,or(A,implies(B,or(B,and(A,B))))).

← table(A,B,false).

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) ← A, B.

or(A,B) ← A; B.

implies(A,B) ← or(not(A),B).

bind(true).

bind(false).

table(A,B,E) ← bind(A), bind(B), row(A,B,E), fail.

table(, ,) ← nl.

row(A,B,) ← wr(A), write(’ ’), wr(B), write(’ ’), fail.

row(, ,E) ← E, !, wr(true), nl.

row(, ,) ← wr(false), nl.

wr(true) ← write(’T’).

wr(false) ← write(’F’).

← table(A,B,or(A,implies(B,or(B,and(A,B))))).

← table(A,B,false).

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) ← A, B.

or(A,B) ← A; B.

implies(A,B) ← or(not(A),B).

bind(true).

bind(false).

table(A,B,E) ← bind(A), bind(B), row(A,B,E), fail.

table(, ,) ← nl.

row(A,B,) ← wr(A), write(’ ’), wr(B), write(’ ’), fail.

row(, ,E) ← E, !, wr(true), nl.

row(, ,) ← wr(false), nl.

wr(true) ← write(’T’).

wr(false) ← write(’F’).

← table(A,B,or(A,implies(B,or(B,and(A,B))))).

← table(A,B,false).

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) ← A, B.

or(A,B) ← A; B.

implies(A,B) ← or(not(A),B).

bind(true).

bind(false).

table(A,B,E) ← bind(A), bind(B), row(A,B,E), fail.

table(, ,) ← nl.

row(A,B,) ← wr(A), write(’ ’), wr(B), write(’ ’), fail.

row(, ,E) ← E, !, wr(true), nl.

row(, ,) ← wr(false), nl.

wr(true) ← write(’T’).

wr(false) ← write(’F’).

← table(A,B,or(A,implies(B,or(B,and(A,B))))).

← table(A,B,false).

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Cuts

Example (Truth Tables for Propositional Formulas)

and(A,B) ← A, B.

or(A,B) ← A; B.

implies(A,B) ← or(not(A),B).

bind(true).

bind(false).

table(A,B,E) ← bind(A), bind(B), row(A,B,E), fail.

table(, ,) ← nl.

row(A,B,) ← wr(A), write(’ ’), wr(B), write(’ ’), fail.

row(, ,E) ← E, !, wr(true), nl.

row(, ,) ← wr(false), nl.

wr(true) ← write(’T’).

wr(false) ← write(’F’).

← table(A,B,or(A,implies(B,or(B,and(A,B))))).

← table(A,B,false).

GM (Institute of Computer Science @ UIBK) Logic Programming 120/1

Cuts

Cut-Fail Combinations

Example (Implementing 6=)

X 6= X → !, fail.

X 6= Y.

Example (Implementing if then else)

if then else(P,Q,R) ← P, !, Q.

if then else(P,Q,R) ← R.

Example (Implementing same vars)

same var(foo,Y) ← var(Y), !, fail.

same var(X,Y) ← var(X), var(Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 121/1

Cuts

Cut-Fail Combinations

Example (Implementing 6=)

X 6= X → !, fail.

X 6= Y.

Example (Implementing if then else)

if then else(P,Q,R) ← P, !, Q.

if then else(P,Q,R) ← R.

Example (Implementing same vars)

same var(foo,Y) ← var(Y), !, fail.

same var(X,Y) ← var(X), var(Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 121/1

Cuts

Cut-Fail Combinations

Example (Implementing 6=)

X 6= X → !, fail.

X 6= Y.

Example (Implementing if then else)

if then else(P,Q,R) ← P, !, Q.

if then else(P,Q,R) ← R.

Example (Implementing same vars)

same var(foo,Y) ← var(Y), !, fail.

same var(X,Y) ← var(X), var(Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 121/1

Extra-Logical Predicates

Extra-Logical Predicates

Definition

predicates in Prolog outside of the logic programming model are called
extra-logical predicates

1 predicates concerned with I/0

2 predicates for accessing and manipulating the program

3 predicates for interfacing the operatiing system

input/output

• read(X) is true if X unifies with term read from input stream

• write(X) writes X to output stream; always succeeds

• get(X) is true if X unifies with the ASCII code of the first character

• put(N) writes character corresponding to ASCII code N to output
stream

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Extra-Logical Predicates

Extra-Logical Predicates

Definition

predicates in Prolog outside of the logic programming model are called
extra-logical predicates

1 predicates concerned with I/0

2 predicates for accessing and manipulating the program

3 predicates for interfacing the operatiing system

input/output

• read(X) is true if X unifies with term read from input stream

• write(X) writes X to output stream; always succeeds

• get(X) is true if X unifies with the ASCII code of the first character

• put(N) writes character corresponding to ASCII code N to output
stream

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Extra-Logical Predicates

Extra-Logical Predicates

Definition

predicates in Prolog outside of the logic programming model are called
extra-logical predicates

1 predicates concerned with I/0

2 predicates for accessing and manipulating the program

3 predicates for interfacing the operatiing system

input/output

• read(X) is true if X unifies with term read from input stream

• write(X) writes X to output stream; always succeeds

• get(X) is true if X unifies with the ASCII code of the first character

• put(N) writes character corresponding to ASCII code N to output
stream

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Extra-Logical Predicates

Extra-Logical Predicates

Definition

predicates in Prolog outside of the logic programming model are called
extra-logical predicates

1 predicates concerned with I/0

2 predicates for accessing and manipulating the program

3 predicates for interfacing the operatiing system

input/output

• read(X) is true if X unifies with term read from input stream

• write(X) writes X to output stream; always succeeds

• get(X) is true if X unifies with the ASCII code of the first character

• put(N) writes character corresponding to ASCII code N to output
stream

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Extra-Logical Predicates

Extra-Logical Predicates

Definition

predicates in Prolog outside of the logic programming model are called
extra-logical predicates

1 predicates concerned with I/0

2 predicates for accessing and manipulating the program

3 predicates for interfacing the operatiing system

input/output

• read(X) is true if X unifies with term read from input stream

• write(X) writes X to output stream; always succeeds

• get(X) is true if X unifies with the ASCII code of the first character

• put(N) writes character corresponding to ASCII code N to output
stream

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Extra-Logical Predicates

Extra-Logical Predicates

Definition

predicates in Prolog outside of the logic programming model are called
extra-logical predicates

1 predicates concerned with I/0

2 predicates for accessing and manipulating the program

3 predicates for interfacing the operatiing system

input/output

• read(X) is true if X unifies with term read from input stream

• write(X) writes X to output stream; always succeeds

• get(X) is true if X unifies with the ASCII code of the first character

• put(N) writes character corresponding to ASCII code N to output
stream

GM (Institute of Computer Science @ UIBK) Logic Programming 122/1

Extra-Logical Predicates

Example

read word list(Ws) ←
get(C),

read word list(C,Ws).

read word list(C,[W|Ws]) ←
word char(C),

read word(C,W,C1),

read word list(C1,Ws).

read word list(C,Ws) ←
fill char(C),

get(C1),

read word list(C1,Ws).

read word list(C,[]) ←
end of words char(C).

read word(C,W,C1) ←
word chars(C,Cs,C1),

name(W,Cs).

word chars(C,[C|Cs],C0) ←
word char(C),

!,

get(C1),

word chars(C1,Cs,C0).

word chars(C,[],C) ←
\+ word char(C).

word char(C) ← 97 6 C, C 6 122.

word char(C) ← 65 6 C, C 6 90.

word char(95).

fill char(32).

end of words char(46).

GM (Institute of Computer Science @ UIBK) Logic Programming 123/1

