Summary of Last Lecture

Summary of Last Lecture

ogic

Definition
e functor(Term,F,Arity) is true, if Term is a compound term, whose
principal functor is F with arith Arity

o arg(N,Term,Arg) is true, if Arg is the Nt argument of Term

Logic Programming

Definition
G e Term =.. List is true if List is a list whose head is the principal
eorg Moser e .
functor of Term, and whose tail is the list of arguments of Term
Institute of Computer Science @ UIBK e the operator =. . is also called univ
Summer 2015 Definition

e var(Term) is true if Term is at present an uninstantiated variable
e nonvar(Term) is true if Term is at present not a variable

e ground(Term) is true if Term does not contain variables

GM (Institute of Computer Science @ UIBK Logic Programming

R A" Overview |

Comiparing Nonground Terms Outline of the Lecture
Definition Logic Programs
e X ==Y istrue if X and Y are identical constants, variables, or introduction, basic constructs, database and recursive programming, the-
compound terms ory of logic programs

e X \== Y is true if X and Y are not identical

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Example (Unification with Occurs Check)

< unify with occurs_check(X,f(X)).
false

Remark
SWI-Prolog provides the following predicate that implements unification
with occurs check:

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

unify_with_occurs_check/?2

GM (Institute of Computer Science @ UIBK Logic Programming GM (Institute of Computer Science @ UIBK Logic Programming

http://cl-informatik.uibk.ac.at

Variables as Objects Variables as Objects

Variables as Objects

Example

substitute(01d,New,01d,New) . Observation

substitute(0ld,New,Term, Term) < (logical) variables can be accidentally instantiated
constant (Term) ,
Term # 01d.

substitute(01d,New,Term,Terml) < Exan”ﬂe
compound (Term) , < substitute(a,b,X,X).
functor(Term,F,N), false

functor(Termi,F,N),

substitute(N,01d,New,Term,Terml) .
substitute(N,01d,New,Term,Terml) < Exan”ﬂe (cont d)

N > 0, substitute(01d,New,Term,New) <
arg(N,Term,Arg) , ground(Term), 01d = Term.
substitute(01ld,New,Arg,Argl), substitute(01ld,New,Term,Term) <
arg(N,Terml,Argl), constant (Term), Term #* 01d.
N1 is N - 1, substitute(01ld,New,Var,Var) <

substitute(N1,01d,New,Term,Terml) . var (Var) .
substitute(0,01d,New,Term,Terml) . .

GM (Institute of Computer Science @ UIBK Logic Programming

GM (Institute of Computer Science @ UIBK Logic Programming

Variables as Objects Variables as Objects

Observation Example
e the problem comes from a mixing of object-level and meta-level
. occurs_in(X,Term) <
variables
o)) .] subterm(Sub,Term) ,
e one (crude) solution is to avoid logical variables on object level X == Sub.

e another solution is to freeze logical variable so that they become

objects
Example

Freeze and Melt occurs_in(X,Term) <

e the predicate freeze(Term,Frozen) makes a copy of Term into Frozen freeze(X,Xf),
freeze(Term,Termf),

e all variables in Term become constants in Frozen
subterm (Xf, Termf) .

o melt(Frozen, Thawed) is the reversed funcion to freeze

Observations
e two frozen terms X and Y unify iff X==Y holds
e freeze and melt allow to implement substitute/4 without unintended
variable instantiation

Example
¢ freeze(f(X,Y),Frozen), ground(Frozen)

Frozen —

GM (Institute of Computer Science @ UIBK Logic Programming

GM (Institute of Computer Science @ UIBK Logic Programming 111/1

Meta-Variable Facility Removal of Duplicates

Definiti no_doubles([],[]).
erinition no_doubles([X|Xs],Ys) <«
the meta-variable facility allows a variable to appear as a goal or in the member (X,Xs), !, cut
body no_doubles(Xs,Ys).
no_doubles([X|Xs], [XI1Ys]) «+
no _doubles(Xs,Ys).
Example
X; Y « X. < no_doubles([a,b,a,c,b],X).
X; Y « Y. X — [a,c,b] ;
] false
Other Control Predicates
e fail/0 false/0 Effect of Cut
+ fail. + false. I succeeds
false false ! fixes all choices between (and including) moment of matching
o true/0 rule’s head with parent goal and cut
< true. if backtracking reaches !, the cut fails and the search continues from
true

the last choice made before the clause containing ! was chosen
GM (Institute of Computer Science @ UIBK Logic Programming

GM (Institute of Computer Science @ UIBK] Logic Programming

Examples of (Green) Cuts Fact
(Green) cuts can greatly increase the efficiency by removing redundant
Example (With Cuts) computations

merge([X|Xs], [YIYs],[X|Zs]) <

X <Y, !, merge(Xs,[YIYs],Zs). Example
merge ([X|Xs], [YIYs], [X,Y[|Zs]) <« ordered([X])
X =Y, !, merge(Xs,Ys,Zs). rder :
merge ([X1Xs], [YYs], [Y|Zs]) + ordered([X,Y|Xs]) + X < Y, ordered([Y|Xs]).

X>Y, !, merge([X|Xs],Ys,Zs).
merge (Xs, [1,Xs) « !.
merge([],Ys,¥s) « !.

sort (Xs,Ys) <«
append (As, [X,Y|Bs],Xs),

x>y, !,
append(As, [Y,X|Bs],Xs1),
sort(Xs1,Ys1).
Example sort (Xs,Xs) «
ordered(Xs), !.
minimum(X,Y,X) «+ X < Y, !.
minimum(X,Y,Y) < X > Y, ! «— sort([3,2,1]1,Xs)

Xs — [1,2,3]

GM (Institute of Computer Science @ UIBK Logic Programming GM (Institute of Computer Science @ UIBK

Logic Programming

Definition (Negation as Failure) Green vs Red Cuts

e negation \+ is implemented using cut Definition

e a cut is green if the addition of the cut doesn’t cange the meaning
of the program; removing it makes the program potentially

e the principle of negation is limited and known as negation as failure

Example inefficient, but not wrong
not X « X, !, fail. e a cut is red if its presence changes the meaning of the program;
not X. removing it, changes the meaning and thus may make the program
wrong

Observation

if G does not terminate, not(G) may or may not terminate Example (Bad Cut)
minimum(X,Y,X) < X <Y, !.
Example minimum(X,Y,Y).
married(abraham,sarah) . < minimum(2,5,5)

married(X,Y) < married(Y,X)
< not married(abraham,sarah).

true

GM (Institute of Computer Science @ UIBK Logic Programming GM (Institute of Computer Science @ UIBK} Logic Programming

Example of Green and Red Cuts Example (Truth Tables for Propositional Formulas)
Example (Green Cut) and(A,B) « A, B.
or(A,B) < A; B.
delete([X|Ys],X,Zs) < !, delete(Ys,X,Zs). implies(A,B) < or(not(A),B).
delete([Y|Ys],X,[YIZs]) < Y # X, !, delete(¥s,X,Zs).)
delete([1,X,[1). bind(true).
bind(false).
table(A,B,E) < bind(A), bind(B), row(A,B,E), fail.
Example (Red Cut) table(_, ,) ¢ nl.
delete([X|Xs],X,Zs) «+ !, delete(Ys,X,Zs). row(A,B,) + wr(A), write(’ ’), wr(B), write(’ ’), fail.
delete([Y|Ys],X,[Y|Zs]) « !, delete(Ys,X,Zs). row(, ,E) « E, !, wr(true), nl.
delete([],X,[1). row(_, ,) < wr(false), nl.
< \+ delete([a,b]l,b,[a,b]). wr(true) « write(C’T’).
wr(false) < write(’F’).
Example (Red Cut) < table(A,B,or(A,implies(B,or(B,and(A,B))))).
member (X, [X|Xs]) « !. < table(A,B,false).

member (X, [Y|Ys]) < member(X,Ys).

GM (Institute of Computer Science @ UIBK Logic Programming GM (Institute of Computer Science @ UIBK Logic Programming

Cut-Fail Combinations

Example (Implementing #)
X # X — !, fail.

X # Y.

Example (Implementing if then else)

if _then_ else(P,Q,R) « P,
if then_else(P,Q,R) < R.

I, Q.

Example (Implementing same vars)

same_var (foo,Y) <+ var(Y),

!, fail.

same_var(X,Y) <« var(X), wvar(Y).

GM (Institute of Computer Science @ UIBK]

Extra-Logical Predicates

Example

read_word_list(Ws) <
get(C),
read_word_1list(C,Ws).

read_word_1list(C, [W|Ws]) <«
word_char(C),
read_word(C,wW,C1),
read_word_list(C1,Ws).

read_word_1list(C,Ws) <«
fill_char(C),
get(C1),
read_word_1list(C1,Ws).

read_word_1list(C,[]) <«
end_of _words_char(C) .

read_word(C,W,C1) <
word_chars(C,Cs,C1),
name (W,Cs) .

Logic Programming

word_chars(C, [C|Cs],C0) <«
word_char(C),
I
get(C1),
word_chars(C1,Cs,CO).
word_chars(C, [1,C) <+
\+ word_char(C).

word_char(C) <+ 97 < C, C < 122.
<C, C<

word_char(C) <« 65
word_char (95) .

fill _char(32).
end_of _words_char (46) .

GM (Institute of Computer Science @ UIBK]

GM (Institute of Computer Science @ UIBK

Logic Programming

Extra-Logical Predicates

Extra-Logical Predicates

Definition
predicates in Prolog outside of the logic programming model are called
extra-logical predicates

predicates concerned with 1/0

predicates for accessing and manipulating the program

predicates for interfacing the operatiing system

input/output
e read(X) is true if X unifies with term read from input stream
o write(X) writes X to output stream; always succeeds
o get(X) is true if X unifies with the ASCII code of the first character

e put(N) writes character corresponding to ASCII code N to output
stream

Logic Programming

