ogic

Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015


http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Example (Implementing same_vars)

same_var (foo,Y) <+ var(Y), !, fail.
same_var (X,Y) <« var(X), var(Y).

Example (Bad Cut)

minimum(X,Y,X) < X <Y, !. < minimum(2,5,5)
minimum(X,Y,Y). true

Types of Red Cuts
cuts that are built-in (e.g. in the implementation of negation)

green cuts that become red, when conditions are fulfilled

supposedly green cut that changes the behaviour of the program

GM (Institute of Computer Science @ UIBK) Logic Programming



ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming



ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Program Access and Manipulation

clause database operations

e assert/1

< assert(C).
true

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Program Access and Manipulation

clause database operations

e assert/1

< assert(C).
true

e side effect: add rule C to program

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Program Access and Manipulation

clause database operations

e assert/1

< assert(C).
true

e side effect: add rule C to program

e retract/1

< retract(C).
false

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Program Access and Manipulation

clause database operations

e assert/1

+ assert(().
true

e side effect: add rule C to program

e retract/1

< retract(C).
false

e side effect: remove first rule from program that unifies with C

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Example (Fibonacci Numbers Revisited)

1= dynamic(fibonacci/2).

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Example (Fibonacci Numbers Revisited)

1= dynamic(fibonacci/2).

fibonacci(0,0).

fibonacci(1,1).

fibonacci(N,X) :-
N> 1,
N1 is N-1, fibonacci(N1,Y),
N2 is N-2, fibonacci(N2,Z),
X is Y+Z,

assert(fibonacci(N,X)),
[

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Example (Fibonacci Numbers Revisited)

1= dynamic(fibonacci/2).

fibonacci(0,0).

fibonacci(1,1).

fibonacci(N,X) :-
N> 1,
N1 is N-1, fibonacci(N1,Y),
N2 is N-2, fibonacci(N2,Z),
X is Y+Z,

asserta(fibonacci(N,X)),
[

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Example

edit :- edit(file([]1,[1)).

edit(File) :-
read (Command) ,
edit(File,Command) .

edit(File,exit)
edit(File,Command) :-

apply (Command,File,Filel),
|

edit(Filel).
edit(File,Command) :-
write(Command) ,

write(’ is not applicable’),
!

L

edit(File).

apply (up,file([X|Xs],Ys),
file(Xs, [X1Ys])).
apply(down,file(Xs, [Y|Ys]),
file([Y[Xs],Ys)).
apply(insert(Line), file(Xs,Ys),
file(Xs, [Line|Ys])).
apply(delete,file(Xs, [Y|Ys]),
file(Xs,Ys)).
apply(print,file([X|Xs],Ys),
file([X[Xs],Ys)) :-
write(X), nl.
apply(print(*),file(Xs,Ys),
file(Xs,Y¥s)) :-
reverse (Xs,Xs1),
write file(Xs1),
write_file(Ys).

GM (Institute of Computer Science @ UIBK)

Logic Programming




Operator and Precedences

Query Operator

:— current_op(P,A,*).
P — 400,
A — yfx

GM (Institute of Computer Science @ UIBK) Logic Programming



Operator and Precedences

Query Operator

:— current_op(P,A,*).
P — 400, precedence
A — yfx

GM (Institute of Computer Science @ UIBK) Logic Programming



Operator and Precedences

Query Operator

:— current_op(P,A,*).
P — 400, precedence
A — yfx infix, left-associative

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Operator and Precedences

Query Operator
:— current_op(P,A,*).
P — 400, precedence
A — yfx infix, left-associative
i— 1x2%3 = (1%2)*3. 1= 1%2%3 = 1*x(2x3).
true false

GM (Institute of Computer Science @ UIBK) Logic Programming



Operator and Precedences

Query Operator

:— current_op(P,A,*).

P — 400, precedence

A — yfx infix, left-associative

1= 1%2%3 = (1%2)*3. 1= 1k2%3 = 1% (2%3).
true false

Define Operator

:- op(350, xfy, new).
= X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8))))).

X — 1 new (2%3) * (4x (4 new 5) new (6*7 new 8))

GM (Institute of Computer Science @ UIBK) Logic Programming



Operator and Precedences

Query Operator

:— current_op(P,A,*).

P — 400, precedence

A — yfx infix, left-associative

1= 1%2%3 = (1%2)*3. 1= 1k2%3 = 1% (2%3).
true false

Define Operator

:— op(450, xfy, new).
= X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8))))).

X — (1 new 2%3) * (4x ((4 new 5) new 6% (7 new 8)))

GM (Institute of Computer Science @ UIBK) Logic Programming



Operator and Precedences

Query Operator

:— current_op(P,A,*).

P — 400, precedence

A — yfx infix, left-associative

1= 1%2%3 = (1%2)*3. 1= 1k2%3 = 1% (2%3).
true false

Define Operator

:- op(450, xfy, new).
= X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8))))).

X — (1 new 2%3) * (4x ((4 new 5) new 6% (7 new 8)))

:- op(450, yfx, new).
= X = *(new(1,%*(2,3)),*(4,new(new(4,5) ,*(6,new(7,8))))).

X — (1 new 2%3)* (4% (4 new 5 new 6% (7 new 8)))

GM (Institute of Computer Science @ UIBK) Logic Programming



Program Access and Manipulation

Definition

e if op(Precdence, Associativity, Name) is used in program, then it
has to be added with : -

:— op(350,xfy,new)

e if in a program :- query occurs, then query is directly executed
when the program is loaded

e precedence: positive number, smaller numbers bind stronger
e five modes of associativity

xfy: right-associative, X o Y 0 Z = X o (Y o Z)

yfx: left-associative, X o Y o Z = (X 0 Y) o Z

xfx: non-associative, X o Y o Z will not be parsed

fy: prefix-operator, o X

yf: postfix-operator, X o

GM (Institute of Computer Science @ UIBK) Logic Programming




Efficiency of Prolog Programs

Efficiency of Prolog Programs
Time and Space Complexity

Definition
the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Efficiency of Prolog Programs
Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Efficiency of Prolog Programs
Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations on Space

e space usage depends on the depth of recursion

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Efficiency of Prolog Programs
Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations on Space
e space usage depends on the depth of recursion

e space usage depends also on the number of data structures created

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Efficiency of Prolog Programs
Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations on Space
e space usage depends on the depth of recursion
e space usage depends also on the number of data structures created

e we have already seen that the former may be a major problem:
stack overflow

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Efficiency of Prolog Programs
Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations on Space
e space usage depends on the depth of recursion
e space usage depends also on the number of data structures created

e we have already seen that the former may be a major problem:
stack overflow

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).

Question
What is better?

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).

Question
What is better?

Answer
the first alternative:
e consider
sublist([1,2,3,4],[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4])
e the 1st clause iterates over the 2nd list to find a suitable suffix
e then iterates over the first list
e no intermediate data structures are created

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).

Question
What is better?

Answer
the first alternative:

e consider

sublist([1,2,3,4],[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4])
e the 1st clause iterates over the 2nd list to find a suitable suffix
e then iterates over the first list

e no intermediate data structures are created

e in the 2nd clause an auxilliary list is created

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Definition
we say: the first clause doesn't cons

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Definition
we say: the first clause doesn't cons

Observations on Time

e if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time

e that is, it depends only on the program

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Definition
we say: the first clause doesn't cons

Observations on Time
e if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time
e that is, it depends only on the program
e hence, if full unification is not employed the number of reductions
(= nodes in SLD tree) asymptotically bounds the runtime

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Definition

we say: the first clause doesn't cons

Observations on Time

e if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time

e that is, it depends only on the program

e hence, if full unification is not employed the number of reductions
(= nodes in SLD tree) asymptotically bounds the runtime

e equivalently the number of unifications (performed and attempted)
asymptotically bounds the runtime

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Definition

we say: the first clause doesn't cons

Observations on Time

e if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time

e that is, it depends only on the program

e hence, if full unification is not employed the number of reductions
(= nodes in SLD tree) asymptotically bounds the runtime

e equivalently the number of unifications (performed and attempted)
asymptotically bounds the runtime

e on the other hand, if unification needs to be taken into account time
complexity analysis is more involved

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Definition

we say: the first clause doesn't cons

Observations on Time

e if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time

e that is, it depends only on the program

e hence, if full unification is not employed the number of reductions
(= nodes in SLD tree) asymptotically bounds the runtime

e equivalently the number of unifications (performed and attempted)
asymptotically bounds the runtime

e on the other hand, if unification needs to be taken into account time
complexity analysis is more involved

e in general size of search space and size of input terms needs to be
taken into account

GM (Institute of Computer Science @ UIBK) Logic Programming



Howto Improve Performance

Suggestion @ J

use better algorithms ©

GM (Institute of Computer Science @ UIBK) Logic Programming



Howto Improve Performance

Suggestion @

use better algorithms ©

Example

reverse([X|Xs],Zs) :-
reverse(Xs,Ys),
append(Ys, [X],Zs) .

reverse([],[1).

GM (Institute of Computer Science @ UIBK) Logic Programming



Howto Improve Performance

Suggestion @

use better algorithms ©

Example

reverse([X|Xs],Zs) :-
reverse(Xs,Ys),
append(Ys, [X],Zs) .

reverse([],[1).

Example

reverse(Xs,Ys) :- reverse(Xs,[],Ys).

reverse([X|Xs],Acc,Ys) :-
reverse(Xs, [X|Acc],Ys).
reverse([],Ys,¥s).

GM (Institute of Computer Science @ UIBK) Logic Programming



Suggestion @

tuning, via:
good goal order

elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction

GM (Institute of Computer Science @ UIBK) Logic Programming



Suggestion @

tuning, via:
good goal order

elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction

Example

append ([X|Xs],Ys, [X]Zs]) :-
append (Xs,Ys,Zs) .
append([],Ys,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming



Suggestion @

tuning, via:
good goal order

elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction

Example

append ([X|Xs],Ys, [X]Zs]) :-
append (Xs,Ys,Zs) .
append([],Ys,Ys).

By default, SWI-Prolog, as most other implementations,
indexes predicates on their first argument.

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Recall
e tail recursive programs are called iterative

e reasoning: tail recursion is implemented as iteration which doesn’t
require a stack

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Recall
e tail recursive programs are called iterative

e reasoning: tail recursion is implemented as iteration which doesn’t
require a stack

Definition (tail recursion optimisation)

e consider a generic clause for A

A — Bi,...,B,
such that A and A’ unify with o
e suppose the goal Bio,...,B,_10 is deterministic

e then goal B,o can re-use space for A

GM (Institute of Computer Science @ UIBK) Logic Programming



Efficiency of Prolog Programs

Recall
e tail recursive programs are called iterative

e reasoning: tail recursion is implemented as iteration which doesn’t
require a stack

Definition (tail recursion optimisation)

e consider a generic clause for A

A — Bi,...,B,
such that A and A’ unify with o
e suppose the goal Bio,...,B,_10 is deterministic

e then goal B,o can re-use space for A

Definition
clause indexing is used to detect which clauses are applicable for
reduction: 2nd clause in append need not be considered

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Howto Implement Functions

Functions vs Relations

e often, we want to compute functions:

addition: N x N — N
sorting: list — list

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Howto Implement Functions

Functions vs Relations

e often, we want to compute functions:

addition: N x N — N
sorting: list — list

e in logic programming we just specify relations and every function
can be seen as a relation

ﬁe,(il,...,i,,,ol,...,om) iff f(il,...,in) = (01,.. .,Om)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Howto Implement Functions

Functions vs Relations
e often, we want to compute functions:

addition: N x N — N
sorting: list — list

e in logic programming we just specify relations and every function
can be seen as a relation

ﬁe,(il,...,i,,,ol,...,om) iff f(il,...,in) = (01,.. .,Om)

e that is, we implement functions f(iy,...,i,) = (01,...,0m) by
relations fre/(n + m)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Howto Implement Functions

Functions vs Relations
e often, we want to compute functions:
addition: N x N — N
sorting: list — list
e in logic programming we just specify relations and every function
can be seen as a relation

ﬁe,(il,...,i,,,ol,...,om) iff f(il,...,in) = (01,.. .,Om)

e that is, we implement functions f(iy,...,i,) = (01,...,0m) by
relations fre/(n + m)
e result is obtained by query fre/(i1, ..., in, X1,y Xm)
addition: plus(n, m, Z) Z=n+m
sorting: sort(list, Xs) Xs = sorted version of list

GM (Institute of Computer Science @ UIBK] Logic Programming



Programming tricks

Function Applications
e function applications harder to write down

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Function Applications

e function applications harder to write down
e program f(x) = x2+7- (x> —5)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Function Applications
e function applications harder to write down
e program f(x) = x> +7-(x? —5)
e defining fact
f(X,plus(times(X,X), times(7,minus(times(X,X),5))))

does not work

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Function Applications
e function applications harder to write down
e program f(x) = x> +7-(x? —5)
e defining fact
f(X,plus(times(X,X), times(7,minus(times(X,X),5))))

does not work

e solution: store result of each sub-expression in fresh variable
f(X, ) :- times(X,X,Z),

x> 4+7-(x° —5)

N
z z
—
v
—_———
NS u S
f(x)=y

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Function Applications
e function applications harder to write down
e program f(x) = x> +7-(x? —5)
e defining fact
f(X,plus(times(X,X), times(7,minus(times(X,X),5))))

does not work

e solution: store result of each sub-expression in fresh variable
£f(X, ) :- times(X,X,Z), minus(Z,5,V),

x2 +7-(x* —5)

N~
z z
—
v
—_——
NS u S
f(x)=y

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Function Applications

e function applications harder to write down
e program f(x) = x> +7-(x? —5)
e defining fact
f(X,plus(times(X,X), times(7,minus(times(X,X),5))))
does not work
e solution: store result of each sub-expression in fresh variable

f(X, ) :- times(X,X,Z), minus(Z,5,V), times(7,V,U),

x2 +7-(x* —5)

N~
z z
—
v
—_———
NS u J
f(x)=y

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Function Applications
e function applications harder to write down
e program f(x) = x> +7-(x? —5)
e defining fact
f(X,plus(times(X,X), times(7,minus(times(X,X),5))))

does not work
e solution: store result of each sub-expression in fresh variable
£f(X,Y) :- times(X,X,Z), minus(Z,5,V), times(7,V,U),

plus(Z,U,Y).
2 2
x° +7-(x 5)
z z
v
—_——
NS u J
f(x)=y

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Simulating Functional Programs

e using technique of previous slide, it is easy to transform first-order
functional programs into logic programs

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Simulating Functional Programs

e using technique of previous slide, it is easy to transform first-order
functional programs into logic programs

e remaining difficulty: translating if-then-else

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Simulating Functional Programs

e using technique of previous slide, it is easy to transform first-order
functional programs into logic programs

e remaining difficulty: translating if-then-else

idea: first evaluate condition, and then generate one rule for each
branch

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Simulating Functional Programs

e using technique of previous slide, it is easy to transform first-order
functional programs into logic programs

e remaining difficulty: translating if-then-else

idea: first evaluate condition, and then generate one rule for each
branch

Example (Ackermann function in Haskell)

ack Om=m+ 1

ack (n+1) m = if m == O then ack n 1 else
ack n (ack (n+1) (m-1))

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Simulating Functional Programs

e using technique of previous slide, it is easy to transform first-order
functional programs into logic programs

e remaining difficulty: translating if-then-else

idea: first evaluate condition, and then generate one rule for each
branch

Example (Ackermann function in Haskell)

ack Om=m+ 1

ack (n+1) m = if m == O then ack n 1 else
ack n (ack (n+1) (m-1))

Example (Ackermann function as logic program)

ack(0,M,s(M)).

ack(s(N),M,R) :- =(M,0,B), cond(B,N,M,R).

cond(true,N,M,R) :- ack(N,s(0),R).

cond(false,N,M,R) :- -(M,s(0),U),ack(s(N),U,V),ack(N,V,R).

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Evaluating Arithmetic Expressions

e motivation: use arithmetic expressions as in functional programs

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Evaluating Arithmetic Expressions
e motivation: use arithmetic expressions as in functional programs

e solution: write evaluator eval which computes value of arithmetic
expressions

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Evaluating Arithmetic Expressions
e motivation: use arithmetic expressions as in functional programs

e solution: write evaluator eval which computes value of arithmetic
expressions

e afterwards it is very simple to encode functions, e.g.
f(x) = s(x?) — x°

can be programmed as
£f(X,Y) :- eval(s(X#X) - X*X, Y).

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Evaluating Arithmetic Expressions
e motivation: use arithmetic expressions as in functional programs

e solution: write evaluator eval which computes value of arithmetic
expressions

e afterwards it is very simple to encode functions, e.g.
f(x) = s(x?) — x°

can be programmed as
f(X,Y) :- eval(s(X*X) - X*X, Y).
e evaluator is simple logic program
eval(0,0).
eval(s(E),s(N)) :- eval(E,N).
eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
eval (E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)
|
eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(s(O))*s(s(O))),N§,=Se(:le(s(s(O))*s(s(O)),M), plus(M,Y,N)
eval(s(s(s(O))*s(s(O))I) - s(s(0))*s(s(0)),Y)
f(s(s(IO)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0))*s(s(0)),N1), eval(s(ls(O))*s(s(O)),M), plus(M,Y,s(N1))
eval(s(s(s(O))*s(s(O))),N§,=Se(:le(s(s(O))*s(s(O)),M), plus(M,Y,N)
eval(s(s(s(O))*s(s(O))I) - s(s(0))*s(s(0)),Y)
f(s(s(IO)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0)),N2), eval(s(s(0)),N3), timlzs?;;“j;\lili,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0))*s(s(0)),N1), eval(s(ls(O))*s(s(O)),M), plus(M,Y,s(N1))
eval(s(s(s(O))*s(s(O))),N§,=Se(:le(s(s(O))*s(s(O)),M), plus(M,Y,N)
eval(s(s(s(O))*s(s(O))I) - s(s(0))*s(s(0)),Y)
f(S(s(IO)),Y)

Logic Programming

GM (Institute of Computer Science @ UIBK)



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(0),N4), eval(s(s(0)),N3), times(f(;\lz;ni\h’li,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0)),N2), eval(s(s(0)),N3), timlzs?;;“j;\lili,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0))*s(s(0)),N1), eval(s(ls(O))*s(s(O)),M), plus(M,Y,s(N1))
eval(s(s(s(O))*s(s(O))),N§,=Se(:le(s(s(O))*s(s(O)),M), plus(M,Y,N)
eval(s(s(s(O))*s(s(O))I) - s(s(0))*s(s(0)),Y)
f(S(s(IO)),Y)

Logic Programming

GM (Institute of Computer Science @ UIBK)



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N5 =0 |

eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N4 = s(Ns) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

eval(s(s(0)),N2), eval(s(s(0)),N3), timlzs?;;“j;\lili,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0))*s(s(0)),N1), eval(s(ls(O))*s(s(O)),M), plus(M,Y,s(N1))
eval(s(s(s(O))*s(s(O))),N§,=Se(:le(s(s(O))*s(s(O)),M), plus(M,Y,N)
eval(s(s(s(O))*s(s(O))I) - s(s(0))*s(s(0)),Y)
f(S(s(IO)),Y)

GM (Institute of Computer Science @ UIBK)

Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0)),N3), times(s(s(O))P:i\I;jI:Isl(;”,) “eval(s(s(O))*s(s(O)),M), plus(M,Y,s(N1))

eval(0,N5), eval(s(s(0)),N3), times(s(s(N;)s;,(I)\K‘S,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(0),N4), eval(s(s(0)),N3), times(?(;lz;“i\h"i,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0)),N2), eval(s(s(0)),N3), timlzs?;;“j;\li‘i,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

eval(s(s(0))*s(s(0)),N1), eval(s(‘s(O))*s(s(O)),M), plus(M,Y,s(N1))

eval(s(s(s(O))*s(s(O))),N;ljSe(:lzil‘(s(s(o))*s(s(o)),M), plus(M,Y,N)
eval(s(s(s(O))*s(s(O))‘) - s(s(0))*s(s(0)),Y)
f(S(s(‘O)),Y)

GM (Institute of Computer Science @ UIBK)

Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0))) ||
times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0)),N3), times(s(s(O))P:i\I;jI:Isl(;”,) “eval(s(s(O))*s(s(O)),M), plus(M,Y,s(N1))

eval(0,N5), eval(s(s(0)),N3), times(s(s(N;)s;,(I)\K‘S,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(0),N4), eval(s(s(0)),N3), times(?(;lz;“i\h"i,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
eval(s(s(0)),N2), eval(s(s(0)),N3), timlzs?;;“j;\li‘i,Nl), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

eval(s(s(0))*s(s(0)),N1), eval(s(‘s(O))*s(s(O)),M), plus(M,Y,s(N1))

eval(s(s(s(O))*s(s(O))),N;ljSe(:lzil‘(s(s(o))*s(s(o)),M), plus(M,Y,N)
eval(s(s(s(O))*s(s(O))‘) - s(s(0))*s(s(0)),Y)
f(S(S(‘O)),Y)

GM (Institute of Computer Science @ UIBK)

Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

plus(s(s(s(s(0)))),¥,s(s(s(s(s(0))))))
M= s(s(s(s(0))) ||
eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0)))) ||
times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N3 = s(s(0)) ||
eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N5 =0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N4 = s(us) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N2 = s(u4) |
eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
I
eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N = s |
eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)
I
eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
I
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK)

Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

a
Y =50 |
plus(s(s(s(s(0)))),¥,s(s(s(s(s(0))))))
M= s(s(s(s(0))) ||
eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0)))) ||
times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N3 = s(s(0)) ||
eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N5 =0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N4 = s(Ns) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N2 = s(u4) |
eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
I
eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N = s |
eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)
I
eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
I
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK)

Logic Programming



Programming tricks

Example (£(X,Y) :- eval(s(X*X) - X*X, Y).)

a
Y =50 |
plus(s(s(s(s(0)))),¥,s(s(s(s(s(0))))))
M= s(s(s(s(0))) ||
eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0)))) ||
times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N3 = s(s(0)) ||
eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N5 =0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N4 = s(Ns) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N2 = s(u4) |
eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
I
eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
N = s |
eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)
I
eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
I
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK)

Logic Programming



Programming tricks

Speeding up evaluation using “let”
e consider sub-expression X*X

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Speeding up evaluation using “let”
e consider sub-expression X*X
e solution: f(x) = (let x2 = x? in s(x2) — x2)

GM (Institute of Computer Science @ UIBK] Logic Programming



Programming tricks

Speeding up evaluation using “let”
e consider sub-expression X*X
e solution: f(x) = (let x2 = x? in s(x2) — x2)

e adding support for let in evaluator

GM (Institute of Computer Science @ UIBK] Logic Programming



Programming tricks

Speeding up evaluation using “let”

e consider sub-expression X*X

e solution: f(x) = (let x2 = x? in s(x2) — x2)

e adding support for let in evaluator

e let(X,E,F) encodes let x = e in f
eval(0,0).
eval(s(E),s(N)) :- eval(E,N).
eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
eval (E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).
eval (let (X,E,F),K) :- eval(E,N), X = N, eval(F,K).

GM (Institute of Computer Science @ UIBK] Logic Programming



Programming tricks

Speeding up evaluation using “let”

e consider sub-expression X*X

e solution: f(x) = (let x2 = x? in s(x2) — x2)

e adding support for let in evaluator

e let(X,E,F) encodes let x = e in f
eval(0,0).
eval(s(E),s(N)) :- eval(E,N).
eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
eval (E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).
eval (let (X,E,F),K) :- eval(E,N), X = N, eval(F,K).

Example

£f(X,Y) :- eval(s(X*X) - Xx*X, Y).
£(X,Y) :- eval(let(X2, X*X, s(X2) - X2), Y).

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

£(s(s(0)),¥)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
f(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0)))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
f(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0)))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
f(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
|
eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0)))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£ (X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))
N = s(s(s(s(s(0)))) ||
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
|
eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0)))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£ (X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(00))) ||
eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))
N = s(s(s(s(s(0)))) ||
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
|
eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0)))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£ (X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

O
Y = s(0) ”
plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(00))) ||
eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))
N = s(s(s(s(s(0)))) ||
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
|
eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0)))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
f(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£ (X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

O
Y = s(0) ”
plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(00))) ||
eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))
N = s(s(s(s(s(0)))) ||
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
|
eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
f(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£ (X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

O
Y = s(0) ”
plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(00))) ||
eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))
N = s(s(s(s(s(0)))) ||
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)
|
eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
X2 = s(s(s(s(0)))) |
X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0)))) ||
eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
|
eval (let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
|
f(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Speeding up “let” even further

e detected problems:

after computing x?, result is evaluated again
eval(s(s(s(s(0)))),M)
eval also steps into initial input

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Speeding up “let” even further

e detected problems:
after computing x?, result is evaluated again
eval(s(s(s(s(0)))),M)
eval also steps into initial input
e solution: add new constructor num which states that the argument
is a number, and hence, does not have to be evaluated

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval (E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).
eval (num(N),N).

eval (let(X,E,F),K) :- eval(E,N),X = num(N), eval(F,K).

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Speeding up “let” even further

e detected problems:
after computing x?, result is evaluated again
eval(s(s(s(s(0)))),M)
eval also steps into initial input
e solution: add new constructor num which states that the argument
is a number, and hence, does not have to be evaluated

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval (E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval (E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval (ExF,K) :- eval(E,N), eval(F,M), times(N,M,K).
eval (num(N),N).

eval(let(X,E,F),K) :- eval(E,N),X = num(N), eval(F,K).

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2) ,Y))

£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2) ,Y))

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2) ,Y))

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = nun(s(s(0))) |
GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2) ,Y))

eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)
eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = nun(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2) ,Y))

eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = nun(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval (let (X2,GX*GX,s (X2)-X2),Y))

eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s() |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = nun(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval (let (X2,GX*GX,s (X2)-X2),Y))

times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval (let (X2,GX*GX,s (X2)-X2),Y))

X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval (let (X2,GX*GX,s (X2)-X2),Y))

eval(s(nun(s(s(s(s(0))))))-nun(s(s(s(s(0))))),Y)
X2 = nun(s(s(s(s(0))))) |
X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y):-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2),Y))

eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

|
eval(s(nun(s(s(s(s(0))))))-nun(s(s(s(s(0))))),Y)
X2 = nun(s(s(s(s(0))))) |
X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y):-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2),Y))

eval (nun(s(s(s(s(0))))),N1), eval (num(s(s(s(s(0))))),M), plus(M,Y,s(N1))
N =sND) |
eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

|
eval(s(nun(s(s(s(s(0))))))-nun(s(s(s(s(0))))),Y)
X2 = nun(s(s(s(s(0))))) |
X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y):-GX=num(X) ,eval(let (X2,GX*GX,s (X2)-X2),Y))

eval (num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(00))) |
eval (nun(s(s(s(s(0))))),N1), eval (num(s(s(s(s(0))))),M), plus(M,Y,s(N1))
N =sND) |
eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

|
eval(s(nun(s(s(s(s(0))))))-nun(s(s(s(s(0))))),Y)
X2 = nun(s(s(s(s(0))))) |
X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval (let (X2,GX*GX,s (X2)-X2) ,Y))

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M= s(s(s(s(0)))) |
eval (num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0)))) |
eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1))
N =sND) |
eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

|
eval(s(nun(s(s(s(s(0))))))-nun(s(s(s(s(0))))),Y)
X2 = nun(s(s(s(s(0))))) |
X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



Programming tricks

Example (£(X,Y) :-GX=num(X) ,eval (let (X2,GX*GX,s (X2)-X2) ,Y))

O
Y =50 |
plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M= s(s(s(s(0)))) |
eval (num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0)))) |
eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1))
N =sND) |
eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

|
eval(s(nun(s(s(s(s(0))))))-nun(s(s(s(s(0))))),Y)
X2 = nun(s(s(s(s(0))))) |
X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0)) ||
times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0)) |
eval (num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0)) |
eval (num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)
|
eval (num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval (let (X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0))) |

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

|
£(s(s(0)),Y)

GM (Institute of Computer Science @ UIBK) Logic Programming



