

Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

Summary of Last Lecture

```
Example (Implementing same_vars)

same_var(foo,Y) 

var(Y), !, fail.

same_var(X,Y) 

var(X), var(Y).
```

Example (Bad Cut)

Types of Red Cuts

- 1 cuts that are built-in (e.g. in the implementation of negation)
- 2 green cuts that become red, when conditions are fulfilled
- 3 supposedly green cut that changes the behaviour of the program

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

clause database operations

• assert/1

```
\leftarrow assert(C).
```

clause database operations

assert/1
 ← assert(C).
 true

• side effect: add rule C to program

clause database operations

```
assert/1
    ← assert(C).
    true
```

- side effect: add rule C to program
- retract/1
 ← retract(C).
 false

clause database operations

```
assert/1
    ← assert(C).
```

- side effect: add rule C to program
- retract/1
 ← retract(C).
 false
- side effect: remove first rule from program that unifies with C

Example (Fibonacci Numbers Revisited)

:- dynamic(fibonacci/2).

Example (Fibonacci Numbers Revisited)

```
:- dynamic(fibonacci/2).
fibonacci(0,0).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X is Y+Z,
    assert(fibonacci(N,X)),
!.
```

Example (Fibonacci Numbers Revisited)

```
:- dynamic(fibonacci/2).
fibonacci(0,0).
fibonacci(1,1).
fibonacci(N,X) :-
    N > 1,
    N1 is N-1, fibonacci(N1,Y),
    N2 is N-2, fibonacci(N2,Z),
    X is Y+Z,
    asserta(fibonacci(N,X)),
!.
```

```
apply(up,file([X|Xs],Ys),
edit :- edit(file([],[])).
                                    file(Xs,[X|Ys])).
edit(File) :-
                                apply(down,file(Xs,[Y|Ys]),
  read(Command),
                                    file([Y|Xs],Ys)).
  edit(File, Command).
                                apply(insert(Line), file(Xs,Ys),
                                    file(Xs,[Line|Ys])).
edit(File,exit) :- !.
                                apply(delete,file(Xs,[Y|Ys]),
edit(File,Command) :-
                                    file(Xs,Ys)).
  apply(Command, File, File1),
                                apply(print,file([X|Xs],Ys),
                                    file([X|Xs],Ys)) :=
  edit(File1).
                                  write(X), nl.
edit(File,Command) :-
                                apply(print(*),file(Xs,Ys),
  write(Command),
                                    file(Xs,Ys)) :-
  write(' is not applicable'),
                                  reverse(Xs, Xs1),
                                  write_file(Xs1),
  edit(File).
                                  write_file(Ys).
```

```
:- current_op(P,A,*). P \mapsto 400, A \mapsto yfx
```

```
:- current_op(P,A,*). 
 P \mapsto 400, precedence 
 A \mapsto yfx
```

```
:- current_op(P,A,*). 
 P \mapsto 400, precedence 
 A \mapsto yfx infix, left-associative
```

```
:- current_op(P,A,*).

P \mapsto 400, precedence
A \mapsto yfx infix, left-associative

:- 1*2*3 = (1*2)*3. :- 1*2*3 = 1*(2*3).

true false
```

Query Operator

```
:- current_op(P,A,*).

P \mapsto 400, precedence
A \mapsto yfx infix, left-associative

:- 1*2*3 = (1*2)*3. :- 1*2*3 = 1*(2*3).

true false
```

Define Operator

```
:- op(350, xfy, new).

:- X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8)))).

X \mapsto 1 \text{ new } (2*3) * (4* (4 \text{ new } 5) \text{ new } (6*7 \text{ new } 8))
```

Query Operator

Define Operator

```
:- op(450, xfy, new).

:- X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8)))).

X \mapsto (1 \text{ new } 2*3) * (4* ((4 \text{ new } 5) \text{ new } 6* (7 \text{ new } 8)))
```

Query Operator

```
:- current_op(P,A,*).

P \mapsto 400, precedence
A \mapsto yfx infix, left-associative

:- 1*2*3 = (1*2)*3. :- 1*2*3 = 1*(2*3).

true false
```

Define Operator

```
:- op(450, xfy, new).

:- X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8))))).

X \mapsto (1 \text{ new } 2*3) * (4* ((4 \text{ new } 5) \text{ new } 6* (7 \text{ new } 8)))

:- op(450, yfx, new).

:- X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8))))).

X \mapsto (1 \text{ new } 2*3)* (4* (4 \text{ new } 5 \text{ new } 6* (7 \text{ new } 8)))
```

 if op(Precdence, Associativity, Name) is used in program, then it has to be added with:

```
:- op(350,xfy,new)
```

- if in a program :- query occurs, then query is directly executed when the program is loaded
- precedence: positive number, smaller numbers bind stronger
- five modes of associativity
 - xfy: right-associative, X o Y o Z = X o (Y o Z)
 - yfx: left-associative, X o Y o Z = (X o Y) o Z
 - xfx: non-associative, X o Y o Z will not be parsed
 - fy: prefix-operator, o X
 - yf: postfix-operator, X o

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory requirement of a program as a function of the size of its input

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory requirement of a program as a function of the size of its input

Observations on Space

• space usage depends on the depth of recursion

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory requirement of a program as a function of the size of its input

Observations on Space

- space usage depends on the depth of recursion
- space usage depends also on the number of data structures created

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory requirement of a program as a function of the size of its input

Observations on Space

- space usage depends on the depth of recursion
- space usage depends also on the number of data structures created
- we have already seen that the former may be a major problem: stack overflow

Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory requirement of a program as a function of the size of its input

Observations on Space

- space usage depends on the depth of recursion
- space usage depends also on the number of data structures created
- we have already seen that the former may be a major problem: stack overflow

```
sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).
```

```
sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).
```

Question

What is better?

```
sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).
```

Question

What is better?

Answer

the first alternative:

consider

```
sublist([1,2,3,4],[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4])
```

- the 1st clause iterates over the 2nd list to find a suitable suffix
- then iterates over the first list
- no intermediate data structures are created

```
sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).
sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).
```

Question

What is better?

Answer

the first alternative:

consider

- the 1st clause iterates over the 2nd list to find a suitable suffix
- then iterates over the first list
- no intermediate data structures are created
- in the 2nd clause an auxilliary list is created

we say: the first clause doesn't cons

we say: the first clause doesn't cons

- if full unification (unification of two arbitrary terms in goals) is not employed, reduction of a goal using a clause needs constant time
- that is, it depends only on the program

we say: the first clause doesn't cons

- if full unification (unification of two arbitrary terms in goals) is not employed, reduction of a goal using a clause needs constant time
- that is, it depends only on the program
- hence, if full unification is not employed the number of reductions (= nodes in SLD tree) asymptotically bounds the runtime

we say: the first clause doesn't cons

- if full unification (unification of two arbitrary terms in goals) is not employed, reduction of a goal using a clause needs constant time
- · that is, it depends only on the program
- hence, if full unification is not employed the number of reductions (= nodes in SLD tree) asymptotically bounds the runtime
- equivalently the number of unifications (performed and attempted) asymptotically bounds the runtime

we say: the first clause doesn't cons

- if full unification (unification of two arbitrary terms in goals) is not employed, reduction of a goal using a clause needs constant time
- · that is, it depends only on the program
- hence, if full unification is not employed the number of reductions (= nodes in SLD tree) asymptotically bounds the runtime
- equivalently the number of unifications (performed and attempted) asymptotically bounds the runtime
- on the other hand, if unification needs to be taken into account time complexity analysis is more involved

we say: the first clause doesn't cons

- if full unification (unification of two arbitrary terms in goals) is not employed, reduction of a goal using a clause needs constant time
- that is, it depends only on the program
- hence, if full unification is not employed the number of reductions (= nodes in SLD tree) asymptotically bounds the runtime
- equivalently the number of unifications (performed and attempted) asymptotically bounds the runtime
- on the other hand, if unification needs to be taken into account time complexity analysis is more involved
- in general size of search space and size of input terms needs to be taken into account

Howto Improve Performance

 $Suggestion \ {\tiny \textcircled{1}}$

use better algorithms ©

Howto Improve Performance

 $Suggestion \ {\tiny \textcircled{1}}$

use better algorithms ©

Example

```
reverse([X|Xs],Zs) :-
    reverse(Xs,Ys),
    append(Ys,[X],Zs).
reverse([],[]).
```

Howto Improve Performance

$Suggestion \ {\tiny \textcircled{1}}$

use better algorithms ©

Example

```
reverse([X|Xs],Zs) :-
    reverse(Xs,Ys),
    append(Ys,[X],Zs).
reverse([],[]).
```

Example

```
reverse(Xs,Ys) :- reverse(Xs,[],Ys).
reverse([X|Xs],Acc,Ys) :-
    reverse(Xs,[X|Acc],Ys).
reverse([],Ys,Ys).
```

Suggestion ②

tuning, via:

- good goal order
- elimination of (unwanted) nondeterminism by using explicit conditions and cuts
- exploit clause indexing (order arguments suitably) indexing performs static analysis to detect clauses which are applicable for reduction

Suggestion ②

tuning, via:

- good goal order
- elimination of (unwanted) nondeterminism by using explicit conditions and cuts
- exploit clause indexing (order arguments suitably) indexing performs static analysis to detect clauses which are applicable for reduction

Example

```
append([X|Xs],Ys,[X|Zs]) :-
    append(Xs,Ys,Zs).
append([],Ys,Ys).
```

Suggestion 2

tuning, via:

- 1 good goal order
- elimination of (unwanted) nondeterminism by using explicit conditions and cuts
- exploit clause indexing (order arguments suitably) indexing performs static analysis to detect clauses which are applicable for reduction

Example

```
append([X|Xs],Ys,[X|Zs]) :-
    append(Xs,Ys,Zs).
append([],Ys,Ys).
```

By default, SWI-Prolog, as most other implementations, indexes predicates on their first argument.

Recall

- tail recursive programs are called iterative
- reasoning: tail recursion is implemented as iteration which doesn't require a stack

Recall

- tail recursive programs are called iterative
- reasoning: tail recursion is implemented as iteration which doesn't require a stack

Definition (tail recursion optimisation)

• consider a generic clause for A

$$A' \leftarrow B_1, \ldots, B_n$$

such that A and A' unify with σ

- suppose the goal $B_1\sigma, \ldots, B_{n-1}\sigma$ is deterministic
- then goal $B_n\sigma$ can re-use space for A

Recall

- tail recursive programs are called iterative
- reasoning: tail recursion is implemented as iteration which doesn't require a stack

Definition (tail recursion optimisation)

• consider a generic clause for A

$$A' \leftarrow B_1, \ldots, B_n$$

such that A and A' unify with σ

- suppose the goal $B_1\sigma, \ldots, B_{n-1}\sigma$ is deterministic
- then goal $B_n\sigma$ can re-use space for A

Definition

clause indexing is used to detect which clauses are applicable for reduction: 2nd clause in append need not be considered

Functions vs Relations

often, we want to compute functions:

1 addition: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

2 sorting: $list \rightarrow list$

Functions vs Relations

- often, we want to compute functions:
 - **1** addition: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 - 2 sorting: $list \rightarrow list$
- in logic programming we just specify relations and every function can be seen as a relation

$$f_{rel}(i_1, \ldots, i_n, o_1, \ldots, o_m)$$
 iff $f(i_1, \ldots, i_n) = (o_1, \ldots, o_m)$

Functions vs Relations

- often, we want to compute functions:
 - **1** addition: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 - 2 sorting: $list \rightarrow list$
- in logic programming we just specify relations and every function can be seen as a relation

$$f_{rel}(i_1, \ldots, i_n, o_1, \ldots, o_m)$$
 iff $f(i_1, \ldots, i_n) = (o_1, \ldots, o_m)$

• that is, we implement functions $f(i_1, \ldots, i_n) = (o_1, \ldots, o_m)$ by relations $f_{rel}/(n+m)$

Functions vs Relations

- often, we want to compute functions:
 - **1** addition: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 - 2 sorting: $list \rightarrow list$
- in logic programming we just specify relations and every function can be seen as a relation

$$f_{rel}(i_1, \ldots, i_n, o_1, \ldots, o_m)$$
 iff $f(i_1, \ldots, i_n) = (o_1, \ldots, o_m)$

- that is, we implement functions $f(i_1, \ldots, i_n) = (o_1, \ldots, o_m)$ by relations $f_{rel}/(n+m)$
- result is obtained by query $f_{rel}(i_1, \ldots, i_n, X_1, \ldots, X_m)$
 - 1 addition: plus(n, m, Z)

Z = n + m

2 sorting: sort(list, Xs)

Xs =sorted version of *list*

• function applications harder to write down

- function applications harder to write down
 - program $f(x) = x^2 + 7 \cdot (x^2 5)$

- function applications harder to write down
 - program $f(x) = x^2 + 7 \cdot (x^2 5)$
 - defining fact

```
f(X,plus(times(X,X), times(7,minus(times(X,X),5))))
does not work
```

- function applications harder to write down
 - program $f(x) = x^2 + 7 \cdot (x^2 5)$
 - defining fact
 f(X,plus(times(X,X), times(7,minus(times(X,X),5))))
 does not work
- solution: store result of each sub-expression in fresh variable
 f(X,): times(X,X,Z),

- function applications harder to write down
 - program $f(x) = x^2 + 7 \cdot (x^2 5)$
 - defining fact
 f(X,plus(times(X,X), times(7,minus(times(X,X),5))))
 does not work
- solution: store result of each sub-expression in fresh variable
 f(X,): times(X,X,Z), minus(Z,5,V),

- function applications harder to write down
 - program $f(x) = x^2 + 7 \cdot (x^2 5)$
 - defining fact
 f(X,plus(times(X,X), times(7,minus(times(X,X),5))))
 does not work
- solution: store result of each sub-expression in fresh variable
 f(X,) :- times(X,X,Z), minus(Z,5,V), times(7,V,U),

$$\underbrace{x^2}_{z} + 7 \cdot (\underbrace{x^2}_{z} - 5)$$

- function applications harder to write down
 - program $f(x) = x^2 + 7 \cdot (x^2 5)$
 - defining fact
 f(X,plus(times(X,X), times(7,minus(times(X,X),5))))
 does not work
- solution: store result of each sub-expression in fresh variable
 f(X,Y) :- times(X,X,Z), minus(Z,5,V), times(7,V,U),
 plus(Z,U,Y).

$$\underbrace{x^2}_{z} + 7 \cdot (\underbrace{x^2}_{z} - 5)$$

 using technique of previous slide, it is easy to transform first-order functional programs into logic programs

- using technique of previous slide, it is easy to transform first-order functional programs into logic programs
- remaining difficulty: translating if-then-else

- using technique of previous slide, it is easy to transform first-order functional programs into logic programs
- remaining difficulty: translating if-then-else idea: first evaluate condition, and then generate one rule for each branch

- using technique of previous slide, it is easy to transform first-order functional programs into logic programs
- remaining difficulty: translating if-then-else idea: first evaluate condition, and then generate one rule for each branch

- using technique of previous slide, it is easy to transform first-order functional programs into logic programs
- remaining difficulty: translating if-then-else idea: first evaluate condition, and then generate one rule for each branch

```
Example (Ackermann function as logic program) ack(0,M,s(M)). ack(s(N),M,R) := =(M,0,B), cond(B,N,M,R). cond(true,N,M,R) := ack(N,s(0),R). cond(false,N,M,R) := -(M,s(0),U),ack(s(N),U,V),ack(N,V,R).
```

• motivation: use arithmetic expressions as in functional programs

- motivation: use arithmetic expressions as in functional programs
- solution: write evaluator eval which computes value of arithmetic expressions

- motivation: use arithmetic expressions as in functional programs
- solution: write evaluator eval which computes value of arithmetic expressions
- afterwards it is very simple to encode functions, e.g.

$$f(x) = s(x^2) - x^2$$

can be programmed as

$$f(X,Y) := eval(s(X*X) - X*X, Y).$$

- motivation: use arithmetic expressions as in functional programs
- solution: write evaluator eval which computes value of arithmetic expressions
- afterwards it is very simple to encode functions, e.g.

$$f(x) = s(x^2) - x^2$$

can be programmed as

```
f(X,Y) := eval(s(X*X) - X*X, Y).
```

evaluator is simple logic program

```
eval(0,0).
eval(s(E),s(N)) :- eval(E,N).
eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).
```

Example
$$(f(X,Y) := eval(s(X*X) - X*X, Y).)$$

f(s(s(0)),Y)

Example
$$(f(X,Y) := eval(s(X*X) - X*X, Y).)$$

Example
$$(f(X,Y) := eval(s(X*X) - X*X, Y).)$$

$$\begin{array}{c} {\rm eval}(s(s(s(0))*s(s(0))), \mathbb{N}), \ {\rm eval}(s(s(0))*s(s(0)), \mathbb{M}), \ {\rm plus}(\mathbb{M}, \mathbb{Y}, \mathbb{N}) \\ & | \\ & {\rm eval}(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)), \mathbb{Y}) \\ & | \\ & f(s(s(0)), \mathbb{Y}) \\ \end{array}$$

Example
$$(f(X,Y) := eval(s(X*X) - X*X, Y).)$$

Example
$$(f(X,Y) := eval(s(X*X) - X*X, Y).)$$

Example
$$(f(X,Y) := eval(s(X*X) - X*X, Y).)$$

```
Example (f(X,Y) := eval(s(X*X) - X*X, Y).)
```

```
Example (f(X,Y) := eval(s(X*X) - X*X, Y).)
```

```
Example (f(X,Y) := eval(s(X*X) - X*X, Y).)
```

```
times(s(s(0)), s(s(0)), N1), eval(s(s(0))*s(s(0)), M), plus(M,Y,s(N1))
                                       N3 = s(s(0))
      eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                           N5 = 0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                        N4 = s(N5) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                        N2 = s(N4)
eval(s(s(0)), N2), eval(s(s(0)), N3), times(N2, N3, N1), eval(s(s(0))*s(s(0)), M), plus(M, Y, s(N1))
              eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N = s(N1)
               eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N))
                         eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
                                          f(s(s(0)), Y)
```

Example (f(X,Y) := eval(s(X*X) - X*X, Y).)

```
eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0)))))))
                                   N1 = s(s(s(s(0))))
             times(s(s(0)), s(s(0)), N1), eval(s(s(0))*s(s(0)), M), plus(M,Y,s(N1))
                                       N3 = s(s(0))
      eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                           N5 = 0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N4 = s(N5) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N2 = s(N4)
eval(s(s(0)), N2), eval(s(s(0)), N3), times(N2, N3, N1), eval(s(s(0))*s(s(0)), M), plus(M, Y, s(N1))
              eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N = s(N1)
               eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N))
                         eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
                                          f(s(s(0)), Y)
```

Example (f(X,Y) := eval(s(X*X) - X*X, Y).)

```
plus(s(s(s(s(0)))), Y, s(s(s(s(s(0))))))
                                    M = s(s(s(s(0))))
                      eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0)))))))
                                   N1 = s(s(s(s(0))))
             times(s(s(0)), s(s(0)), N1), eval(s(s(0))*s(s(0)), M), plus(M,Y,s(N1))
                                       N3 = s(s(0))
      eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                           N5 = 0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N4 = s(N5) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N2 = s(N4)
eval(s(s(0)), N2), eval(s(s(0)), N3), times(N2, N3, N1), eval(s(s(0))*s(s(0)), M), plus(M, Y, s(N1))
              eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N = s(N1)
               eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N))
                         eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
                                          f(s(s(0)), Y)
```

```
Example (f(X,Y) := eval(s(X*X) - X*X, Y).)
                                         Y = s(0)
                            plus(s(s(s(s(0)))), Y, s(s(s(s(s(0))))))
                                   M = s(s(s(s(0))))
                      eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0)))))))
                                  N1 = s(s(s(s(0))))
             times(s(s(0)), s(s(0)), N1), eval(s(s(0))*s(s(0)), M), plus(M,Y,s(N1))
                                      N3 = s(s(0))
       eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                           N5 = 0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                        N4 = s(N5) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                        N2 = s(N4)
eval(s(s(0)), N2), eval(s(s(0)), N3), times(N2, N3, N1), eval(s(s(0))*s(s(0)), M), plus(M, Y, s(N1))
              eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N = s(N1)
               eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N))
                         eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
                                         f(s(s(0)), Y)
```

```
Example (f(X,Y) := eval(s(X*X) - X*X, Y).)
                                         Y = s(0)
                            plus(s(s(s(s(0)))), Y, s(s(s(s(s(0))))))
                                   M = s(s(s(s(0))))
                      eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0)))))))
                                  N1 = s(s(s(s(0))))
             times(s(s(0)), s(s(0)), N1), eval(s(s(0))*s(s(0)), M), plus(M,Y,s(N1))
                                      N3 = s(s(0))
       eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                           N5 = 0 |
eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                        N4 = s(N5) |
eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                        N2 = s(N4)
eval(s(s(0)), N2), eval(s(s(0)), N3), times(N2, N3, N1), eval(s(s(0))*s(s(0)), M), plus(M, Y, s(N1))
              eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))
                                         N = s(N1)
               eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N))
                         eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)
                                         f(s(s(0)), Y)
```

• consider sub-expression X*X

- consider sub-expression X*X
- solution: $f(x) = (let \ x2 = x^2 \ in \ s(x2) x2)$

- consider sub-expression X*X
- solution: $f(x) = (let \ x2 = x^2 \ in \ s(x2) x2)$
- adding support for let in evaluator

- consider sub-expression X*X
- solution: $f(x) = (let \ x2 = x^2 \ in \ s(x2) x2)$
- adding support for let in evaluator

```
• let(X,E,F) encodes let x = e in f
  eval(0,0).
  eval(s(E),s(N)) :- eval(E,N).
  eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
  eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
  eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).
  eval(let(X,E,F),K) :- eval(E,N), X = N, eval(F,K).
```

- consider sub-expression X*X
- solution: $f(x) = (let \ x2 = x^2 \ in \ s(x2) x2)$
- adding support for let in evaluator

```
• let(X,E,F) encodes let x = e in f
  eval(0,0).
  eval(s(E),s(N)) :- eval(E,N).
  eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).
  eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).
  eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).
  eval(let(X,E,F),K) :- eval(E,N), X = N, eval(F,K).
```

Example

```
f(X,Y) := eval(s(X*X) - X*X, Y).

f(X,Y) := eval(let(X2, X*X, s(X2) - X2), Y).
```

Example
$$(f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)$$

f(s(s(0)),Y)

Example
$$(f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)$$

Example
$$(f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)$$

Example
$$(f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)$$

```
Example (f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)
```

```
Example (f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)
```

```
Example (f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)
```

```
 \begin{array}{l} \operatorname{eval}(s(s(s(s(0))),M), \ \operatorname{plus}(M,Y,s(s(s(s(s(0)))))) \\ & = s(s(s(s(s(s(0))))) \parallel \\ & \operatorname{eval}(s(s(s(s(s(s(0)))),N), \ \operatorname{eval}(s(s(s(s(s(0)))),M), \ \operatorname{plus}(M,Y,N)) \\ & = \operatorname{eval}(s(s(s(s(s(0))))) - s(s(s(s(0)))),Y) \\ & = s(s(s(s(0)))) \parallel \\ & = s(s(s(s(0)))) \parallel \\ & = \operatorname{eval}(s(s(s(0))) + s(s(0)),N), \ X2 = N, \ \operatorname{eval}(s(X2) - X2,Y) \\ & = \operatorname{eval}(\operatorname{let}(X2,s(s(0)) + s(s(0)),s(X2) - X2),Y) \\ & = \operatorname{f}(s(s(0)),Y) \end{array}
```

```
Example (f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)
```

```
plus(s(s(s(s(0)))), Y, s(s(s(s(s(0))))))
                   M = s(s(s(s(0))))
      eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0)))))))
                 N = s(s(s(s(s(0)))))
eval(s(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N))
            eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
                  X2 = s(s(s(s(0))))
             X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)
                   N = s(s(s(s(0))))
      eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
          eval(let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
                          f(s(s(0)),Y)
```

```
Example (f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)
                        Y = s(0)
           plus(s(s(s(s(0)))), Y, s(s(s(s(s(0))))))
                  M = s(s(s(s(0))))
      eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0)))))))
                N = s(s(s(s(s(0)))))
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N))
            eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
                  X2 = s(s(s(s(0))))
            X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)
                  N = s(s(s(s(0))))
      eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
          eval(let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
                         f(s(s(0)),Y)
```

```
Example (f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)
                        Y = s(0)
           plus(s(s(s(s(0)))), Y, s(s(s(s(s(0))))))
                  M = s(s(s(s(0))))
      eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0)))))))
                N = s(s(s(s(s(0)))))
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N))
            eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
                  X2 = s(s(s(s(0))))
            X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)
                  N = s(s(s(s(0))))
      eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
          eval(let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
                         f(s(s(0)),Y)
```

```
Example (f(X,Y) := eval(let(X2,X*X,s(X2)-X2), Y).)
                        Y = s(0)
           plus(s(s(s(s(0)))), Y, s(s(s(s(s(0))))))
                  M = s(s(s(s(0))))
      eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0)))))))
                N = s(s(s(s(s(0)))))
eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N))
            eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)
                  X2 = s(s(s(s(0))))
            X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)
                  N = s(s(s(s(0))))
      eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)
          eval(let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)
                         f(s(s(0)),Y)
```

Speeding up "let" even further

- detected problems:
 - 1 after computing x^2 , result is evaluated again eval(s(s(s(s(0)))),M)
 - 2 eval also steps into initial input

Speeding up "let" even further

- detected problems:
 - 1 after computing x^2 , result is evaluated again eval(s(s(s(s(0)))),M)
 - 2 eval also steps into initial input
- solution: add new constructor *num* which states that the argument is a number, and hence, does not have to be evaluated

```
\begin{split} &\operatorname{eval}(0,0)\,.\\ &\operatorname{eval}(s(E),s(N))\,:=\,\operatorname{eval}(E,N)\,.\\ &\operatorname{eval}(E+F,K)\,:=\,\operatorname{eval}(E,N)\,,\,\operatorname{eval}(F,M)\,,\,\operatorname{plus}(N,M,K)\,.\\ &\operatorname{eval}(E-F,K)\,:=\,\operatorname{eval}(E,N)\,,\,\operatorname{eval}(F,M)\,,\,\operatorname{plus}(M,K,N)\,.\\ &\operatorname{eval}(E*F,K)\,:=\,\operatorname{eval}(E,N)\,,\,\operatorname{eval}(F,M)\,,\,\operatorname{times}(N,M,K)\,.\\ &\operatorname{eval}(\operatorname{num}(N),N)\,.\\ &\operatorname{eval}(\operatorname{let}(X,E,F),K)\,:=\,\operatorname{eval}(E,N)\,,X\,=\,\operatorname{num}(N)\,,\,\operatorname{eval}(F,K)\,. \end{split}
```

Speeding up "let" even further

- detected problems:
 - 1 after computing x^2 , result is evaluated again eval(s(s(s(s(0)))),M)
 - 2 eval also steps into initial input
- solution: add new constructor *num* which states that the argument is a number, and hence, does not have to be evaluated

```
\begin{split} &\operatorname{eval}(0,0)\,.\\ &\operatorname{eval}(s(E),s(N))\,:=\,\operatorname{eval}(E,N)\,.\\ &\operatorname{eval}(E+F,K)\,:=\,\operatorname{eval}(E,N)\,,\,\operatorname{eval}(F,M)\,,\,\operatorname{plus}(N,M,K)\,.\\ &\operatorname{eval}(E-F,K)\,:=\,\operatorname{eval}(E,N)\,,\,\operatorname{eval}(F,M)\,,\,\operatorname{plus}(M,K,N)\,.\\ &\operatorname{eval}(E*F,K)\,:=\,\operatorname{eval}(E,N)\,,\,\operatorname{eval}(F,M)\,,\,\operatorname{times}(N,M,K)\,.\\ &\operatorname{eval}(\operatorname{num}(N),N)\,.\\ &\operatorname{eval}(\operatorname{let}(X,E,F),K)\,:=\,\operatorname{eval}(E,N)\,,X\,=\,\operatorname{num}(N)\,,\,\operatorname{eval}(F,K)\,. \end{split}
```

Example
$$(f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))$$

f(s(s(0)),Y)

Example
$$(f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))$$

$$\label{eq:GX} \begin{split} \text{GX = num}(s(s(0))), & \text{eval}(\text{let}(X2, \text{GX*GX}, s(X2)-X2), Y) \\ & | \\ & | \\ & \text{f}(s(s(0)), Y) \end{split}$$

Example
$$(f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))$$

```
 \begin{split} & \text{eval(let(X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)} \\ & & \text{GX = } \text{num(s(s(0)))} \mid \\ & \text{GX = } \text{num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)} \\ & & \text{f(s(s(0)),Y)} \end{split}
```

Example
$$(f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))$$

```
Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))
```

Example
$$(f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))$$

Example
$$(f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))$$

```
Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))
```

```
Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))
```

```
 \begin{array}{c} eval(s(num(s(s(s(s(0)))))-num(s(s(s(s(0))))),Y) \\ & \chi_2 = num(s(s(a(s(0))))) \\ & \chi_2 = num(s(s(s(s(0))))), \\ & \chi_3 = num(s(s(s(s(0))))), \\ & \chi_4 = num(s(s(s(s(0))))) \\ & \chi_5 = num(s(s(0)), N), \\ & \chi_7 = num(N), \\ & \chi_8 = num(N), \\ & \chi_8 = num(N), \\ & \chi_8 = num(N), \\ & \chi_9 =
```

```
Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))
```

```
eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N))
                     eval(s(num(s(s(s(s(0)))))-num(s(s(s(s(0))))),Y)
                             X2 = num(s(s(s(s(0)))))
                         X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
                                 N = s(s(s(s(0))))
                 times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N2 = s(s(0))
        eval(num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N1 = s(s(0))
eval(num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y))
            eval(num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)
                    eval(let(X2.num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
                                 GX = num(s(s(0)))
                    GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)
                                        f(s(s(0)),Y)
```

```
Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))
```

```
eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1)))
                                       N = s(N1)
         eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N))
                     eval(s(num(s(s(s(s(0)))))-num(s(s(s(s(0))))),Y)
                             X2 = num(s(s(s(s(0)))))
                         X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
                                 N = s(s(s(s(0))))
                 times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N2 = s(s(0))
        eval(num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N1 = s(s(0))
eval(num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y))
            eval(num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)
                    eval(let(X2.num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
                                 GX = num(s(s(0)))
                    GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)
                                        f(s(s(0)),Y)
```

Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))

```
eval(num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0)))))))
                                 N1 = g(g(g(g(0))))
        eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1)))
                                       N = s(N1)
         eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N))
                     eval(s(num(s(s(s(s(0)))))-num(s(s(s(s(0))))),Y)
                             X2 = num(s(s(s(s(0)))))
                         X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
                                 N = s(s(s(s(0))))
                 times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N2 = s(s(0))
        eval(num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N1 = s(s(0))
eval(num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y))
            eval(num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)
                    eval(let(X2.num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
                                 GX = num(s(s(0)))
                    GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)
                                        f(s(s(0)),Y)
```

Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))

```
plus(s(s(s(s(0)))), Y, s(s(s(s(0))))))
                                  M = s(s(s(s(0)))) \mid
                  eval(num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0)))))))
                                 N1 = s(s(s(s(0))))
        eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1)))
                                       N = s(N1)
         eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N))
                     eval(s(num(s(s(s(s(0)))))-num(s(s(s(s(0))))),Y)
                             X2 = num(s(s(s(s(0)))))
                         X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
                                  N = s(s(s(s(0))))
                 times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N2 = s(s(0))
        eval(num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N1 = s(s(0))
eval(num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y))
             eval(num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)
                    eval(let(X2.num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
                                  GX = num(s(s(0)))
                     GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)
                                        f(s(s(0)),Y)
```

```
Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))
                                       Y = s(0)
                          plus(s(s(s(s(0)))), Y, s(s(s(s(0))))))
                                 M = s(s(s(s(0)))) \mid
                  eval(num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0)))))))
                                N1 = s(s(s(s(0))))
         eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1)))
                                       N = s(N1)
          eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N))
                     eval(s(num(s(s(s(s(0)))))-num(s(s(s(s(0))))),Y)
                             X2 = num(s(s(s(s(0)))))
                         X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
                                 N = s(s(s(s(0))))
                 times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N2 = s(s(0))
         eval(num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
                                     N1 = s(s(0))
eval(num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y))
             eval(num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)
                    eval(let(X2.num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
                                 GX = num(s(s(0)))
                    GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)
                                       f(s(s(0)),Y)
```