
Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

Summary of Last Lecture

Example (Implementing same vars)

same var(foo,Y) ← var(Y), !, fail.

same var(X,Y) ← var(X), var(Y).

Example (Bad Cut)

minimum(X,Y,X) ← X 6 Y, !. ← minimum(2,5,5)

minimum(X,Y,Y). true

Types of Red Cuts

1 cuts that are built-in (e.g. in the implementation of negation)

2 green cuts that become red, when conditions are fulfilled

3 supposedly green cut that changes the behaviour of the program

GM (Institute of Computer Science @ UIBK) Logic Programming 124/1

Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming 125/1

Program Access and Manipulation

Program Access and Manipulation

clause database operations

• assert/1

← assert(C).
true

• side effect: add rule C to program

• retract/1

← retract(C).
true

• side effect: remove first rule from program that unifies with C

GM (Institute of Computer Science @ UIBK) Logic Programming 126/1

http://cl-informatik.uibk.ac.at

Program Access and Manipulation

Example (Fibonacci Numbers Revisited)

:- dynamic(fibonacci/2).

fibonacci(0,0).

fibonacci(1,1).

fibonacci(N,X) :-

N > 1,

N1 is N-1, fibonacci(N1,Y),

N2 is N-2, fibonacci(N2,Z),

X is Y+Z,

asserta(fibonacci(N,X)),

!.

GM (Institute of Computer Science @ UIBK) Logic Programming 127/1

Program Access and Manipulation

Example

edit :- edit(file([],[])).

edit(File) :-

read(Command),

edit(File,Command).

edit(File,exit) :- !.

edit(File,Command) :-

apply(Command,File,File1),

!,

edit(File1).

edit(File,Command) :-

write(Command),

write(’ is not applicable’),

!,

edit(File).

apply(up,file([X|Xs],Ys),

file(Xs,[X|Ys])).

apply(down,file(Xs,[Y|Ys]),

file([Y|Xs],Ys)).

apply(insert(Line), file(Xs,Ys),

file(Xs,[Line|Ys])).

apply(delete,file(Xs,[Y|Ys]),

file(Xs,Ys)).

apply(print,file([X|Xs],Ys),

file([X|Xs],Ys)) :-

write(X), nl.

apply(print(*),file(Xs,Ys),

file(Xs,Ys)) :-

reverse(Xs,Xs1),

write file(Xs1),

write file(Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 128/1

Program Access and Manipulation

Operator and Precedences

Query Operator

:- current op(P,A,*).

P 7→ 400, precedence
A 7→ yfx infix, left-associative

:- 1*2*3 = (1*2)*3. :- 1*2*3 = 1*(2*3).

true false

Define Operator

:- op(350, xfy, new).

:- X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8))))).

X 7→ 1 new (2*3) * (4* (4 new 5) new (6*7 new 8))

:- op(450, yfx, new).

:- X = *(new(1,*(2,3)),*(4,new(new(4,5),*(6,new(7,8))))).

X 7→ (1 new 2*3)* (4* (4 new 5 new 6* (7 new 8)))

GM (Institute of Computer Science @ UIBK) Logic Programming 129/1

Program Access and Manipulation

Definition

• if op(Precdence, Associativity , Name) is used in program, then it
has to be added with :-

:- op(350,xfy,new)

• if in a program :- query occurs, then query is directly executed
when the program is loaded

• precedence: positive number, smaller numbers bind stronger

• five modes of associativity
• xfy: right-associative, X o Y o Z = X o (Y o Z)
• yfx: left-associative, X o Y o Z = (X o Y) o Z
• xfx: non-associative, X o Y o Z will not be parsed
• fy: prefix-operator, o X
• yf: postfix-operator, X o

GM (Institute of Computer Science @ UIBK) Logic Programming 130/1

Efficiency of Prolog Programs

Efficiency of Prolog Programs
Time and Space Complexity

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations on Space

• space usage depends on the depth of recursion

• space usage depends also on the number of data structures created

• we have already seen that the former may be a major problem:
stack overflow

GM (Institute of Computer Science @ UIBK) Logic Programming 131/1

Efficiency of Prolog Programs

Example

sublist(Xs,AXBs) :- suffix(XBs,AXBs), prefix(Xs,XBs).

sublist(Xs,AXBs) :- prefix(AXs,AXBs), suffix(Xs,AXs).

Question

What is better?

Answer

the first alternative:

• consider

sublist([1,2,3,4],[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4])

• the 1st clause iterates over the 2nd list to find a suitable suffix

• then iterates over the first list

• no intermediate data structures are created

• in the 2nd clause an auxilliary list is created

GM (Institute of Computer Science @ UIBK) Logic Programming 132/1

Efficiency of Prolog Programs

Definition

we say: the first clause doesn’t cons

Observations on Time

• if full unification (unification of two arbitrary terms in goals) is not
employed, reduction of a goal using a clause needs constant time

• that is, it depends only on the program

• hence, if full unification is not employed the number of reductions
(= nodes in SLD tree) asymptotically bounds the runtime

• equivalently the number of unifications (performed and attempted)
asymptotically bounds the runtime

• on the other hand, if unification needs to be taken into account time
complexity analysis is more involved

• in general size of search space and size of input terms needs to be
taken into account

GM (Institute of Computer Science @ UIBK) Logic Programming 133/1

Efficiency of Prolog Programs

Howto Improve Performance

Suggestion À

use better algorithms ,

Example

reverse([X|Xs],Zs) :-

reverse(Xs,Ys),

append(Ys,[X],Zs).

reverse([],[]).

Example

reverse(Xs,Ys) :- reverse(Xs,[],Ys).

reverse([X|Xs],Acc,Ys) :-

reverse(Xs,[X|Acc],Ys).

reverse([],Ys,Ys).

GM (Institute of Computer Science @ UIBK) Logic Programming 134/1

Efficiency of Prolog Programs

Suggestion Á

tuning, via:

1 good goal order

2 elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

3 exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction

Example

append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

append([],Ys,Ys).

By default, SWI-Prolog, as most other implementations,
indexes predicates on their first argument.

GM (Institute of Computer Science @ UIBK) Logic Programming 135/1

Efficiency of Prolog Programs

Recall
• tail recursive programs are called iterative

• reasoning: tail recursion is implemented as iteration which doesn’t
require a stack

Definition (tail recursion optimisation)

• consider a generic clause for A

A′ ← B1, . . . ,Bn

such that A and A′ unify with σ

• suppose the goal B1σ, . . . ,Bn−1σ is deterministic

• then goal Bnσ can re-use space for A

Definition

clause indexing is used to detect which clauses are applicable for
reduction: 2nd clause in append need not be considered

GM (Institute of Computer Science @ UIBK) Logic Programming 136/1

Programming tricks

Howto Implement Functions

Functions vs Relations
• often, we want to compute functions:

1 addition: N× N→ N
2 sorting: list → list

• in logic programming we just specify relations and every function
can be seen as a relation

frel(i1, . . . , in, o1, . . . , om) iff f (i1, . . . , in) = (o1, . . . , om)

• that is, we implement functions f (i1, . . . , in) = (o1, . . . , om) by
relations frel/(n + m)

• result is obtained by query frel(i1, . . . , in,X1, . . . ,Xm)

1 addition: plus(n,m,Z) Z = n + m
2 sorting: sort(list,Xs) Xs = sorted version of list

GM (Institute of Computer Science @ UIBK) Logic Programming 137/1

Programming tricks

Function Applications

• function applications harder to write down
• program f (x) = x2 + 7 · (x2 − 5)
• defining fact

f(X,plus(times(X,X), times(7,minus(times(X,X),5))))

does not work

• solution: store result of each sub-expression in fresh variable

f(X,Y) :- times(X,X,Z), minus(Z,5,V), times(7,V,U),

plus(Z,U,Y).

x2︸︷︷︸
z

+ 7 · (x2︸︷︷︸
z

− 5︸ ︷︷ ︸
v

)

︸ ︷︷ ︸
u︸ ︷︷ ︸

f (x)=y

GM (Institute of Computer Science @ UIBK) Logic Programming 138/1

Programming tricks

Simulating Functional Programs

• using technique of previous slide, it is easy to transform first-order
functional programs into logic programs

• remaining difficulty: translating if-then-else

idea: first evaluate condition, and then generate one rule for each
branch

Example (Ackermann function in Haskell)
ack 0 m = m + 1

ack (n+1) m = if m == 0 then ack n 1 else

ack n (ack (n+1) (m-1))

Example (Ackermann function as logic program)
ack(0,M,s(M)).

ack(s(N),M,R) :- =(M,0,B), cond(B,N,M,R).

cond(true,N,M,R) :- ack(N,s(0),R).

cond(false,N,M,R) :- -(M,s(0),U),ack(s(N),U,V),ack(N,V,R).

GM (Institute of Computer Science @ UIBK) Logic Programming 139/1

Programming tricks

Evaluating Arithmetic Expressions

• motivation: use arithmetic expressions as in functional programs

• solution: write evaluator eval which computes value of arithmetic
expressions

• afterwards it is very simple to encode functions, e.g.

f (x) = s(x2)− x2

can be programmed as

f(X,Y) :- eval(s(X*X) - X*X, Y).

• evaluator is simple logic program

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).

GM (Institute of Computer Science @ UIBK) Logic Programming 140/1

Programming tricks

Example (f(X,Y) :- eval(s(X*X) - X*X, Y).)

f(s(s(0)),Y)

eval(s(s(s(0))*s(s(0))) - s(s(0))*s(s(0)),Y)

eval(s(s(s(0))*s(s(0))),N), eval(s(s(0))*s(s(0)),M), plus(M,Y,N)

eval(s(s(0))*s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N = s(N1)

eval(s(s(0)),N2), eval(s(s(0)),N3), times(N2,N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

eval(s(0),N4), eval(s(s(0)),N3), times(s(N4),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N2 = s(N4)

eval(0,N5), eval(s(s(0)),N3), times(s(s(N5)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N4 = s(N5)

eval(s(s(0)),N3), times(s(s(0)),N3,N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N5 = 0

times(s(s(0)),s(s(0)),N1), eval(s(s(0))*s(s(0)),M), plus(M,Y,s(N1))

N3 = s(s(0))

eval(s(s(0))*s(s(0)),M), plus(M,Y,s(s(s(s(s(0))))))

N1 = s(s(s(s(0))))

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))

M = s(s(s(s(0))))

2
Y = s(0)

GM (Institute of Computer Science @ UIBK) Logic Programming 141/1

Programming tricks

Speeding up evaluation using “let”

• consider sub-expression X*X

• solution: f (x) = (let x2 = x2 in s(x2)− x2)

• adding support for let in evaluator

• let(X,E,F) encodes let x = e in f

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).

eval(let(X,E,F),K) :- eval(E,N), X = N, eval(F,K).

Example

f(X,Y) :- eval(s(X*X) - X*X, Y).

f(X,Y) :- eval(let(X2, X*X, s(X2) - X2), Y).

GM (Institute of Computer Science @ UIBK) Logic Programming 142/1

Programming tricks

Example (f(X,Y) :- eval(let(X2,X*X,s(X2)-X2), Y).)

f(s(s(0)),Y)

eval(let(X2,s(s(0))*s(s(0)),s(X2)-X2),Y)

eval(s(s(0))*s(s(0)),N), X2 = N, eval(s(X2)-X2,Y)

X2 = s(s(s(s(0)))), eval(s(X2)-X2,Y)

N = s(s(s(s(0))))

eval(s(s(s(s(s(0)))))-s(s(s(s(0)))),Y)

X2 = s(s(s(s(0))))

eval(s(s(s(s(s(0))))),N), eval(s(s(s(s(0)))),M), plus(M,Y,N)

eval(s(s(s(s(0)))),M), plus(M,Y,s(s(s(s(s(0))))))

N = s(s(s(s(s(0)))))

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))

M = s(s(s(s(0))))

2
Y = s(0)

GM (Institute of Computer Science @ UIBK) Logic Programming 143/1

Programming tricks

Speeding up “let” even further

• detected problems:

1 after computing x2, result is evaluated again
eval(s(s(s(s(0)))),M)

2 eval also steps into initial input

• solution: add new constructor num which states that the argument
is a number, and hence, does not have to be evaluated

eval(0,0).

eval(s(E),s(N)) :- eval(E,N).

eval(E+F,K) :- eval(E,N), eval(F,M), plus(N,M,K).

eval(E-F,K) :- eval(E,N), eval(F,M), plus(M,K,N).

eval(E*F,K) :- eval(E,N), eval(F,M), times(N,M,K).

eval(num(N),N).

eval(let(X,E,F),K) :- eval(E,N),X = num(N), eval(F,K).

GM (Institute of Computer Science @ UIBK) Logic Programming 144/1

Programming tricks

Example (f(X,Y):-GX=num(X),eval(let(X2,GX*GX,s(X2)-X2),Y))

f(s(s(0)),Y)

GX = num(s(s(0))), eval(let(X2,GX*GX,s(X2)-X2),Y)

eval(let(X2,num(s(s(0)))*num(s(s(0))),s(X2)-X2),Y)
GX = num(s(s(0)))

eval(num(s(s(0)))*num(s(s(0))),N), X2 = num(N), eval(s(X2)-X2,Y)

eval(num(s(s(0)),N1), eval(num(s(s(0)),N2), times(N1,N2,N), X2 = num(N), eval(s(X2)-X2,Y)

eval(num(s(s(0)),N2), times(s(s(0)),N2,N), X2 = num(N), eval(s(X2)-X2,Y)
N1 = s(s(0))

times(s(s(0)),s(s(0)),N), X2 = num(N), eval(s(X2)-X2,Y)
N2 = s(s(0))

X2 = num(s(s(s(s(0))))), eval(s(X2)-X2,Y)
N = s(s(s(s(0))))

eval(s(num(s(s(s(s(0))))))-num(s(s(s(s(0))))),Y)
X2 = num(s(s(s(s(0)))))

eval(s(num(s(s(s(s(0)))))),N), eval(num(s(s(s(s(0))))),M), plus(M,Y,N)

eval(num(s(s(s(s(0))))),N1), eval(num(s(s(s(s(0))))),M), plus(M,Y,s(N1))
N = s(N1)

eval(num(s(s(s(s(0))))),M), plus(M,Y,s(s(s(s(s(0))))))
N1 = s(s(s(s(0))))

plus(s(s(s(s(0)))),Y,s(s(s(s(s(0))))))
M = s(s(s(s(0))))

2
Y = s(0)

GM (Institute of Computer Science @ UIBK) Logic Programming 145/1

