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Summary of Last Lecture

Definition
the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations
e space usage depends on the depth of recursion
e if full unification is not employed, the number of reductions
asymptotically bounds the runtime

e in general size of search space and size of input terms needs to be
taken into account, even for measuring time
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Howto Improve Performance

Suggestion @
use better algorithms

Suggestion @
tuning, via:
good goal order

elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction
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ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming
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ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming
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Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).
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Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

colour map([Region|Regions], Colours) :-
colour_region(Region,Colours),
colour_map(Regions,Colours) .

colour map([],Colours).
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Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

colour map([Region|Regions], Colours) :-
colour_region(Region,Colours),
colour_map(Regions,Colours) .

colour map([],Colours).

colour region(region(Name,Colour,Neighbours), Colours) :-
select (Colour,Colours,Coloursi),
members (Neighbours,Coloursl).
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Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

colour map([Region|Regions], Colours) :-
colour_region(Region,Colours),
colour_map(Regions,Colours) .

colour map([],Colours).

colour region(region(Name,Colour,Neighbours), Colours) :-
select (Colour,Colours,Coloursi),
members (Neighbours,Coloursl).

test_colour (Name,Map) :-
map (Name, Map) ,
colours(Name,Colours),
colour_map(Map,Colours) .

GM (Institute of Computer Science @ UIBK) Logic Programming



Howto Test for Variants

Example

numbervars (°’$VAR’> (N) ,N,N1) :- N1 is N+1.
numbervars (Term,N1,N2) :-
nonvar (Term), functor(Term,Name,N),
numbervars (0,N,Term,N1,N2) .
numbervars(N,N,Term,N1,N1).
numbervars(I,N,Term,N1,N3) :-
I <N, I1 is I+1, arg(Il,Term,Arg),
numbervars (Arg,N1,N2), numbervars(I1,N,Term,N2,N3).
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Howto Test for Variants

Example

numbervars (°’$VAR’> (N) ,N,N1) :- N1 is N+1.
numbervars (Term,N1,N2) :-
nonvar (Term), functor(Term,Name,N),
numbervars (0,N,Term,N1,N2) .
numbervars(N,N,Term,N1,N1).
numbervars(I,N,Term,N1,N3) :-
I <N, I1 is I+1, arg(Il,Term,Arg),
numbervars (Arg,N1,N2), numbervars(I1,N,Term,N2,N3).

Example
verify(Goal) :- \+ \+ Goal.

variant (Terml,Term2) :-
verify ((numbervars(Term1,0,N),
numbervars (Term2,0,N) ,Term1=Term2)) .
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Nondeterministic Programming

Example
0 1
—qo | {90, 91} | {qo}
q z {2}
*q2 %] %}
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Nondeterministic Programming

Example
0 1
—qo | {qo,q1} | {qo}
q1 2 {q2}
*q2 %] %}
Definition

A NFA is quintuple (Q, X, A, I, F) such that
Q is a set of states
2 is an alphabet
A is relation on (Q X X) X Q
| are the initial states

F are the final states
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Example

accept(8) :-
initial(Q),
accept(Q,S).

accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).

accept(Q,[1) :-
final(Q) .
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Example

accept(8) :-
initial(Q),
accept(Q,S).
accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).
accept(Q,[1) :-
final(Q) .
initial(qo) .
final(qy).
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Example

accept(8) :-
initial(Q),
accept(Q,S).

accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).

accept(Q,[1) :-
final(Q) .

initial(qo) .
final(qy).
delta(qgp,0,q0) .
delta(qo,0,q1) .
delta(qo,1,qo0) -
delta(qgi,1,q2).

GM (Institute of Computer Science @ UIBK] Logic Programming



Example

accept(8) :-
initial(Q),
accept(Q,S).
accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).
accept(Q,[1) :-
final(Q) .
initial(qo) .
final(qy).
delta(qgp,0,q0) .
delta(qo,0,q1) .
delta(qo,1,qo0) -
delta(qgi,1,q2).

:- accept([0,0,0,1,0,11).
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Incomplete Data Structures

Observation
given a list [1,2,3] it can be represented as the difference of two lists

[1,2,3] = [1,2,3] \ [J
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Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists
[1,2,3] = [1,2,3] \ (]
[1,2,3] = [1,2,3,4,5] \ [4,5]
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Incomplete Data Structures

Incomplete Data Structures

Observation
given a list [1,2,3] it can be represented as the difference of two lists

[1,2,3] = [1,2,3] \ [I
[1,2,3] = [1,2,3,4,5] \ [4,5]
[1,2,3] = [1,2,3,8] \ [8]
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Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists
[1,2,3] = [1,2,3] \ (]

[1,2,3] = [1,2,3,4,5] \ [4,5]

[1,2,3] = [1,2,3,8] \ [8]

[1,2,3] = [1,2,3]Xs] \ Xs
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Incomplete Data Structures

Incomplete Data Structures

Observation
given a list [1,2,3] it can be represented as the difference of two lists

[1,2,3] = [1,2,3] \ [J

[1,2,3] = [1,2,3,4,5] \ [4,5]
[1,2,3] = [1,2,3,8] \ [8]
[152’3] = [1,2,3|XS] \XS
Definition

the difference of two lists is denotes as As \ Bs and called difference list
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Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists
[1,2,3] = [1,2,3] \ (]

[1,2,3] = [1,2,3,4,5] \ [4,5]

[1,2,3] = [1,2,3,8] \ [8]

[1,2,3] = [1,2,3]Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append d1(Xs \ Ys, Ys \ Zs, Xs \ Zs).
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Application of Difference Lists

Recall

flatten([X|Xs],Ys) :-
flatten(X,Ys1), flatten(Xs,Ys2),
append(Ys1,Ys2,Ys).
flatten(X, [X]) :- constant(X), X # [].
flatten([],[]).
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Application of Difference Lists

Recall

flatten([X|Xs],Ys) :-
flatten(X,Ys1), flatten(Xs,Ys2),
append(Ys1,Ys2,Ys).
flatten(X, [X]) :- constant(X), X # [].
flatten([],[]).

Example

flatten(Xs,Ys) :- flattendl(Xs,Ys \ [1).
flatten d1([X|Xs],Ys \ Zs) :-

flatten d1(X,Ys \ Ys1), flatten dl(Xs,Ysl \ Zs).
flatten dl(X,[XIXs] \ Xs) :- comnstant(X), X # [].
flatten d1([],Xs \ Xs).
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Incomplete Data Structures

Difference Lists Implement Accumulators Top-Down

Example (Flatten with Difference Lists)

flatten(Xs,Ys) :- flattendl(Xs,Ys \ [1).
flatten d1([X|Xs],Ys \ Zs) :-

flatten d1(X,Ys \ Ys1), flatten dl(Xs,Ysl \ Zs).
flatten dl(X, [X|Xs] \ Xs) :- comstant(X), X # I[].
flatten d1([]1,Xs \ Xs).
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Incomplete Data Structures

Difference Lists Implement Accumulators Top-Down

Example (Flatten with Difference Lists)

flatten(Xs,Ys) :- flattendl(Xs,Ys \ [1).
flatten d1([X|Xs],Ys \ Zs) :-

flatten d1(X,Ys \ Ys1), flatten dl(Xs,Ysl \ Zs).
flatten dl(X, [X|Xs] \ Xs) :- comstant(X), X # I[].
flatten d1([]1,Xs \ Xs).

Example (Flatten Using Accumulator)

flatten(Xs,Ys) :- flatten(Xs,[],Ys).

flatten([X|Xs],Zs,Ys) :-
flatten(Xs,Zs,Ysl), flatten(X,Ys1,Ys).
flatten(X,Xs, [X|Xs]) :-
constant(X), X # [J.
flatten([],Xs,Xs).
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Incomplete Data Structures

Example
reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).

reverse d1([X|Xs], Ys \ Zs) :-
reverse dl(Xs, Ys \ [X | Zs]).
reverse d1([], Xs \ Xs).
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Incomplete Data Structures

Example

reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).
reverse d1([X|Xs], Ys \ Zs) :-

reverse dl(Xs, Ys \ [X | Zs]).
reverse d1([], Xs \ Xs).

Example

quicksort(Xs,Ys) :- quicksort.dl(Xs, Ys \ [1).

quicksort d1([X[Xs], Ys \ Zs) :-
partition(Xs,X,Littles, Bigs),
quicksort_dl(Littles,Ys \ [X|Y¥s1l),
quicksort_dl(Bigs,Ysl \ Zs).

quicksort_dl([],Xs \ Xs).
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Incomplete Data Structures

Observations

o difference lists are effective if independently different sections of a
list are built, which are then concatenated
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Incomplete Data Structures

Observations

o difference lists are effective if independently different sections of a
list are built, which are then concatenated

e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs"
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Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”

e the explicit constructor should be removed, if time or space
efficiency is an issue
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Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”
e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As
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Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”
e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

e this works as As is an incomplete list
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Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”

e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

e this works as As is an incomplete list

e thus we represent a concrete list as the difference of two incomplete
data structures
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Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”

e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

e this works as As is an incomplete list

e thus we represent a concrete list as the difference of two incomplete
data structures

e generalises to other recursive data types
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Difference-structures

Difference-structures

Example

consider the following task: convert the sum (a+ b) + (¢ + d) into
(a+(b+(c+(d+0))))
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Difference-structures

Difference-structures

Example
consider the following task: convert the sum (a+ b) + (¢ + d) into
(a+ (b+ (c+(d+0))))

Definition
we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0
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Difference-structures

Difference-structures

Example
consider the following task: convert the sum (a+ b) + (¢ + d) into
(a+(b+ (c+(d+0))))

Definition
we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

Example
normalise(Exp,Norm) :- normalise_ds(Exp,Norm ++ 0).

normalise_ds(A+B, Norm ++ Space) :-
normalise_ds(A, Norm ++ NormB),
normalise ds(B, NormB ++ Space).

normalise ds(A, (A + Space) ++ Space) :-—
constant (4).
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Difference-structures

Example

consider the following tasks
e create
e use

e maintain

a set of values indexed by keys
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Difference-structures

Example

consider the following tasks
e create
e use
e maintain

a set of values indexed by keys

Example

lookup(Key, [(Key,Value) | Dictionary],Value).
lookup(Key, [(Keyl,Valuel) | Dictionary],Value) :-

Key # Keyl,
lookup (Key,Dictionary,Value) .

:= Dict = [(arnold,8881), (barry,4513), (cathy,5950) | Xs].
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Difference-structures

Example

consider the following tasks
e create
e use
e maintain

a set of values indexed by keys

Example

lookup(Key, [(Key,Value) | Dictionary],Value).
lookup(Key, [(Keyl,Valuel) | Dictionary],Value) :-
Key # Keyl,
lookup (Key,Dictionary,Value) .

:= Dict = [(arnold,8881), (barry,4513), (cathy,5950) | Xs].
:— lookup(david,Dict,1199).
Dict + [(arnold,8881), (barry,4513),

(cathy,5950), (david,1199) | Xs]
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Difference-structures

Example (Freeze and Melt)
copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
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Difference-structures

Example (Freeze and Melt)

copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
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Difference-structures

Example (Freeze and Melt)

copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.
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Difference-structures

Example (Freeze and Melt)
copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.
melt (’$VAR’> (N) ,X,Dictionary) :- lookup(N,Dictionary,X).
melt(X,X,Dictionary) :- constant(X).
melt(X,Y,Dictionary) :-

compound (X) ,

functor (X,F,N),

functor (Y,F,N),
melt(N,X,Y,Dictionary) .
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Difference-structures

Example (Freeze and Melt)

copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.
melt (’$VAR’> (N) ,X,Dictionary) :- lookup(N,Dictionary,X).
melt(X,X,Dictionary) :- constant(X).
melt(X,Y,Dictionary) :-

compound (X) ,

functor (X,F,N),

functor (Y,F,N),

melt(N,X,Y,Dictionary) .
melt(N,X,Y,Dictionary) :-

N > 0, arg(N,X,ArgX),

melt (ArgX,ArgY,Dictionary),

arg(N,Y,ArgY), N1 is N-1,

melt(N1,X,Y,Dictionary).
melt(0,X,Y,Dictionary).
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Context-Free Grammars
Definition
a grammar G is a tuple G = (V, X, R,S), where
V finite set of variables (or nonterminals)
Y alphabet, the terminal symbols, VNX =g
R finite set of rules
S €V the start symbol of G
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Definite Clause Grammars

Context-Free Grammars
Definition
a grammar G is a tuple G = (V, X, R,S), where
V finite set of variables (or nonterminals)
Y alphabet, the terminal symbols, VNX =g
R finite set of rules
S €V the start symbol of G

a rule is a pair P — Q of words, such that P, Q € (V UX)* and there is
at least one variable in P
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Definite Clause Grammars

Context-Free Grammars
Definition
a grammar G is a tuple G = (V, X, R,S), where
V finite set of variables (or nonterminals)
Y alphabet, the terminal symbols, VNX =g
R finite set of rules
S €V the start symbol of G

a rule is a pair P — Q of words, such that P, Q € (V UX)* and there is
at least one variable in P

Definition

grammar G = (V, X, R, S) is context-free, if V rules P — Q:
PeV
Qe (VUux)*
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Definite Clause Grammars

Example

sentence — noun_phrase, verb_phrase.

noun_phrase — determiner, noun_phrase2.
noun_phrase — noun_phrase2.

noun_phrase2 — adjective, noun_phrase2.
noun_phrase2 — noun.

verb_phrase — verb, noun_phrase.
verb_phrase — verb.

determiner — [the].
determiner — [a].

noun — [pie-plate].
noun — [surprise].

adjective — [decorated].

verb — [contains].

sentence = ‘‘the decorated pie-plate contains a surprise’’
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Definite Clause Grammars

Example

sentence(S \ SO0) :- noun phrase(S \ S1), verb_phrase(S1 \ SO).

noun phrase(S \ S0) :-
determiner(S \ S1), noun_phrase2(S1 \ S0).
noun_phrase(S) :- noun_phrase2(S).

noun phrase2(S \ S0) :-

adjective(S \ S1), noun phrase2(S1 \ SO).
noun_phrase2(S) :- noun(S).
verb_phrase(S \ S0) :- verb(S \ S1), noun phrase(S1 \ S0)
verb_phrase(S) :- verb(S).
determiner([thelS] \ S).
determiner([a|S] \ S).
noun([pie-plate|S] \ S).
noun( [surprise|S] \ S.
adjective([decorated|S] \ S).
verb([contains|S] \ S).
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Definite Clause Grammars

Extension: Add Parsetree

Example

sentence (sentence(N,V), S \ S0) :-
noun_phrase(N, S \ S1),
verb_phrase(V, S1 \ S0).
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Definite Clause Grammars

Extension: Add Parsetree

Example

sentence (sentence(N,V), S \ S0) :-
noun_phrase(N, S \ S1),
verb_phrase(V, S1 \ S0).

Example (Definite Clause Grammars)

sentence(sentence(N,V)) — noun_phrase(N), verb_phrase(V).
noun_phrase(np(D,N)) — determiner(D), noun_phrase2(N).
noun_phrase(np(N)) — noun_phrase2(N).
noun_phrase2(np2(A,N)) — adjective(A), noun_phrase2(N).
noun_phrase2(np2(N)) — noun(N).

verb_phrase(vp(V,N)) — verb(V), noun phrase(N).
verb_phrase(vp(V)) — verb(V).
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Definite Clause Grammars

Example

sentence (PT) = ¢‘the decorated pie-plate contains a surprise’’
sentence (PT) = ¢‘the decorated pie-plates contain a surprise’’
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Definite Clause Grammars

Example

sentence (PT) = ¢‘the decorated pie-plate contains a surprise’’
sentence (PT) = ‘‘the decorated pie-plates contain a surprise’’

Example

determiner (det(the)) — [the].
determiner(det(a)) — [al.
noun(noun(pie-plate)) — [pie-plate].
noun(noun(pie-plates)) — [pie-plates].
noun (noun(surprise)) — [surprise].
noun(noun(surprises)) — [surprises].
adjective(adj(decorated)) — [decorated].
verb(verb(contains)) — [contains].
verb(verb(contain)) — [contain].

sentence(PT) = ¢‘the decorated pie-plates contains a surprise’’
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Definite Clause Grammars

Extension: Number Agreement

Example

sentence(sentence(NP,VP) ,Num) —
noun_phrase (N,Num), verb_phrase(V,Num) .

determiner (det (the) ,Num) — [the].
determiner(det(a),singular) — [a].
noun(noun(pie-plate),singular) — [pie-plate].
noun(noun(pie-plates) ,plural) — [pie-plates].
noun (noun(surprise) ,singular) — [surprise].
noun(noun (surprises) ,plural) — [surprises].
adjective(adj(decorated)) — [decorated].

verb(verb(contains) ,singular) — [contains].
verb(verb(contain) ,plural) — [contain].

sentence(PT) = ¢‘the decorated pie-plates contain a surprise’’
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