Logic Programming

Georg Moser

Institute of Computer Science @ UIBK
Summer 2015

Summary of Last Lecture

Definition

the time complexity of a (Prolog) program expresses the runtime of a program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory requirement of a program as a function of the size of its input

Observations

- space usage depends on the depth of recursion
- if full unification is not employed, the number of reductions asymptotically bounds the runtime
- in general size of search space and size of input terms needs to be taken into account, even for measuring time

Howto Improve Performance

Suggestion (1)
use better algorithms

Suggestion (2)
tuning, via:
1 good goal order
2 elimination of (unwanted) nondeterminism by using explicit conditions and cuts
3 exploit clause indexing (order arguments suitably) indexing performs static analysis to detect clauses which are applicable for reduction

Outline of the Lecture

Logic Programs
introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language
programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Outline of the Lecture

Logic Programs
introduction, basic constructs, database and recursive programming, theory of logic programs

The Prolog Language
programming in pure prolog, arithmetic, structure inspection, meta-logical predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause grammars, meta-programming, constraint logic programming

Generate and Test

Example

map(test, [region(a, A, [B, C, D]), region(b, B, [A, C, E]), region(c, C, [A,B,D,E,F]), region(d,D,[A,C,F]), region(e, E, [B,C,F]), region(f,F,[C,D,E])]).

Generate and Test

Example

```
map(test,[region(a,A,[B,C,D]), region(b,B,[A,C,E]),
    region(c,C,[A,B,D,E,F]), region(d,D,[A,C,F]),
    region(e,E,[B,C,F]), region(f,F,[C,D,E])]).
colour_map([Region|Regions], Colours) :-
    colour_region(Region,Colours),
    colour_map(Regions,Colours).
colour_map([],Colours).
```


Generate and Test

Example

```
\(\operatorname{map}(\) test, \([\) region(a, \(A,[B, C, D])\), region(b, B, [A, C, E]),
    region(c, C, [A, B, D, E, F]), region(d, D, [A, C, F]),
    region(e, E, [B, C, F]), region(f,F,[C,D,E])]).
colour_map([Region|Regions], Colours) :-
    colour_region(Region, Colours),
    colour map(Regions, Colours).
colour_map([], Colours).
colour_region(region(Name, Colour,Neighbours), Colours) :-
    select(Colour, Colours, Colours1),
    members(Neighbours, Colours1).
```


Generate and Test

Example

```
\(\operatorname{map}(\) test, \([\) region(a, \(A,[B, C, D])\), region(b, B, [A, C, E]),
    region(c, C, [A, B, D, E, F]), region(d, D, [A, C, F]),
    region(e, E, [B, C,F]), region(f,F,[C,D,E])]).
colour_map([Region|Regions], Colours) :-
    colour_region(Region, Colours),
    colour map(Regions, Colours).
colour_map([], Colours).
colour_region(region(Name, Colour,Neighbours), Colours) :-
    select(Colour, Colours, Colours1),
    members (Neighbours, Colours1).
test_colour (Name, Map) :-
    map(Name, Map),
    colours (Name, Colours),
    colour_map(Map, Colours).
```


Howto Test for Variants

Example

```
numbervars('$VAR'(N),N,N1) :- N1 is N+1.
numbervars(Term,N1,N2) :-
    nonvar(Term), functor(Term,Name,N),
    numbervars(0,N,Term,N1,N2).
numbervars(N,N,Term,N1,N1).
numbervars(I,N,Term,N1,N3) :-
    I < N, I1 is I+1, arg(I1,Term,Arg),
    numbervars(Arg,N1,N2), numbervars(I1,N,Term,N2,N3).
```


Howto Test for Variants

Example

```
numbervars('$VAR'(N),N,N1) :- N1 is N+1.
numbervars(Term,N1,N2) :-
    nonvar(Term), functor(Term,Name,N),
    numbervars(0,N,Term,N1,N2).
numbervars(N,N,Term,N1,N1).
numbervars(I,N,Term,N1,N3) :-
    I < N, I1 is I+1, arg(I1,Term,Arg),
    numbervars(Arg,N1,N2), numbervars(I1,N,Term,N2,N3).
```


Example

```
verify(Goal) :- \+ \+ Goal.
variant(Term1,Term2) :-
    verify((numbervars(Term1,0,N),
        numbervars(Term2,0,N),Term1=Term2)).
```


Nondeterministic Programming

Example

	0	1
$\rightarrow q_{0}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
q_{1}	\varnothing	$\left\{q_{2}\right\}$
$* q_{2}$	\varnothing	\varnothing

Orer
\square

Nondeterministic Programming

Example

	0	1
$\rightarrow q_{0}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
q_{1}	\varnothing	$\left\{q_{2}\right\}$
$* q_{2}$	\varnothing	\varnothing

Definition
A NFA is quintuple $(Q, \Sigma, \Delta, I, F)$ such that
$1 Q$ is a set of states
2Σ is an alphabet
3 Δ is relation on $(Q \times \Sigma) \times Q$
$4 /$ are the initial states
$5 F$ are the final states

Overview
Example
accept (S) :-
initial(Q),
accept (Q, S).
accept $(Q,[X \mid X s]):-$
delta $\left(Q, X, Q_{1}\right)$,
accept $\left(Q_{1}, X s\right)$.
accept $(Q,[]):-$
final (Q).

GM (Institute of Computer Science © UIBK)
Overview
Example
accept (S) :-
initial (Q),
accept (Q, S).
accept $(Q,[X \mid X, S):-$
delta $(Q, X, Q 1)$,
accept $(Q 1, X s)$.
accept $(Q,[]):-$
final (Q).
Overview
Example
accept (S) :-
initial (Q),
accept (Q, S).
accept $(Q,[X \mid X, S):-$
delta $(Q, X, Q 1)$,
accept $(Q 1, X s)$.
accept $(Q,[]):-$
final (Q).

Overview
Example
accept (S) :-
initial (Q),
accept (Q, S).
accept $(Q,[X \mid X, T):-$
delta $(Q, X, Q 1)$,
accept $(Q 1, X s)$.
accept $(Q,[]):-$
final (Q).

delta(Q,X,Q Q , ,
delta(Q,X,Q Q , ,
de|ta(Q,X,Q1),
melta(Q,X,Q1),

```
    accept(S) :-
```

 accept(S) :-
    ```
    accept(S) :-
```

 accept(S) :-
    ```
    accept(S) :-
```

 accept(S) :-
    ```
    accept(S) :-
        initial(Q),
        initial(Q),
accept(Q,[X|Xs]) :-
initial(q0).
initial(q0).
initial(q0).
initial(q0).
initial(q0).
initial(q0).
final(q2).
final(q2).
final(q2).
final(q2).
final(q2).
final(q2).
    Example
```

 Example
    ```
    Example
```

 Example
    ```
```

rat

```

```

final (q2).

```
```

final (q2).

```
```

final (q2).

```
```

final (q2).

```
```

final (q2).

```
```

final (q2).

```


```

 Exa
    ```
```

 Exa
    ```
```

 Exa
    ```

```

|

```
```

|

```
```

|

```
```

|

```
```

|

```
```

|

```










```

 :-
    ```
                :-
```

 :-
    ```
                :-
```

 :-
    ```
                :-
```

 :-
    ```
                :-
    Exa
    Exa
    Exa
                                -2-2
        #
```



```
        accept(Q,S)
```

 accept(Q,S)
    ```
        accept(Q,S)
```

 accept(Q,S)
    ```
        accept(Q,S)
```

 accept(Q,S)
    ```
        accept(Q,S)
```

 accept(Q,S)
 Exa
 Exa
 Exa
 Exa
    ```
    Exa
```

 Exa
    ```

```

Exam

```
Exam
```

Exam

```
Exam
```

Exam

```
Exam
```

Exam
M
M
M

Example
 accept(S).
 都 am

\square
-
-
\qquad
\qquad


```
Example
accept(S) :-
    initial(Q),
    accept(Q,S).
accept(Q,[X|Xs]) :-
    delta(Q,X,Q ),
    accept(Q (Xs).
accept(Q,[]) :-
    final(Q).
initial(q0).
final(q2).
delta(q}\mp@subsup{q}{0}{,0, q}\mp@subsup{q}{0}{\prime})
delta(q},0,0,\mp@subsup{q}{1}{})
delta(q}\mp@subsup{q}{0}{,1,q}\mp@subsup{q}{0}{\prime})
delta(q},\mp@subsup{q}{1}{},1,\mp@subsup{q}{2}{})
```

```
Example
accept(S) :-
    initial(Q),
    accept(Q,S).
accept(Q,[X|Xs]) :-
    delta(Q,X,Q Q ),
    accept( }\mp@subsup{Q}{1}{},\textrm{Xs})
accept(Q,[]) :-
    final(Q).
initial(q0).
final(q2).
delta(q},0,0,\mp@subsup{q}{0}{})
delta(q0,0, q1 ).
delta(q
delta(q}\mp@subsup{q}{1}{},1,\mp@subsup{q}{2}{})
:- accept([0,0,0,1,0,1]).
```


Incomplete Data Structures

Observation
given a list $[1,2,3]$ it can be represented as the difference of two lists
1 $[1,2,3]=[1,2,3] \backslash[]$

Incomplete Data Structures

Observation
given a list $[1,2,3]$ it can be represented as the difference of two lists
$1[1,2,3]=[1,2,3]$ []
2 $[1,2,3]=[1,2,3,4,5] \backslash[4,5]$

Incomplete Data Structures

Observation
given a list $[1,2,3]$ it can be represented as the difference of two lists
[$[1,2,3]=[1,2,3]$ []
$2[1,2,3]=[1,2,3,4,5] \backslash[4,5]$
$3[1,2,3]=[1,2,3,8] \backslash[8]$

Incomplete Data Structures

Observation
given a list $[1,2,3]$ it can be represented as the difference of two lists
$1[1,2,3]=[1,2,3]$ []
$2[1,2,3]=[1,2,3,4,5] \backslash[4,5]$
$3[1,2,3]=[1,2,3,8] \backslash[8]$
$4[1,2,3]=[1,2,3 \mid \mathrm{Xs}]$ Xs

Incomplete Data Structures

Observation
given a list $[1,2,3]$ it can be represented as the difference of two lists
$1[1,2,3]=[1,2,3]$ []
$2[1,2,3]=[1,2,3,4,5] \backslash[4,5]$
$3[1,2,3]=[1,2,3,8] \backslash[8]$
$4[1,2,3]=[1,2,3 \mid X s] \backslash X s$

Definition

 the difference of two lists is denotes as $A s \backslash B s$ and called difference list
Incomplete Data Structures

Observation
given a list $[1,2,3]$ it can be represented as the difference of two lists
$1[1,2,3]=[1,2,3]$ \]

$2[1,2,3]=[1,2,3,4,5] \backslash[4,5]$
$3[1,2,3]=[1,2,3,8] \backslash[8]$
$4[1,2,3]=[1,2,3 \mid X s] \backslash X s$

Definition

the difference of two lists is denotes as $A s \backslash B s$ and called difference list

```
Example
append_dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).
```


Application of Difference Lists

Recall

flatten([X|Xs],Ys) :-
flatten(X,Ys1), flatten(Xs,Ys2), append(Ys1,Ys2,Ys).
flatten(X,[X]) :- constant(X), X $\neq[]$.
flatten([], []).

Application of Difference Lists

Recall

```
flatten([X|Xs],Ys) :-
    flatten(X,Ys1), flatten(Xs,Ys2),
    append(Ys1,Ys2,Ys).
flatten(X,[X]) :- constant(X), X \not= [].
flatten([],[]).
```


Example

```
flatten(Xs,Ys) :- flatten_dl(Xs,Ys \ []).
flatten_dl([X|Xs],Ys \ Zs) :-
    flatten_dl(X,Ys \ Ys1), flatten_dl(Xs,Ys1 \ Zs).
flatten_dl(X,[X|Xs] \ Xs) :- constant(X), X \not= [].
flatten_dl([],Xs \ Xs).
```


Difference Lists Implement Accumulators Top-Down

Example (Flatten with Difference Lists)

```
flatten(Xs,Ys) :- flatten_dl(Xs,Ys \ []).
flatten_dl([X|Xs],Ys \ Zs) :-
    flatten_dl(X,Ys \ Ys1), flatten_dl(Xs,Ys1 \ Zs).
flatten_dl(X,[X|Xs] \ Xs) :- constant(X), X f= [].
flatten_dl([],Xs \ Xs).
```


Difference Lists Implement Accumulators Top-Down

```
Example (Flatten with Difference Lists)
flatten(Xs,Ys) :- flatten_dl(Xs,Ys \ []).
flatten_dl([X|Xs],Ys \ Zs) :-
    flatten_dl(X,Ys \ Ys1), flatten_dl(Xs,Ys1 \ Zs).
flatten_dl(X,[X|Xs] \ Xs) :- constant(X), X \not= [].
flatten_dl([],Xs \ Xs).
```


Example (Flatten Using Accumulator)

```
flatten(Xs,Ys) :- flatten(Xs,[],Ys).
flatten([X|Xs],Zs,Ys) :-
    flatten(Xs,Zs,Ys1), flatten(X,Ys1,Ys).
flatten(X,Xs,[X|Xs]) :-
    constant(X), X \not= [].
flatten([],Xs,Xs).
```


Example

```
reverse(Xs,Ys) :- reverse_dl(Xs, Ys \ []).
reverse_dl([X|Xs], Ys \ Zs) :-
    reverse_dl(Xs, Ys \ [X | Zs]).
reverse_dl([], Xs \ Xs).
```


Example

```
reverse(Xs,Ys) :- reverse_dl(Xs, Ys \ []).
reverse_dl([X|Xs], Ys \ Zs) :-
    reverse_dl(Xs, Ys \ [X | Zs]).
reverse_dl([], Xs \Xs).
```


Example

quicksort_dl([X|Xs], Ys \Zs) :-
partition(Xs,X,Littles, Bigs),
quicksort_dl(Littles,Ys \ [X|Ys1]),
quicksort_dl(Bigs,Ys1 \Zs).
quicksort_dl([],Xs \Xs).

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated: "As $\backslash \mathrm{Bs}$ " \rightarrow "As, Bs"

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated:
"As $\backslash \mathrm{Bs}$ " \rightarrow "As, Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated: "As $\backslash \mathrm{Bs}$ " \rightarrow "As, Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

- the tail Bs of a difference list acts like a pointer to the end of the first list As

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated: "As $\backslash \mathrm{Bs}$ " \rightarrow "As, Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

- the tail Bs of a difference list acts like a pointer to the end of the first list As
- this works as As is an incomplete list

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated: "As $\backslash \mathrm{Bs}$ " \rightarrow "As, Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

- the tail Bs of a difference list acts like a pointer to the end of the first list As
- this works as As is an incomplete list
- thus we represent a concrete list as the difference of two incomplete data structures

Observations

- difference lists are effective if independently different sections of a list are built, which are then concatenated
- the separation operator \backslash simplifies reading, but can be eliminated: "As $\backslash \mathrm{Bs}$ " \rightarrow "As, Bs"
- the explicit constructor should be removed, if time or space efficiency is an issue

More Observations

- the tail Bs of a difference list acts like a pointer to the end of the first list As
- this works as As is an incomplete list
- thus we represent a concrete list as the difference of two incomplete data structures
- generalises to other recursive data types

Difference-structures

Example

consider the following task: convert the sum $(a+b)+(c+d)$ into $(a+(b+(c+(d+0))))$

Difference-structures

Example

consider the following task: convert the sum $(a+b)+(c+d)$ into $(a+(b+(c+(d+0))))$

Definition

we make use of difference-sums: $E 1++E 2$, where $E 1, E 2$ are incomplete; the empty sum is denoted by 0

Difference-structures

Example

consider the following task: convert the sum $(a+b)+(c+d)$ into $(a+(b+(c+(d+0))))$

Definition

we make use of difference-sums: $E 1++E 2$, where $E 1, E 2$ are incomplete; the empty sum is denoted by 0

Example

```
normalise(Exp,Norm) :- normalise_ds(Exp,Norm ++ 0).
normalise_ds(A+B, Norm ++ Space) :-
    normalise_ds(A, Norm ++ NormB),
    normalise_ds(B, NormB ++ Space).
normalise_ds(A,(A + Space) ++ Space) :-
    constant(A).
```


Example

consider the following tasks

- create
- use
- maintain
a set of values indexed by keys

Example

consider the following tasks

- create
- use
- maintain
a set of values indexed by keys

Example

lookup(Key,[(Key,Value) | Dictionary],Value).
lookup(Key,[(Key1,Value1) | Dictionary],Value) :Key \neq Key1, lookup(Key,Dictionary,Value).
:- Dict $=[($ arnold,8881), (barry,4513), (cathy,5950) | Xs].

Example

consider the following tasks

- create
- use
- maintain
a set of values indexed by keys

Example

lookup(Key,[(Key,Value) | Dictionary],Value).
lookup(Key,[(Key1,Value1) | Dictionary],Value) :Key \neq Key1, lookup(Key,Dictionary, Value).
:- Dict $=[($ arnold, 8881), (barry,4513), (cathy,5950) | Xs].
:- lookup(david,Dict,1199).
Dict \mapsto [(arnold,8881), (barry,4513), (cathy,5950), (david,1199) | Xs]

Example (Freeze and Melt)
 copy (A,B) :- assert ('\$foo'(A)), retract('\$foo'(B)).

Example (Freeze and Melt)

copy (A,B) :- assert ('\$foo'(A)), retract('\$foo'(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).

Example (Freeze and Melt)

copy (A,B) :- assert ('\$foo'(A)), retract('\$foo'(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.

Example (Freeze and Melt)

```
copy(A,B) :- assert ('$foo'(A)), retract('$foo'(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.
melt('$VAR'(N),X,Dictionary) :- lookup(N,Dictionary,X).
melt(X,X,Dictionary) :- constant(X).
melt(X,Y,Dictionary) :-
    compound(X),
    functor(X,F,N),
    functor(Y,F,N),
    melt(N,X,Y,Dictionary).
```


Example (Freeze and Melt)

```
copy(A,B) :- assert ('$foo'(A)), retract('$foo'(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.
melt('$VAR'(N),X,Dictionary) :- lookup(N,Dictionary,X).
melt(X,X,Dictionary) :- constant(X).
melt(X,Y,Dictionary) :-
    compound(X),
    functor(X,F,N),
    functor(Y,F,N),
    melt(N,X,Y,Dictionary).
melt(N,X,Y,Dictionary) :-
    N > O, arg(N,X,ArgX),
    melt(ArgX,ArgY,Dictionary),
    arg(N,Y,ArgY), N1 is N-1,
    melt(N1,X,Y,Dictionary).
melt(0,X,Y,Dictionary).
```


Context-Free Grammars

Definition
a grammar G is a tuple $G=(V, \Sigma, R, S)$, where
$11 V$ finite set of variables (or nonterminals)
© Σ alphabet, the terminal symbols, $V \cap \Sigma=\varnothing$
$3 R$ finite set of rules
$4 S \in \mathcal{V}$ the start symbol of G

Context-Free Grammars

Definition
a grammar G is a tuple $G=(V, \Sigma, R, S)$, where
■ V finite set of variables (or nonterminals)
© Σ alphabet, the terminal symbols, $V \cap \Sigma=\varnothing$
$3 R$ finite set of rules
$4 S \in \mathcal{V}$ the start symbol of G
a rule is a pair $P \rightarrow Q$ of words, such that $P, Q \in(V \cup \Sigma)^{*}$ and there is at least one variable in P

Context-Free Grammars

Definition
a grammar G is a tuple $G=(V, \Sigma, R, S)$, where
$11 V$ finite set of variables (or nonterminals)
■ Σ alphabet, the terminal symbols, $V \cap \Sigma=\varnothing$
$3 R$ finite set of rules
4 $S \in \mathcal{V}$ the start symbol of G
a rule is a pair $P \rightarrow Q$ of words, such that $P, Q \in(V \cup \Sigma)^{*}$ and there is at least one variable in P

Definition

grammar $G=(V, \Sigma, R, S)$ is context-free, if \forall rules $P \rightarrow Q$:
-1 $P \in V$
2. $Q \in(V \cup \Sigma)^{*}$

Example

sentence \rightarrow noun_phrase, verb_phrase.
noun_phrase \rightarrow determiner, noun_phrase 2 .
noun_phrase \rightarrow noun_phrase 2 .
noun_phrase2 \rightarrow adjective, noun_phrase2.
noun_phrase $2 \rightarrow$ noun.
verb_phrase \rightarrow verb, noun_phrase.
verb_phrase \rightarrow verb.
determiner \rightarrow [the].
determiner \rightarrow [a].
noun \rightarrow [pie-plate].
noun \rightarrow [surprise].
adjective \rightarrow [decorated].
verb \rightarrow [contains].
sentence $\stackrel{*}{\Rightarrow}$ ''the decorated pie-plate contains a surprise''

```
Example
sentence(S \ S0) :- noun_phrase(S \ S1), verb_phrase(S1 \ S0).
noun_phrase(S \ S0) :-
    determiner(S \ S1), noun_phrase2(S1 \ S0).
noun_phrase(S) :- noun_phrase2(S).
noun_phrase2(S \ SO) :-
    adjective(S \S1), noun_phrase2(S1 \S0).
noun_phrase2(S) :- noun(S).
verb_phrase(S \ S0) :- verb(S \ S1), noun_phrase(S1 \ S0)
verb_phrase(S) :- verb(S).
determiner([the|S] \ S).
determiner([a|S] \S).
noun([pie-plate|S] \S).
noun([surpriselS] \S.
adjective([decorated|S] \S).
verb([contains|S] \S).
```


Extension: Add Parsetree
 \section*{DiniteClatse-Gamaras}

Example

sentence (sentence (N, V), $S \backslash \mathrm{SO}$) :-
noun_phrase($\mathrm{N}, \mathrm{S} \backslash \mathrm{S} 1$), verb_phrase(V, S1 \S0).
noun_phrase (N, S $\backslash \mathrm{S} 1)$, verb_phrase (V, S1 $\backslash \mathrm{SO})$.
noun_phrase (N, S $\backslash \mathrm{S} 1)$ verb_phrase $(\mathrm{V}, \mathrm{S} 1 \backslash \mathrm{SO})$

```
Example
```

Example
sentence(sentence(N,V), S \ SO) :-
sentence(sentence(N,V), S \ SO) :-
noun_phrase(N,N
noun_phrase(N,N
verb_phrase(V, S1 \S0).

```
    verb_phrase(V, S1 \S0).
```


$$
\rightarrow+
$$

Extension: Add Parsetree

Example

```
sentence(sentence(N,V), S \ S0) :-
    noun_phrase(N, S \ S1),
    verb_phrase(V, S1 \S0).
```


Example (Definite Clause Grammars)

sentence(sentence(N,V)) \rightarrow noun_phrase(N), verb_phrase(V). noun_phrase(np(D,N)) \rightarrow determiner(D), noun_phrase2(N). noun_phrase (np(N)) \rightarrow noun_phrase2(N).
noun_phrase2(np2(A,N)) \rightarrow adjective(A), noun_phrase2(N).
noun_phrase2(np2(N)) \rightarrow noun(N).
verb_phrase(vp(V,N)) \rightarrow verb(V), noun_phrase(N).
verb_phrase(vp(V)) \rightarrow verb(V).

> sentence $(\mathrm{PT}) \stackrel{*}{\Rightarrow}$ ' 'the decorated pie-plate contains a surprise', sentence(PT) $\stackrel{*}{\Rightarrow}$ ' the decorated pie-plates contain a surprise'' （2）
(

\qquad

1

```None
```

．

Example

sentence (PT) $\stackrel{*}{\Rightarrow}$ ''the decorated pie-plate contains a surprise"' sentence (PT) $\stackrel{*}{\Rightarrow}$ ''the decorated pie-plates contain a surprise"'

Example

```
determiner(det(the)) -> [the].
determiner(det(a)) -> [a].
noun(noun(pie-plate)) -> [pie-plate].
noun(noun(pie-plates)) }->\mathrm{ [pie-plates].
noun(noun(surprise)) -> [surprise].
noun(noun(surprises)) -> [surprises].
adjective(adj(decorated)) -> [decorated].
verb(verb(contains)) -> [contains].
verb(verb(contain)) -> [contain].
```

sentence (PT) $\stackrel{*}{\Rightarrow}$ ' the decorated pie-plates contains a surprise'"

Extension: Number Agreement

Example

sentence(sentence(NP, VP), Num) \rightarrow noun_phrase(N,Num), verb_phrase(V,Num).

```
determiner(det(the),Num) -> [the].
determiner(det(a),singular) }->\mathrm{ [a].
noun(noun(pie-plate),singular) }->\mathrm{ [pie-plate].
noun(noun(pie-plates),plural) }->\mathrm{ [pie-plates].
noun(noun(surprise),singular) }->\mathrm{ [surprise].
noun(noun(surprises),plural) }->\mathrm{ [surprises].
adjective(adj(decorated)) -> [decorated].
verb(verb(contains),singular) }->\mathrm{ [contains].
verb(verb(contain),plural) -> [contain].
```

sentence(PT) $\stackrel{*}{\Rightarrow}$ ' 'the decorated pie-plates contain a surprise',

