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Summary of Last Lecture

Definition

the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition

the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations
• space usage depends on the depth of recursion

• if full unification is not employed, the number of reductions
asymptotically bounds the runtime

• in general size of search space and size of input terms needs to be
taken into account, even for measuring time
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Howto Improve Performance

Suggestion À

use better algorithms

Suggestion Á

tuning, via:

1 good goal order

2 elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

3 exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction
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Overview

Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming
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Overview

Generate and Test

Example

map(test,[region(a,A,[B,C,D]), region(b,B,[A,C,E]),

region(c,C,[A,B,D,E,F]), region(d,D,[A,C,F]),

region(e,E,[B,C,F]), region(f,F,[C,D,E])]).

colour map([Region|Regions], Colours) :-

colour region(Region,Colours),

colour map(Regions,Colours).

colour map([],Colours).

colour region(region(Name,Colour,Neighbours), Colours) :-

select(Colour,Colours,Colours1),

members(Neighbours,Colours1).

test colour(Name,Map) :-

map(Name,Map),

colours(Name,Colours),

colour map(Map,Colours).
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Overview

Howto Test for Variants

Example

numbervars(’$VAR’(N),N,N1) :- N1 is N+1.

numbervars(Term,N1,N2) :-

nonvar(Term), functor(Term,Name,N),

numbervars(0,N,Term,N1,N2).

numbervars(N,N,Term,N1,N1).

numbervars(I,N,Term,N1,N3) :-

I < N, I1 is I+1, arg(I1,Term,Arg),

numbervars(Arg,N1,N2), numbervars(I1,N,Term,N2,N3).

Example

verify(Goal) :- \+ \+ Goal.

variant(Term1,Term2) :-

verify((numbervars(Term1,0,N),

numbervars(Term2,0,N),Term1=Term2)).
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Overview

Nondeterministic Programming

Example

0 1

→ q0 {q0, q1} {q0}
q1 ∅ {q2}
∗q2 ∅ ∅

Definition

A NFA is quintuple (Q,Σ,∆, I ,F ) such that

1 Q is a set of states

2 Σ is an alphabet

3 ∆ is relation on (Q × Σ)× Q

4 I are the initial states

5 F are the final states
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Overview

Example

accept(S) :-

initial(Q),

accept(Q,S).

accept(Q,[X|Xs]) :-

delta(Q,X,Q1),

accept(Q1,Xs).

accept(Q,[]) :-

final(Q).

initial(q0).
final(q2).

delta(q0,0,q0).
delta(q0,0,q1).
delta(q0,1,q0).
delta(q1,1,q2).

:- accept([0,0,0,1,0,1]).
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Incomplete Data Structures

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists

1 [1,2,3] = [1,2,3] \ []

2 [1,2,3] = [1,2,3,4,5] \ [4,5]

3 [1,2,3] = [1,2,3,8] \ [8]

4 [1,2,3] = [1,2,3|Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append dl(Xs \ Ys, Ys \ Zs, Xs \ Zs).
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Incomplete Data Structures

Application of Difference Lists

Recall

flatten([X|Xs],Ys) :-

flatten(X,Ys1), flatten(Xs,Ys2),

append(Ys1,Ys2,Ys).

flatten(X,[X]) :- constant(X), X 6= [].

flatten([],[]).

Example

flatten(Xs,Ys) :- flatten dl(Xs,Ys \ []).

flatten dl([X|Xs],Ys \ Zs) :-

flatten dl(X,Ys \ Ys1), flatten dl(Xs,Ys1 \ Zs).

flatten dl(X,[X|Xs] \ Xs) :- constant(X), X 6= [].

flatten dl([],Xs \ Xs).
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Incomplete Data Structures

Difference Lists Implement Accumulators Top-Down

Example (Flatten with Difference Lists)

flatten(Xs,Ys) :- flatten dl(Xs,Ys \ []).

flatten dl([X|Xs],Ys \ Zs) :-

flatten dl(X,Ys \ Ys1), flatten dl(Xs,Ys1 \ Zs).

flatten dl(X,[X|Xs] \ Xs) :- constant(X), X 6= [].

flatten dl([],Xs \ Xs).

Example (Flatten Using Accumulator)

flatten(Xs,Ys) :- flatten(Xs,[],Ys).

flatten([X|Xs],Zs,Ys) :-

flatten(Xs,Zs,Ys1), flatten(X,Ys1,Ys).

flatten(X,Xs,[X|Xs]) :-

constant(X), X 6= [].

flatten([],Xs,Xs).
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Incomplete Data Structures

Example

reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).

reverse dl([X|Xs], Ys \ Zs) :-

reverse dl(Xs, Ys \ [X | Zs]).

reverse dl([], Xs \ Xs).

Example

quicksort(Xs,Ys) :- quicksort dl(Xs, Ys \ []).

quicksort dl([X|Xs], Ys \ Zs) :-

partition(Xs,X,Littles, Bigs),

quicksort dl(Littles,Ys \ [X|Ys1]),

quicksort dl(Bigs,Ys1 \ Zs).

quicksort dl([],Xs \ Xs).
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Incomplete Data Structures

Observations
• difference lists are effective if independently different sections of a

list are built, which are then concatenated

• the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs” → “As , Bs”

• the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

• the tail Bs of a difference list acts like a pointer to the end of the
first list As

• this works as As is an incomplete list

• thus we represent a concrete list as the difference of two incomplete
data structures

• generalises to other recursive data types
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Difference-structures

Difference-structures

Example

consider the following task: convert the sum (a + b) + (c + d) into
(a + (b + (c + (d + 0))))

Definition

we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

Example

normalise(Exp,Norm) :- normalise ds(Exp,Norm ++ 0).

normalise ds(A+B, Norm ++ Space) :-

normalise ds(A, Norm ++ NormB),

normalise ds(B, NormB ++ Space).

normalise ds(A,(A + Space) ++ Space) :-

constant(A).
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Difference-structures

Example

consider the following tasks

• create

• use

• maintain

a set of values indexed by keys

Example

lookup(Key,[(Key,Value) | Dictionary],Value).

lookup(Key,[(Key1,Value1) | Dictionary],Value) :-

Key 6= Key1,

lookup(Key,Dictionary,Value).

:- Dict = [(arnold,8881), (barry,4513), (cathy,5950) | Xs].

:- lookup(david,Dict,1199).

Dict 7→ [(arnold,8881), (barry,4513),

(cathy,5950), (david,1199) | Xs]
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Difference-structures

Example (Freeze and Melt)

copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).

freeze(A,B) :- copy(A,B), numbervars(B,0,N).

melt(A,B) :- melt(A,B,Dictionary), !.

melt(’$VAR’(N),X,Dictionary) :- lookup(N,Dictionary,X).

melt(X,X,Dictionary) :- constant(X).

melt(X,Y,Dictionary) :-

compound(X),

functor(X,F,N),

functor(Y,F,N),

melt(N,X,Y,Dictionary).

melt(N,X,Y,Dictionary) :-

N > 0, arg(N,X,ArgX),

melt(ArgX,ArgY,Dictionary),

arg(N,Y,ArgY), N1 is N-1,

melt(N1,X,Y,Dictionary).

melt(0,X,Y,Dictionary).
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Definite Clause Grammars

Context-Free Grammars

Definition

a grammar G is a tuple G = (V ,Σ,R, S), where

1 V finite set of variables (or nonterminals)

2 Σ alphabet, the terminal symbols, V ∩ Σ = ∅
3 R finite set of rules

4 S ∈ V the start symbol of G

a rule is a pair P → Q of words, such that P,Q ∈ (V ∪ Σ)∗ and there is
at least one variable in P

Definition

grammar G = (V ,Σ,R,S) is context-free, if ∀ rules P → Q:

1 P ∈ V

2 Q ∈ (V ∪ Σ)∗
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Definite Clause Grammars

Example

sentence → noun phrase, verb phrase.

noun phrase → determiner, noun phrase2.

noun phrase → noun phrase2.

noun phrase2 → adjective, noun phrase2.

noun phrase2 → noun.

verb phrase → verb, noun phrase.

verb phrase → verb.

determiner → [the].

determiner → [a].

noun → [pie-plate].

noun → [surprise].

adjective → [decorated].

verb → [contains].

sentence
∗⇒ ‘‘the decorated pie-plate contains a surprise’’
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Definite Clause Grammars

Example

sentence(S \ S0) :- noun phrase(S \ S1), verb phrase(S1 \ S0).

noun phrase(S \ S0) :-

determiner(S \ S1), noun phrase2(S1 \ S0).

noun phrase(S) :- noun phrase2(S).

noun phrase2(S \ S0) :-

adjective(S \ S1), noun phrase2(S1 \ S0).

noun phrase2(S) :- noun(S).

verb phrase(S \ S0) :- verb(S \ S1), noun phrase(S1 \ S0)

verb phrase(S) :- verb(S).

determiner([the|S] \ S).

determiner([a|S] \ S).

noun([pie-plate|S] \ S).

noun([surprise|S] \ S.

adjective([decorated|S] \ S).

verb([contains|S] \ S).
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Definite Clause Grammars

Extension: Add Parsetree

Example

sentence(sentence(N,V), S \ S0) :-

noun phrase(N, S \ S1),

verb phrase(V, S1 \ S0).

Example (Definite Clause Grammars)

sentence(sentence(N,V)) → noun phrase(N), verb phrase(V).

noun phrase(np(D,N)) → determiner(D), noun phrase2(N).

noun phrase(np(N)) → noun phrase2(N).

noun phrase2(np2(A,N)) → adjective(A), noun phrase2(N).

noun phrase2(np2(N)) → noun(N).

verb phrase(vp(V,N)) → verb(V), noun phrase(N).

verb phrase(vp(V)) → verb(V).
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Definite Clause Grammars

Example

sentence(PT)
∗⇒ ‘‘the decorated pie-plate contains a surprise’’

sentence(PT)
∗⇒ ‘‘the decorated pie-plates contain a surprise’’

Example

determiner(det(the)) → [the].

determiner(det(a)) → [a].

noun(noun(pie-plate)) → [pie-plate].

noun(noun(pie-plates)) → [pie-plates].

noun(noun(surprise)) → [surprise].

noun(noun(surprises)) → [surprises].

adjective(adj(decorated)) → [decorated].

verb(verb(contains)) → [contains].

verb(verb(contain)) → [contain].

sentence(PT)
∗⇒ ‘‘the decorated pie-plates contains a surprise’’
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Definite Clause Grammars

Extension: Number Agreement

Example

sentence(sentence(NP,VP),Num) →
noun phrase(N,Num), verb phrase(V,Num).

...

determiner(det(the),Num) → [the].

determiner(det(a),singular) → [a].

noun(noun(pie-plate),singular) → [pie-plate].

noun(noun(pie-plates),plural) → [pie-plates].

noun(noun(surprise),singular) → [surprise].

noun(noun(surprises),plural) → [surprises].

adjective(adj(decorated)) → [decorated].

verb(verb(contains),singular) → [contains].

verb(verb(contain),plural) → [contain].

sentence(PT)
∗⇒ ‘‘the decorated pie-plates contain a surprise’’
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