ogic

Logic Programming

Georg Moser

Institute of Computer Science @ UIBK

Summer 2015

http://cl-informatik.uibk.ac.at

Summary of Last Lecture

Definition
the time complexity of a (Prolog) program expresses the runtime of a
program as a function of the size of its input

Definition
the space complexity of a (Prolog) program expresses the memory
requirement of a program as a function of the size of its input

Observations
e space usage depends on the depth of recursion
e if full unification is not employed, the number of reductions
asymptotically bounds the runtime

e in general size of search space and size of input terms needs to be
taken into account, even for measuring time

GM (Institute of Computer Science @ UIBK) Logic Programming

Howto Improve Performance

Suggestion @
use better algorithms

Suggestion @
tuning, via:
good goal order

elimination of (unwanted) nondeterminism by using explicit
conditions and cuts

exploit clause indexing (order arguments suitably)
indexing performs static analysis to detect clauses which are
applicable for reduction

GM (Institute of Computer Science @ UIBK) Logic Programming

ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming

ROVEIVISHERS S
Outline of the Lecture

Logic Programs

introduction, basic constructs, database and recursive programming, the-
ory of logic programs

The Prolog Language

programming in pure prolog, arithmetic, structure inspection, meta-logical
predicates, cuts, extra-logical predicates, how to program efficiently

Advanced Prolog Programming Techniques

nondeterministic programming, incomplete data structures, definite clause
grammars, meta-programming, constraint logic programming

GM (Institute of Computer Science @ UIBK) Logic Programming

Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

GM (Institute of Computer Science @ UIBK) Logic Programming

Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

colour map([Region|Regions], Colours) :-
colour_region(Region,Colours),
colour_map(Regions,Colours) .

colour map([],Colours).

GM (Institute of Computer Science @ UIBK) Logic Programming

Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

colour map([Region|Regions], Colours) :-
colour_region(Region,Colours),
colour_map(Regions,Colours) .

colour map([],Colours).

colour region(region(Name,Colour,Neighbours), Colours) :-
select (Colour,Colours,Coloursi),
members (Neighbours,Coloursl).

GM (Institute of Computer Science @ UIBK) Logic Programming

Generate and Test

Example

map(test, [region(a,A, [B,C,D]), region(b,B,[A,C,E]),
region(c,C, [A,B,D,E,F]), region(d,D,[A,C,F]),
region(e,E, [B,C,F]), region(f,F,[C,D,E])]).

colour map([Region|Regions], Colours) :-
colour_region(Region,Colours),
colour_map(Regions,Colours) .

colour map([],Colours).

colour region(region(Name,Colour,Neighbours), Colours) :-
select (Colour,Colours,Coloursi),
members (Neighbours,Coloursl).

test_colour (Name,Map) :-
map (Name, Map) ,
colours(Name,Colours),
colour_map(Map,Colours) .

GM (Institute of Computer Science @ UIBK) Logic Programming

Howto Test for Variants

Example

numbervars (°’$VAR’> (N) ,N,N1) :- N1 is N+1.
numbervars (Term,N1,N2) :-
nonvar (Term), functor(Term,Name,N),
numbervars (0,N,Term,N1,N2) .
numbervars(N,N,Term,N1,N1).
numbervars(I,N,Term,N1,N3) :-
I <N, I1 is I+1, arg(Il,Term,Arg),
numbervars (Arg,N1,N2), numbervars(I1,N,Term,N2,N3).

GM (Institute of Computer Science @ UIBK) Logic Programming

Howto Test for Variants

Example

numbervars (°’$VAR’> (N) ,N,N1) :- N1 is N+1.
numbervars (Term,N1,N2) :-
nonvar (Term), functor(Term,Name,N),
numbervars (0,N,Term,N1,N2) .
numbervars(N,N,Term,N1,N1).
numbervars(I,N,Term,N1,N3) :-
I <N, I1 is I+1, arg(Il,Term,Arg),
numbervars (Arg,N1,N2), numbervars(I1,N,Term,N2,N3).

Example
verify(Goal) :- \+ \+ Goal.

variant (Terml,Term2) :-
verify ((numbervars(Term1,0,N),
numbervars (Term2,0,N) ,Term1=Term2)) .

GM (Institute of Computer Science @ UIBK) Logic Programming

Nondeterministic Programming

Example
0 1
—qo | {90, 91} | {qo}
q z {2}
*q2 %] %}

GM (Institute of Computer Science @ UIBK) Logic Programming

Nondeterministic Programming

Example
0 1
—qo | {qo,q1} | {qo}
q1 2 {q2}
*q2 %] %}
Definition

A NFA is quintuple (Q, X, A, I, F) such that
Q is a set of states
2 is an alphabet
A is relation on (Q X X) X Q
| are the initial states

F are the final states

GM (Institute of Computer Science @ UIBK) Logic Programming

Example

accept(8) :-
initial(Q),
accept(Q,S).

accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).

accept(Q,[1) :-
final(Q) .

GM (Institute of Computer Science @ UIBK) Logic Programming

Example

accept(8) :-
initial(Q),
accept(Q,S).
accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).
accept(Q,[1) :-
final(Q) .
initial(qo) .
final(qy).

GM (Institute of Computer Science @ UIBK) Logic Programming

Example

accept(8) :-
initial(Q),
accept(Q,S).

accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).

accept(Q,[1) :-
final(Q) .

initial(qo) .
final(qy).
delta(qgp,0,q0) .
delta(qo,0,q1) .
delta(qo,1,qo0) -
delta(qgi,1,q2).

GM (Institute of Computer Science @ UIBK] Logic Programming

Example

accept(8) :-
initial(Q),
accept(Q,S).
accept(Q, [XIXs]) :-
delta(Q,X, @),
accept(Qy,Xs).
accept(Q,[1) :-
final(Q) .
initial(qo) .
final(qy).
delta(qgp,0,q0) .
delta(qo,0,q1) .
delta(qo,1,qo0) -
delta(qgi,1,q2).

:- accept([0,0,0,1,0,11).

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observation
given a list [1,2,3] it can be represented as the difference of two lists

[1,2,3] = [1,2,3] \ [J

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists
[1,2,3] = [1,2,3] \ (]
[1,2,3] = [1,2,3,4,5] \ [4,5]

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Incomplete Data Structures

Observation
given a list [1,2,3] it can be represented as the difference of two lists

[1,2,3] = [1,2,3] \ [I
[1,2,3] = [1,2,3,4,5] \ [4,5]
[1,2,3] = [1,2,3,8] \ [8]

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists
[1,2,3] = [1,2,3] \ (]

[1,2,3] = [1,2,3,4,5] \ [4,5]

[1,2,3] = [1,2,3,8] \ [8]

[1,2,3] = [1,2,3]Xs] \ Xs

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Incomplete Data Structures

Observation
given a list [1,2,3] it can be represented as the difference of two lists

[1,2,3] = [1,2,3] \ [J

[1,2,3] = [1,2,3,4,5] \ [4,5]
[1,2,3] = [1,2,3,8] \ [8]
[152’3] = [1,2,3|XS] \XS
Definition

the difference of two lists is denotes as As \ Bs and called difference list

GM (Institute of Computer Science @ UIBK] Logic Programming

Incomplete Data Structures

Observation

given a list [1,2,3] it can be represented as the difference of two lists
[1,2,3] = [1,2,3] \ (]

[1,2,3] = [1,2,3,4,5] \ [4,5]

[1,2,3] = [1,2,3,8] \ [8]

[1,2,3] = [1,2,3]Xs] \ Xs

Definition

the difference of two lists is denotes as As \ Bs and called difference list

Example

append d1(Xs \ Ys, Ys \ Zs, Xs \ Zs).

GM (Institute of Computer Science @ UIBK] Logic Programming

Application of Difference Lists

Recall

flatten([X|Xs],Ys) :-
flatten(X,Ys1), flatten(Xs,Ys2),
append(Ys1,Ys2,Ys).
flatten(X, [X]) :- constant(X), X # [].
flatten([],[]).

GM (Institute of Computer Science @ UIBK] Logic Programming

Application of Difference Lists

Recall

flatten([X|Xs],Ys) :-
flatten(X,Ys1), flatten(Xs,Ys2),
append(Ys1,Ys2,Ys).
flatten(X, [X]) :- constant(X), X # [].
flatten([],[]).

Example

flatten(Xs,Ys) :- flattendl(Xs,Ys \ [1).
flatten d1([X|Xs],Ys \ Zs) :-

flatten d1(X,Ys \ Ys1), flatten dl(Xs,Ysl \ Zs).
flatten dl(X,[XIXs] \ Xs) :- comnstant(X), X # [].
flatten d1([],Xs \ Xs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Difference Lists Implement Accumulators Top-Down

Example (Flatten with Difference Lists)

flatten(Xs,Ys) :- flattendl(Xs,Ys \ [1).
flatten d1([X|Xs],Ys \ Zs) :-

flatten d1(X,Ys \ Ys1), flatten dl(Xs,Ysl \ Zs).
flatten dl(X, [X|Xs] \ Xs) :- comstant(X), X # I[].
flatten d1([]1,Xs \ Xs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Difference Lists Implement Accumulators Top-Down

Example (Flatten with Difference Lists)

flatten(Xs,Ys) :- flattendl(Xs,Ys \ [1).
flatten d1([X|Xs],Ys \ Zs) :-

flatten d1(X,Ys \ Ys1), flatten dl(Xs,Ysl \ Zs).
flatten dl(X, [X|Xs] \ Xs) :- comstant(X), X # I[].
flatten d1([]1,Xs \ Xs).

Example (Flatten Using Accumulator)

flatten(Xs,Ys) :- flatten(Xs,[],Ys).

flatten([X|Xs],Zs,Ys) :-
flatten(Xs,Zs,Ysl), flatten(X,Ys1,Ys).
flatten(X,Xs, [X|Xs]) :-
constant(X), X # [J.
flatten([],Xs,Xs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Example
reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).

reverse d1([X|Xs], Ys \ Zs) :-
reverse dl(Xs, Ys \ [X | Zs]).
reverse d1([], Xs \ Xs).

GM (Institute of Computer Science @ UIBK] Logic Programming

Incomplete Data Structures

Example

reverse(Xs,Ys) :- reverse dl(Xs, Ys \ []).
reverse d1([X|Xs], Ys \ Zs) :-

reverse dl(Xs, Ys \ [X | Zs]).
reverse d1([], Xs \ Xs).

Example

quicksort(Xs,Ys) :- quicksort.dl(Xs, Ys \ [1).

quicksort d1([X[Xs], Ys \ Zs) :-
partition(Xs,X,Littles, Bigs),
quicksort_dl(Littles,Ys \ [X|Y¥s1l),
quicksort_dl(Bigs,Ysl \ Zs).

quicksort_dl([],Xs \ Xs).

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observations

o difference lists are effective if independently different sections of a
list are built, which are then concatenated

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observations

o difference lists are effective if independently different sections of a
list are built, which are then concatenated

e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs"

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”

e the explicit constructor should be removed, if time or space
efficiency is an issue

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”
e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”
e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

e this works as As is an incomplete list

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”

e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

e this works as As is an incomplete list

e thus we represent a concrete list as the difference of two incomplete
data structures

GM (Institute of Computer Science @ UIBK) Logic Programming

Incomplete Data Structures

Observations
o difference lists are effective if independently different sections of a
list are built, which are then concatenated
e the separation operator \ simplifies reading, but can be eliminated:
“As \ Bs" — “As, Bs”

e the explicit constructor should be removed, if time or space
efficiency is an issue

More Observations

e the tail Bs of a difference list acts like a pointer to the end of the
first list As

e this works as As is an incomplete list

e thus we represent a concrete list as the difference of two incomplete
data structures

e generalises to other recursive data types

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Difference-structures

Example

consider the following task: convert the sum (a+ b) + (¢ + d) into
(a+(b+(c+(d+0))))

GM (Institute of Computer Science @ UIBK] Logic Programming

Difference-structures

Difference-structures

Example
consider the following task: convert the sum (a+ b) + (¢ + d) into
(a+ (b+ (c+(d+0))))

Definition
we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

GM (Institute of Computer Science @ UIBK] Logic Programming

Difference-structures

Difference-structures

Example
consider the following task: convert the sum (a+ b) + (¢ + d) into
(a+(b+ (c+(d+0))))

Definition
we make use of difference-sums: E1++E2, where E1, E2 are incomplete;
the empty sum is denoted by 0

Example
normalise(Exp,Norm) :- normalise_ds(Exp,Norm ++ 0).

normalise_ds(A+B, Norm ++ Space) :-
normalise_ds(A, Norm ++ NormB),
normalise ds(B, NormB ++ Space).

normalise ds(A, (A + Space) ++ Space) :-—
constant (4).

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example

consider the following tasks
e create
e use

e maintain

a set of values indexed by keys

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example

consider the following tasks
e create
e use
e maintain

a set of values indexed by keys

Example

lookup(Key, [(Key,Value) | Dictionary],Value).
lookup(Key, [(Keyl,Valuel) | Dictionary],Value) :-

Key # Keyl,
lookup (Key,Dictionary,Value) .

:= Dict = [(arnold,8881), (barry,4513), (cathy,5950) | Xs].

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example

consider the following tasks
e create
e use
e maintain

a set of values indexed by keys

Example

lookup(Key, [(Key,Value) | Dictionary],Value).
lookup(Key, [(Keyl,Valuel) | Dictionary],Value) :-
Key # Keyl,
lookup (Key,Dictionary,Value) .

:= Dict = [(arnold,8881), (barry,4513), (cathy,5950) | Xs].
:— lookup(david,Dict,1199).
Dict + [(arnold,8881), (barry,4513),

(cathy,5950), (david,1199) | Xs]

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example (Freeze and Melt)
copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example (Freeze and Melt)

copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example (Freeze and Melt)

copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example (Freeze and Melt)
copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.
melt (’$VAR’> (N) ,X,Dictionary) :- lookup(N,Dictionary,X).
melt(X,X,Dictionary) :- constant(X).
melt(X,Y,Dictionary) :-

compound (X) ,

functor (X,F,N),

functor (Y,F,N),
melt(N,X,Y,Dictionary) .

GM (Institute of Computer Science @ UIBK) Logic Programming

Difference-structures

Example (Freeze and Melt)

copy(A,B) :- assert (’$foo’(A)), retract(’$foo’(B)).
freeze(A,B) :- copy(A,B), numbervars(B,0,N).
melt(A,B) :- melt(A,B,Dictionary), !.
melt (’$VAR’> (N) ,X,Dictionary) :- lookup(N,Dictionary,X).
melt(X,X,Dictionary) :- constant(X).
melt(X,Y,Dictionary) :-

compound (X) ,

functor (X,F,N),

functor (Y,F,N),

melt(N,X,Y,Dictionary) .
melt(N,X,Y,Dictionary) :-

N > 0, arg(N,X,ArgX),

melt (ArgX,ArgY,Dictionary),

arg(N,Y,ArgY), N1 is N-1,

melt(N1,X,Y,Dictionary).
melt(0,X,Y,Dictionary).

GM (Institute of Computer Science @ UIBK) Logic Programming

Context-Free Grammars
Definition
a grammar G is a tuple G = (V, X, R,S), where
V finite set of variables (or nonterminals)
Y alphabet, the terminal symbols, VNX =g
R finite set of rules
S €V the start symbol of G

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Context-Free Grammars
Definition
a grammar G is a tuple G = (V, X, R,S), where
V finite set of variables (or nonterminals)
Y alphabet, the terminal symbols, VNX =g
R finite set of rules
S €V the start symbol of G

a rule is a pair P — Q of words, such that P, Q € (V UX)* and there is
at least one variable in P

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Context-Free Grammars
Definition
a grammar G is a tuple G = (V, X, R,S), where
V finite set of variables (or nonterminals)
Y alphabet, the terminal symbols, VNX =g
R finite set of rules
S €V the start symbol of G

a rule is a pair P — Q of words, such that P, Q € (V UX)* and there is
at least one variable in P

Definition

grammar G = (V, X, R, S) is context-free, if V rules P — Q:
PeV
Qe (VUux)*

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Example

sentence — noun_phrase, verb_phrase.

noun_phrase — determiner, noun_phrase2.
noun_phrase — noun_phrase2.

noun_phrase2 — adjective, noun_phrase2.
noun_phrase2 — noun.

verb_phrase — verb, noun_phrase.
verb_phrase — verb.

determiner — [the].
determiner — [a].

noun — [pie-plate].
noun — [surprise].

adjective — [decorated].

verb — [contains].

sentence = ‘‘the decorated pie-plate contains a surprise’’

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Example

sentence(S \ SO0) :- noun phrase(S \ S1), verb_phrase(S1 \ SO).

noun phrase(S \ S0) :-
determiner(S \ S1), noun_phrase2(S1 \ S0).
noun_phrase(S) :- noun_phrase2(S).

noun phrase2(S \ S0) :-

adjective(S \ S1), noun phrase2(S1 \ SO).
noun_phrase2(S) :- noun(S).
verb_phrase(S \ S0) :- verb(S \ S1), noun phrase(S1 \ S0)
verb_phrase(S) :- verb(S).
determiner([thelS] \ S).
determiner([a|S] \ S).
noun([pie-plate|S] \ S).
noun([surprise|S] \ S.
adjective([decorated|S] \ S).
verb([contains|S] \ S).

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Extension: Add Parsetree

Example

sentence (sentence(N,V), S \ S0) :-
noun_phrase(N, S \ S1),
verb_phrase(V, S1 \ S0).

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Extension: Add Parsetree

Example

sentence (sentence(N,V), S \ S0) :-
noun_phrase(N, S \ S1),
verb_phrase(V, S1 \ S0).

Example (Definite Clause Grammars)

sentence(sentence(N,V)) — noun_phrase(N), verb_phrase(V).
noun_phrase(np(D,N)) — determiner(D), noun_phrase2(N).
noun_phrase(np(N)) — noun_phrase2(N).
noun_phrase2(np2(A,N)) — adjective(A), noun_phrase2(N).
noun_phrase2(np2(N)) — noun(N).

verb_phrase(vp(V,N)) — verb(V), noun phrase(N).
verb_phrase(vp(V)) — verb(V).

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Example

sentence (PT) = ¢‘the decorated pie-plate contains a surprise’’
sentence (PT) = ¢‘the decorated pie-plates contain a surprise’’

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Example

sentence (PT) = ¢‘the decorated pie-plate contains a surprise’’
sentence (PT) = ‘‘the decorated pie-plates contain a surprise’’

Example

determiner (det(the)) — [the].
determiner(det(a)) — [al.
noun(noun(pie-plate)) — [pie-plate].
noun(noun(pie-plates)) — [pie-plates].
noun (noun(surprise)) — [surprise].
noun(noun(surprises)) — [surprises].
adjective(adj(decorated)) — [decorated].
verb(verb(contains)) — [contains].
verb(verb(contain)) — [contain].

sentence(PT) = ¢‘the decorated pie-plates contains a surprise’’

GM (Institute of Computer Science @ UIBK) Logic Programming

Definite Clause Grammars

Extension: Number Agreement

Example

sentence(sentence(NP,VP) ,Num) —
noun_phrase (N,Num), verb_phrase(V,Num) .

determiner (det (the) ,Num) — [the].
determiner(det(a),singular) — [a].
noun(noun(pie-plate),singular) — [pie-plate].
noun(noun(pie-plates) ,plural) — [pie-plates].
noun (noun(surprise) ,singular) — [surprise].
noun(noun (surprises) ,plural) — [surprises].
adjective(adj(decorated)) — [decorated].

verb(verb(contains) ,singular) — [contains].
verb(verb(contain) ,plural) — [contain].

sentence(PT) = ¢‘the decorated pie-plates contain a surprise’’

GM (Institute of Computer Science @ UIBK) Logic Programming

