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Abstract

This paper tries to give the reader a quick overview of some of the most
frequent methods of data compression. It puts a focus on statistical methods
while only noting a few character based methods where they are applicable as
a combined method. As such a short overview can not discuss its topics in full
detail its content is mainly based on the overviews given in Data Compression
by Gilbert Held and Introduction to Data Compression by Guy E. Blelloch.
For detailed information a reader might want to consult the individual publi-
cations on the different methods, like Lempel and Ziv’s publications in IEEE
Transactions on Information Theory.

1 Introduction

Starting to move from theoretical construct to real world use in the late 1950’s and
early 1960’s, data compression is not only a way of using less resources in storing
data, but also widely useful in data transfer. The possibility of improving the speed
of data transfer is the reason for its early use in terminal-mainframe communication
and its continued use as inbuilt functions in routers and similar devices. [1, 2]

There a three notable scopes of data compression which offer methods of different
effectiveness. The most simple way of data compression is logical compression which
is simply about reducing the size of data by intelligently choosing input and method
of storage. I.e. using 130604 instead of 2013-June-03.

Character-based compression solely operates on the given data and uses utilises
certain occurrences in the data to compress it.

Statistical compression utilises the knowledge about the occurrence of individual
characters or patterns in the data in order to compress it efficiently. Of course
modern efficient compression methods often utilise combinations of several different
methods to achieve higher compression rates.

Furthermore Lossless and Lossy compression methods exist. All methods listed
below are lossless methods, which are thus usable for compressing text. As Blelloch
strains lossy compression which is mainly found in compressing pictures, video and
music is not to be understood as resulting in missing parts but as simplifying the
data. (i.e. reducing the resolution in areas) Thus the idea of lossy text compression
would not result in missing words but in a simplified output text.

2 Statistical compression

More complicated but also more efficient than simpler compression methods, statis-
tical compression relies on knowledge about the frequency of occurrence of certain
parts of the data. (i.e. the letter ’E’ is the most frequent in English text)

2.1 Information Theory

Like most authors do, I will start this section with a quick overview of some theo-
retical concepts. [1, 2] Of particular importance is the concept of Entropy , which
is used in Information Theory to describe the average number of bits needed to
represent each symbol in an alphabet. Entropy H can be defined as:
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(1)

Where n is the total number of states or messages, i is the current message
and Pi is the probability of a certain message. Based on the calculation of entropy
in (1) it is possible to calculate the Redundancy R of information. For a system
capable of transmitting on n levels, the unit of information equals log2n

1 thus the
redundancy becomes:

R = log2n−Havg (2)

Blelloch also explains the term of selfinformation of a message as defined by
Shannon as: [1]

i(s) = log2
1

P (s)
(3)

Note that Blelloch uses a different notation than the previous one, which is
based on the one used by Held. Here s is a state or message out of a set of states
S previously denoted by i as a state out of a number of states n. P (s) is the
probability of a certain message, previously denoted as Pi.

Selfinformation of a message is the number of bits of information in the message.
It can be understood as the number of bits a message should be encoded in. In
this context entropy can be understood as the probability weighted average of self
information of all messages in a Set.

2.2 Huffman Coding

Huffman coding is a widely used statistical encoding method that offers some special
benefits. Huffman codes possess a prefix property that ensures that no short code
sequence will be reused as a prefix of a longer code sequence. Viewed as a tree
structure the code represents a decision tree in which each state is either an empty
decision state or a terminal state. Each edge is weighted with either a binary one
or zero and each one is only examined once on each individual path which does
thus represent a unique bis combination. Huffman codes are created by listing
characters in descending order of their probability of occurrence. Then pairs of
characters are combined into nodes with the smallest frequency, until the last two
paths are combined in a unity node of probability 1. Then each branch is assigned
a 0 or 1 arbitrarily but constantly. If 0 is used on the upper branch once, it must
be used on every upper branch. The average number of bits per character is equal
to ∑

i

= 0nli ∗ Pi (4)

Where i is a Huffman code in a set of codes of length n, li is the length of the code
and Pi as before, is the probability of the coded character. This size approaches
entropy.

If the coded set is know to the decoder, the code is instantly decodeable bit by
bit. If there are more than one possible way of building a Huffman code (if there
are several entries with the same probability) the code which results in the smallest
Variance e.g. which has the smallest difference in code lengths is to be preferred.

1A binary representation can be viewed as as a system ”transmitting” on two channels 0 and 1
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2.2.1 Possible applications

Run Length encoding compresses data by replacing continuous runs of characters
with one occurrence of the character and a counter of how often it occurs in conces-
sion. [compression indicator][character][counter] Two obvious constraints of stan-
dard Run Length encoding are that a run of characters has to be at least three - or
five if no unassigned codes exist - characters long in order for the code to be efficient
and that the counter will have to be encoded in the same way as the characters and
will this will have a maximum value of 256. Longer runs will need to be encoded in
several runs of 256 characters.

A suitable real world application of Run Length Coding consists of transforming
the entire set of messages into the form of [character][count] and than Huffman
coding the characters and count values. For the count values a suitable frequency
estimate is to choose count = 1 as the value with the highest probability.

Move-To-Front encoding is based on changing the position of each character
from a character set in a previously fixed alphabet. On encounter each character
is moved to the front of the alphabet, with all other characters moved backwards.
After this is done the sequence of characters is encoded as integer values based
on their position in the alphabet. This number sequence is then again coded in
Huffman code.

2.3 Shannon-Fano Coding

Shannon-Fano coding works similarly to Huffman coding. Symbols are entered in
descending order of probability then the list is divided into 2 equally probable parts
until each resulting sub list after a split is also split fittingly. Now each digit in one
group will be assigned a 1 and the other on will be assigned a 0. Afterwards a suffix
bit will be added to each member of each two-member subset to distinguish them.

Like in Huffman coding the necessary bits per entry near entropy. Held notes
that Shannon-Fano coding will be more efficient with sets with bigger variance,
while Huffman codes will be more efficient for smaller variances.

2.4 Arithmetic Coding

In Arithmetic coding each possible sequence of entries is represented on a line from
0 to 1. A sequence of entries is assigned to an interval of size

∏n
i=1 Pi starting with

1 and narrowing by Pi each message.
A sequence is then coded with the smallest binary representation of a number

in the interval, which is itself represented as an interval. (i.e .010 = [.0100, .0101) )

2.5 Residual coding

Residual coding is useful for message sequences whose order is meaningful (i.e. close-
ness in the sequence implies similarity of the content.) An encoder using residual
coding guesses the next entry based on the context 2 and then stores the differ-
ence between the guess and the real value, called the residual. Then decoding
the decoder makes the guesses based on the same context but directly adds the
transmitted residual to produce the correct value.

2.6 Lempel-Ziv Algorithms

In general the Lempel-Ziv algorithm [1, 3, 4], when given a position in a file - in
the following called ’cursor’ - looks backwards for a set amount of characters until

2JPEGLS - lossless JPEG compression - utilises residual coding using the pixel to the left,
above, to the left and above and to the right and above as context
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the longest match for a string following the cursor is found. A code referring to
the match is output and the cursor progresses past the match. Released in two
papers, two variants of the algorithm, generally referred to as LZ 77 and LZ 78
were presented by Lempel and Ziv in 1977 and 1978. LZ 77, which is used in gzip,
ZIP and V.42bis (a standard modem protocol) only looks backwards in a window
of set size and outputs a triple of (position of occurs in the window, length of the
match, next character after match). LZ 78, which is used in Unix compress and
gif functions by placing new strings i in a dictionary initially filled with strings of
length=1, if a prefix with length = l(i) − 1 exists in the dictionary. Each value in
the dictionary has a distinctive code. The decoder then builds the same dictionary
in the same way the encoder did an gets the same results. If the dictionary gets too
big something has to be done. Implementations handle this differently. I.e. GIF
throws away the entire dictionary if it reaches a certain size, while Unix compress
deletes the dictionary if it deems it ineffective.

3 Conclusion

The field of data compression methods is vast and quickly growing ever since its
beginnings. Even this very short overview can hardly fit on four pages although
it does neither discuss methods in real detail nor looks into simpler methods at
all. Furthermore while some relatively old methods like the Huffman Coding are
still used, they are mostly used in variants and combinations. Recent conference
proceedings like those of the IEEE Data Compression Conference focus heavily
on compression methods for specialised purposes and the efficient combination of
methods. The current state of the field is thus difficult to grasp and an overview of
methods can not be more than a look at the tip of the iceberg.
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