
Automated Theorem Proving

Georg Moser

Department of Computer Science @ UIBK

Summer 2017

Summary

Summary of Last Lecture

Definition

γ

γ(x)
x a free variable

δ

δ(f (x1, . . . , xn))
f a Skolem function

• x1, . . . , xn denote all free variables of the formula δ

• Skolem function f must be new on the branch

Theorem

1 S be a fair strategy

2 F be a valid sentence

3 F has a tableau proof with the following properties:
• all tableau expansion rules are considered first and follow strategy S
• a block of atomic closure rules closes the tableau
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Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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Summary

Reminder: Computational Logic

Lemma

let I = (A, `) be an Herbrand interpretation of L
1 ∀xF (x) is true in I iff for all t ∈ A, F (t) is true in I
2 ∃xF (x) is true in I iff there exists t ∈ A such that F (t) is true in I

Lemma (Hintikka’s Lemma)

if H is first-order Hintikka set with respect to language L with nonempty
set of closed terms then H is satisfiable in Herbrand model (over L)

Notation

Hintikka sets are called sets admitting the closure properties in the lecture
notes
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Herbrand’s Theorem

Yet Another Constructive Proof of Herbrand’s Theorem

Fact

if (A, `) be an interpretation, F a formula, and x1, . . . , xn denote the set
of (free) variables in F ; only the values `(x1), . . . `(xn) of the
environment ` are important for the truth value of F

Notation

instead of (A, `) |= F we also write A |= F [`(x1), . . . , `(xn)]

Theorem (Revisited)

set G of universal sentences without = is satisfiable iff G has a Herbrand
model (over L)

Proof.

follows from Hintikka’s lemma together with: collection of all
Herbrand-consistent sets is first-order consistency property, cf. CL

negation of Herbrand expansion not a tautology

GM (Department of Computer Science @ UIBK) Automated Theorem Proving 80/1

Herbrand’s Theorem

Assumption

G a set of universal sentences (of L) without =

Definition (revisited)

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

Theorem (revisited)

the following is equivalent

1 G is satisfiable

2 G has a Herbrand model

3 ∀ finite G0 ⊆ Gr(G), G0 has a Herbrand model

Proof.

it remains to show the implication (3) ⇒ (1); on the blackboard
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Herbrand’s Theorem

Corollary

G has a Herbrand model or G is unsatisfiable; in the latter case the
following statements hold (and are equivalent):

1 ∃ finite subset S ⊆ Gr(G); conjunction
∧
S is unsatisfiable

2 ∃ finite subset S ⊆ Gr(G); disjunction
∨
{¬A | A ∈ S} is valid

Corollary

∃x1 · · · ∃xnG (x1, . . . , xn) is valid iff there are ground terms tk1 , . . . , t
k
n ,

k ∈ N and the following is valid

G (t11 , . . . , t
1
n) ∨ · · · ∨ G (tk1 , . . . , t

k
n )

foundation of automated reasoning
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Herbrand Complexity and Proof Length

Herbrand Complexity and Proof Length

Definition

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

Definition
• let C be an unsatisfiable set of clauses

• Gr(C) denotes the ground instances of C
• the Herbrand complexity of C is:

HC(C) = min{|C′| : C′ is unsatisfiable and C′ ⊆ Gr(C)}

Example

consider C = {P(x),¬P(f(x)) ∨ ¬P(g(x))} and we see HC(C) 6 3;
furthermore all C′ ⊆ Gr(C) with |C′| 6 2 are satisfiable: HC(C) = 3
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Herbrand Complexity and Proof Length

First-Order Resolution

Definition
resolution factoring

C ∨ A D ∨ ¬B
(C ∨ D)σ

C ∨ A ∨ B
(C ∨ A)σ

σ is a mgu of the atomic formulas A and B

Definition

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C; Resn+1(C) = Resn(C) ∪ Res(Resn(C))

• Res∗(C) =
⋃

n>0 Resn(C)
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Herbrand Complexity and Proof Length

Theorem
• let Γ be a resolution refutation of a clause set C
• let n denote the length |Γ| of this refutation (counting the number

of clauses in the refutation)

• then HC(C) 6 22n

Proof.

1 it suffices to define a suitable instance Γ′ of the refutation:
for Γ′ it is easy to see that HC(C) 6 |Γ′|

2 we show: let Γ be a derivation of Cn from C with |Γ| 6 n
∃ ground derivation Γ′ of a ground instance C ′n of Cn

from C′ ⊆ Gr(C) of length 6 22n

3 we argue inductively

4 assuming induction hypothesis, we fix a derivation of length n + 1
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Herbrand Complexity and Proof Length

Proof (cont’d).

5 in Γ suppose the last step is a resolution of Eσ ∨ Fσ from E ∨A and
F ∨ ¬B, where σ is the mgu of A and B

6 ∃ ground substitution τ such that Aτ = Bτ

7 ∃ derivations Γ′1, Γ′2 of Eτ ∨ Aτ and F τ ∨ ¬Bτ
8 |Γ′1| 6 22n; |Γ′2| 6 22n

9 then there exists a derivation of C ′n+1 = Eτ ∨ F τ from C′ ⊆ Gr(C)

of length 6 2 · 22n + 1 6 22(n+1)

10 similarly for factoring

Theorem

∃ a sequence of clause sets Cn, refutable with a resolution refutation of
length O(n), such that HC(Cn) > 2n
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Herbrand Complexity and Proof Length

Proof.

1 we define Cn
P(a) ¬P(x) ∨ P(f(x)) ¬P(f2

n
(a))

2 the (non-ground) refutation makes use of self-resolvents

¬P(x) ∨ P(fm(x)) ¬P(x) ∨ P(fm(x))

¬P(x) ∨ P(f2m(x))

3 this is impossible for a ground refutation

Definition
20 = 1 2n+1 = 22n

NB: note that 2n is a non-elementary function

Theorem

∃ a (finite) set of clauses Cn such that HC(Cn) > 1
2 · 2n, n > 1
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Herbrand Complexity and Proof Length

Statman’s Example

Example

consider the following clause set:

Cn = ST ∪ ID ∪ {p · q 6= p · ((Tn · q) · q)}

ST = {Sxyz = (xz)(yz),Bxyz = x(yz),Cxyz = xzy ,

Ix = x , px = p(qx)}

ID = ”equality axioms”

T = (SB)((CB)I)

T1 = T

Tk+1 = TkT

NB: · is the only function symbol, which is left associative

GM (Department of Computer Science @ UIBK) Automated Theorem Proving 88/1

Herbrand Complexity and Proof Length

Lemma

Tyx = y(yx) is derivable

Proof.
(SB)((CB)I)yx = (By)((CB)Iy)x =

= (By)((By)I)x = y((By I)x) = y(y(Ix)) = y(yx)

Definition

H1(y) = ∀x px = p(yx) Hm+1(y) = ∀x (Hm(x)→ Hm(yx))

Lemma

H1(y)→ H1(Ty) and ∀y (H1(y)→ H1(Ty)) (= H2(T)) are derivable
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Herbrand Complexity and Proof Length

Lemma

Hm+1(y)→ Hm+1(Ty) and ∀y (Hm+1(y)→ Hm+1(Ty)) (= Hm+2(T))
are derivable (m > 0)

Proof.

1 ∀x (A(x)→ A(yx))→ ∀x(A(x)→ A(y(yx))) is derivable

2 using y(yx) = Tyx and setting A = Hm we have

Hm+1(y)→ Hm+1(Ty) ∀y (Hm+1(y)→ Hm+1(Ty))

Corollary

H2(T), . . . , Hn+1(T) are derivable by short proofs

NB: “short” refers to proofs whose length is independent on n
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Herbrand Complexity and Proof Length

Lemma

Statman’s example is unsatisfiable; which can be shown with an informl
proof that is linear in n

Proof.

pq 6= p(Tnq)q

∀x px = p(qx)

Hn(T)

∀x (Hn(x)→ Hn(Tx)) (= Hn+1(T))

Hn(T)→ Hn(T2)

∀x (Hn−1(x)→ Hn−1(T2x)) (= Hn(T2))

H2(Tn)

∀x px = p(qx)→ ∀x px = p(Tnq)x

∀x px = p(Tnq)x

pq = p(Tnq)q
2
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Herbrand Complexity and Proof Length

Theorem

∃ clause sets whose refutation in resolution is non-elementarily longer
than its refutation in natural deduction

Proof.

1 consider Statman’s example Cn
2 the shortest resolution refutation is Ω(2n−1)

3 the length of the informal refutation is O(n) and can be formalised
in natural deduction
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Herbrand Complexity and Proof Length

Exercises (Part I)

• Give a direct proof of the fact that any set G of universal sentences
without = is satisfiable iff G has a Herbrand model (over L).

• Problem 6.3

• Problem 10.11
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Herbrand Complexity and Proof Length

Break
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Herbrand Complexity and Proof Length

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand’s theorem for dummies, Gilmore’s prover, method of Davis and
Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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Structural Skolemisation

How to Skolemise Properly

Definitions

• if ∀x occurs positively (negatively) then ∀x is called strong (weak)

• dual for ∃x

Definitions
• a formula is called rectified if different quantifiers bind different

variables

• a formula is in negation normal form (NNF), if it does not contain
implication, and every negation sign occurs directly in front of an
atomic formula
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Structural Skolemisation

Inner and Outer (Refutational) Skolemisation

Definition
• let A be a rectified formula and Qx G a subformula of A

• for any subformula Q′y H of G we say Q′y is in scope of Qx ;
denoted as Qx <A Q′y

Definition
• let A be rectified sentence in NNF

• let ∃xB a subformula of A at position p

• let {y1, . . . , yk} = {y | ∀y <A ∃x} and let
{z1, . . . , zl} = FVar(∃xB)

• A[B{x 7→ f (y1, . . . , yk)}] is obtained by an outer Skolemisation step

• A[B{x 7→ f (z1, . . . , zl)}] is obtained by an inner Skolemisation step
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Structural Skolemisation

Structural Skolem Form

Definition

let A be closed, rectified and in NNF we define the mapping rsk as
follows:

rsk(A) =

{
A no existential quant. in A

rsk(A−∃y ){y 7→ f (x1, . . . , xn)} ∀x1, . . . ,∀xn <A ∃y

1 ∃y is the first existential quantifier in A

2 A−∃y denotes A after omission of ∃y
3 the Skolem function symbol f is fresh

the formula rsk(A) is the (refutational) structural Skolem form of A

NB: generalises to arbitrary formulas, replacing ”existential” by ”weak”
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Prenex and Antiprenex Skolem Form

Definitions

• let A be a sentence and A′ a prenex normal form of A; then rsk(A′)
is the prenex Skolem form of A

• the antiprenex form of A is obtained my minimising the quantifier
range by quantifier shifting rules

• if A′ is the antiprenex form of A, then rsk(A′) is the antiprenex
Skolem form

Definitions (quantifier shifts)

suppose C is free for x

• ∀xA(x) ∧ C ≡ ∀x(A(x) ∧ C )

• ∀xA(x)→ C ≡ ∃x(A(x)→ C )

• ∀xA(x) ∧ ∀xB(x) ≡ ∀x(A(x) ∧ B(x))

Theorem

let A be a closed formula in NNF, then A ≈ rsk(A)
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Prenex and Antiprenex Skolem Form

Example

consider F = ∀x(∃yP(x , y) ∧ ∃zQ(z)) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G1 = ∀x(P(x , f(x)) ∧ Q(g(x))) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G2 = ∀xP(x , f(x)) ∧ Q(c) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G3 = ∀x∀u(P(x , h(x , u)) ∧ Q(i(x , u)) ∧ ¬P(a, u) ∨ ¬Q(u))

G1 denotes the refutational structural Skolemisation, G2 the antiprenex
refutational Skolemisation, and G3 is the prenex refutational
Skolemisation

Theorem

1 ∃ a set of sentences Dn with HC(D′n) = 22
2O(n)

for the structural
Skolem form D′n

2 HC(D′′n) > 1
22n for the prenex Skolem form
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Prenex and Antiprenex Skolem Form

Definition (Andrew’s Skolem form)

let A be a rectified sentence in NNF; (refutational) Andrew’s Skolem
form is defined as follows:

rskA(A) =

{
A no existential quantifiers

rskA(A−∃y ){y 7→ f (~x)} ∀x1, . . . ,∀xn <A ∃y

1 ∃y B is a subformula of A and ∃y is the first existential quantifier
in A

2 all x1, . . . , xn occur free in ∃y B

Theorem

let A be a closed formula in NNF, then A ≈ rskA(A)
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Prenex and Antiprenex Skolem Form

Example

consider ∀z∀y (∃x P(y , x) ∨ Q(y , z)); Andrew’s Skolem form is given as
follows:

∀z∀y (P(y , f(y)) ∨ Q(y , z))

on the other hand the antiprenex Skolem form is less succinct:

∀z∀y (P(y , g(z , y)) ∨ Q(y , z))

Example

consider ∀y∀z ∃x(P(y , x) ∨ Q(y , z)), then Andrew’s Skolem form is:

∀y∀z (P(y , h(y , z)) ∨ Q(y , z))
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Inner Skolemisation

Definition (Optimised Skolemisation)

• let A be a sentence in NNF and B = ∃x1 · · · ∃xk(E ∧ F ) a
subformula of A with FVar(∃~x(E ∧ F )) = {y1, . . . , yn}

• suppose A = C [B]

• suppose A→ ∀y1 · · · ∀yn∃x1 · · · ∃xkE is valid

• we define an optimised Skolemisation step as follows

opt step(A) = ∀~yE{. . . , xi 7→ fi (~y), . . . }∧C [F{. . . , xi 7→ fi (~y), . . . }]

where f1, . . . , fk are new Skolem function symbols

Example

consider a subformula of a sentence A

∀x∀y∀z(R(x , y) ∧ R(x , z)→ ∃u(R(y , u) ∧ R(z , u)))

we exemplarily assume ∀y∃uR(y , u) is provable from A; we obtain

R(y , f(y , z)) ¬R(x , y) ∨ ¬R(x , z) ∨ R(z , f(y , z))
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Inner Skolemisation

Theorem

optimised Skolemisation preserves satisfiability

Proof Sketch.

1 suppose A is satisfiable with some interpretation I
2 we extent I to the Skolem functions such that we obtain for the

extention I ′

I ′ |= ∀~yE{. . . , xi 7→ fi (~y), . . . } I ′ |= C [F{. . . , xi 7→ fi (~y), . . . }]

3 for this the extra condition is exploited

Remark

note that in optimised Skolemisation some literals are deleted from clauses
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Inner Skolemisation

Definition
• a clause C subsumes clause D, if ∃ σ such that the multiset of

literals of Cσ is contained in the multiset of literals of D (denoted
Cσ ⊆ D)

• C is a condensation of D if C is a proper (multiple) positive or
negative factor of D that subsumes D

Example

consider the clause P(x) ∨ R(b) ∨ P(a) ∨ R(z); its condensation is
R(b) ∨ P(a)

NB: condensation forms a strong normalisation technique that is
essential to remove redundancy in clauses

Example

note that the clause R(x , x) ∨ R(y , y) does not subsume R(a, a)
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Inner Skolemisation

Definition

• let B = ∃~x(E1 ∧ · · · ∧ E`) be a formula

• let {~z1} = FVar(E1) \ {~x}

• let {~zi} = FVar(Ei ) \
(⋃

j<i FVar(Ej) ∪ {~x}
)

• we call 〈{~z1}, . . . , {~z`}〉 the (free variable) splitting of B

Example
consider ∃u(R(y , u) ∧ R(z , u)); its splitting is 〈{y}, {z}〉

Observation

• let 〈{~z1}, . . . , {~z`}〉 be a splitting of ∃~x(E1 ∧ · · · ∧ E`)

• assume each conjunct Ei contains at least one of the variables
from ~x

• 〈{~z1, ~z2}, . . . , {~z`}〉 is a splitting of ∃~v(E2 ∧ · · · ∧ E`){xi 7→ fi (~z1, ~v)}
where ~v are new
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Inner Skolemisation

Definition (Strong Skolemisation)

• let A be a sentence in NNF and B = ∃~x(E1 ∧ · · · ∧ E`) a subformula
such that A = C [B]

• let 〈{~z1}, . . . , {~z`}〉 be a free variable splitting of B

• a strong Skolemisation step is defined as str step(A) = C [D] where
D is defined as

∀~w2 · · · ∀~w`E1{xi 7→ fi (~z1, ~w2, . . . , ~w`)} ∧ · · ·
· · · ∧ E`{xi 7→ fi (~z1, ~z2, . . . , ~z`)}

Example

consider the formula ∀x∀y∀z(R(x , y) ∧ R(x , z)→ ∃u(R(y , u) ∧ R(z , u)))
strong Skolemisation yields the following clauses

¬R(x , y)∨¬R(x , z)∨R(y , f(y ,w)) ¬R(x , y)∨¬R(x , z)∨R(z , f(y , z))

condensation of the first clause yields: ¬R(x , y) ∨ R(y , f(y ,w))

GM (Department of Computer Science @ UIBK) Automated Theorem Proving 107/1



Inner Skolemisation

Lemma

if ∃x1 · · · ∃xk(E ∧ F ) is satisfiable, then the following formula is
satisfiable as well

∀w1 · · · ∀wkE{xi 7→ fi (~y , ~w)} ∧ ∃v1 · · · ∃vkF{xi 7→ fi (~y , ~v)}
where {y1, . . . , yn} = FVar(E ) \ {x1, . . . , xk}

Theorem

strong Skolemisation preserves satisfiability

Proof Sketch.
• suppose A is satisfiable

• one shows satisfiability of str step(A) by main induction on A and
side induction on `

• the base case exploits the above lemma
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Inner Skolemisation

Assessment

structural Skolemisation

• structural (outer) Skolemisation can lead to non-elementary
speed-up over prenex Skolemisation

• structural Skolemisation requires non-trivial formula transformations,
in particular quantifier shiftings

• how to implement?

inner Skolemisation
• standard inner Skolemisation techniques are straightforward to

implement

• optimised Skolemisation requires proof of A→ ∀~y∃~xE as
pre-condition

• strong Skolemisation is incomparable to optimised Skolemisation, as
larger, but more general clauses may be produced
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Inner Skolemisation

Exercises (Part II)

• Optional: Read-up on intuitionistic predicate logic and prove that
the following quantifier shifts are not intuitionistically valid (where x
is free for C )

1 ∀x(A(x) ∨ C )→ (∀xA(x) ∨ C )
2 (∀xA(x)→ C )→ ∃x(A(x)→ C )
3 (C → ∃xA(x))→ ∃x(C → A(x))

NB: these are the only quantifier shifts which are not
intuitionistically valid

• Problem 10.14

• Problem 10.15

• Problem 10.16
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