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Automated Theorem Proving
® x1,...,X, denote all free variables of the formula

e Skolem function f must be new on the branch

Georg Moser
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S be a fair strategy

S 2017
ummer F be a valid sentence

F has a tableau proof with the following properties:

o all tableau expansion rules are considered first and follow strategy S
e a block of atomic closure rules closes the tableau
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Outline of the Lecture Reminder: Computational Logic
Lemma

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and let T = (A, €) be an Herbrand interpretation of L
Putnam VxF(x) is true in Z iff for all t € A, F(t) is true in T

3xF (x) is true in T iff there exists t € A such that F(t) is true in T

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion Lemma (Hintikka's Lemma)

Automated Reasoning with Equality if H is first-order Hintikka set with respect to language L with nonempty
set of closed terms then H is satisfiable in Herbrand model (over L)

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning Notation
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem Hintikka sets are called sets admitting the closure properties in the lecture
notes
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Herbrand’s Theorem Herbrand’s Theorem

Yet Another Constructive Proof of Herbrand's Theorem Assumption
Fact G a set of universal sentences (of £) without =
if (A, 0) be an interpretation, F a formula, and x1, ..., x, denote the set o N
of (free) variables in F; only the values {(x1), ...¢(x,) of the Definition (revisited)
environment £ are important for the truth value of F Gr(G) = {G(t1, ..., tn) | Vx1 - ¥xaG(x1,. .., %n) € G, t; closed terms}
Notation
instead of (A, ) = F we also write A = F[((x1), . .., {(xn)] Theorem (revisited)
the following is equivalent
Theorem (Revisited) G is satisfiable
set G of universal sentences without = is satisfiable iff G has a Herbrand G has a Herbrand model
model (over L) VY finite Go C Gr(G), Go has a Herbrand model
Proof. [negation of Herbrand expansion not a tautology) Proof.
follows from Hintikka's Mgether with: collection of all it remains to show the implication (3) = (1); on the blackboard |
Herbrand-consistent sets is first-order consistency property, cf. CL | ’
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Corollary Herbrand Complexity and Proof Length
G has a Herbrand model or G is unsatisfiable; in the latter case the Definition

following statements hold (and are equivalent):
3 finite subset S C Gr(G), conjunction )\ S is unsatisfiable
3 finite subset S C Gr(G); disjunction \/{—A | A € S} is valid

Gr(G) = {G(t1,...,tn) | Vx1 - V%, G(x1,...,Xn) € G, t; closed terms}

Definition
e let C be an unsatisfiable set of clauses
Corollary _
e Gr(C) denotes the ground instances of C
Ixq - - IxnG(xa, ..., xn) is valid iff there are ground terms t{‘, e t,’,‘, e the Herbrand complexity of C is:
k € N and the following is valid plexity '
K HC(C) = min{|C’|: C' is unsatisfiable and C’ C Gr(C)}

G(t,....thyv---VG(tf, ...tk

)

Example

consider C = {P(x), =P(f(x)) V =P(g(x))} and we see HC(C) < 3;
furthermore all C' C Gr(C) with |C’| < 2 are satisfiable: HC(C) = 3

foundation o
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Herbrand Complexity and Proof Length

First-Order Resolution

Definition
resolution factoring
CVvVA DvV-B CVAVB
(CvVv D)o (CV Ao

o is a mgu of the atomic formulas A and B

Definition

let C be a set of clauses; define resolution operator Res(C)
e Res(C) = {D | D is resolvent or factor with premises in C}
o Res?(C) = C; Res™"(C) = Res"(C) U Res(Res"(C))
* Res™(C) = U,>o Res"(C)
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Herbrand Complexity and Proof Length

Proof (cont'd).

in I suppose the last step is a resolution of Ec V Fo from E V A and
F Vv =B, where ¢ is the mgu of A and B

@ J ground substitution 7 such that A7 = Bt

3 derivations '}, [, of ETV A7 and FrV =BT

B M) <227 | <22

B then there exists a derivation of C; ; = ETV F7 from C’ C Gr(C)
of length < 2-22" 1 < 22(nt1)

i similarly for factoring

Theorem

3 a sequence of clause sets C,,, refutable with a resolution refutation of
length O(n), such that HC(C,,) > 2"
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Herbrand Complexity and Proof Length

Theorem
e let [ be a resolution refutation of a clause set C

e let n denote the length |I'| of this refutation (counting the number
of clauses in the refutation)

e then HC(C) < 22"

Proof.

it suffices to define a suitable instance I’ of the refutation:
for I it is easy to see that HC(C) < ||

we show: let ' be a derivation of C, from C with |I'| < n
3 ground derivation '’ of a ground instance C}, of C,
from C’' C Gr(C) of length < 22"

we argue inductively

assuming induction hypothesis, we fix a derivation of length n+ 1
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Herbrand Complexity and Proof Length

Proof.

we define C, )
Pa) —P(x)VP(f(x))  —=P(f*'(a))

the (non-ground) refutation makes use of self-resolvents
~P(x) VP(f"(x)) —P(x) v P("(x))
—P(x) vV P(f"(x))

this is impossible for a ground refutation

[ |
Definition )
20=1 2p41 = 2°"
NB: note that 2, is a non-elementary function
Theorem
3 a (finite) set of clauses C, such that HC(Cy) > 3 -2,, n > 1
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Herbrand Complexity and Proof Length Herbrand Complexity and Proof Length

Statman’s Example Lemma
Tyx = y(yx) is derivable

Example
consider the following clause set: Proof.
(SB)((CB)Nyx = (By)((CB)ly)x =
Co = STUIDULp-a7p-((To-a)-a)} = (By)((By))x = y((By)x) = y(y(Ix)) = y(yx)
ST = {Sxyz = (xz)(yz),Bxyz = x(yz),Cxyz = xzy, .
Ix = x, px = p(qx)}
ID = "equality axioms” Definition
T = (SB)((CB)I)
Hi(y) =¥x px =p(yx)  Hmi1(y) = Vx (Hm(x) = Hm(yx))
T, = T
Ter1 = TiT
NB: - is the only function symbol, which is left associative Lemma
Hi(y) — H1(Ty) and ¥y (H1(y) — Hi(Ty)) (= H2(T)) are derivable
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Lemma Lemma
Hmt1(y) = Hmy1(Ty) and Vy (Hms1(y) = Hmt1(Ty)) (= Hmio(T)) Statman'’s example is unsatisfiable; which can be shown with an informl
are derivable (m > 0) proof that is linear in n
Proof. Proof.

Vx (A(x) = A(yx)) = Vx(A(x) — A(y(yx))) is derivable

using y(yx) = Tyx and setting A = H,,, we have Px (Hn(x) = Ha(Tx)) (= Hy:a(T))

H,(T) Ha(T) — Hu(T2)
Hni1(y) = Hmet(Ty)  Vy (Hmya(y) = Hmya(Ty)) Vx (Ho—1(x) = Hn—1(T2x)) (= Ha(T2))
n Hz(Tn)
Vx px =p(ax)  Vx px = p(gx) = Vx px = p(Txq)x
I Vx px = p(Tha)x
Corollary Pa # P(Tha)a pd = p(Thq)q
Hao(T), ..., Hot1(T) are derivable by short proofs 0

NB: “short” refers to proofs whose length is independent on n
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Herbrand Complexity and Proof Length Herbrand Complexity and Proof Length
Exercises (Part I)

Theorem

3 clause sets whose refutation in resolution is non-elementarily longer
than its refutation in natural deduction

e Give a direct proof of the fact that any set G of universal sentences

Proof. without = is satisfiable iff G has a Herbrand model (over £).
consider Statman's example C, e Problem 6.3
the shortest resolution refutation is Q(2,-1) e Problem 10.11
the length of the informal refutation is O(n) and can be formalised
in natural deduction -
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Outline of the Lecture

Early Approaches in Automated Reasoning
Herbrand’s theorem for dummies, Gilmore's prover, method of Davis and

Putnam
B k Starting Points
rea resolution, tableau provers, Skolemisation, ordered resolution, redundancy

and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem
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Structural Skolemisation

How to Skolemise Properly

Definitions
e if Vx occurs positively (negatively) then Vx is called strong (weak)

e dual for dx

Definitions
e a formula is called rectified if different quantifiers bind different
variables
e a formula is in negation normal form (NNF), if it does not contain
implication, and every negation sign occurs directly in front of an
atomic formula
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Structural Skolemisation

Structural Skolem Form

Definition
let A be closed, rectified and in NNF we define the mapping rsk as
follows:

rsk(A) = {A

rsk(A_gy ) {y — f(x1,...,xn)} Vxi,..

no existential quant. in A

L VXn <a dy

dy is the first existential quantifier in A
A_3, denotes A after omission of Jy
the Skolem function symbol f is fresh
the formula rsk(A) is the (refutational) structural Skolem form of A

NB: generalises to arbitrary formulas, replacing "existential” by "weak”

GM (Department of Computer Science @ Ul Automated Theorem Proving

Inner and Outer (Refutational) Skolemisation

Definition
e let A be a rectified formula and Qx G a subformula of A

e for any subformula Q'y H of G we say Q'y is in scope of Qx;
denoted as Qx <, Q'y

Structural Skolemisation

Definition
e let A be rectified sentence in NNF
e let IxB a subformula of A at position p

o let {y1,...,yk} ={y | Vy <a 3x} and let
{z1,...,z/} = FVar(3xB)

o A[B{x— f(y1,...
o A[B{x+— f(z1,..

, ¥k)}] is obtained by an outer Skolemisation step

.,21)}] is obtained by an inner Skolemisation step
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Prenex and Antiprenex Skolem Form

Definitions
e let A be a sentence and A’ a prenex normal form of A; then rsk(A")
is the prenex Skolem form of A
e the antiprenex form of A is obtained my minimising the quantifier
range by quantifier shifting rules
o if A" is the antiprenex form of A, then rsk(A’) is the antiprenex
Skolem form

Definitions (quantifier shifts)
suppose C is free for x
o VxA(x) A C = Vx(A(x) A C)
o VxA(x) = C = 3x(A(x) — C)
o VxA(x) A VxB(x) = Yx(A(x) A B(x))

Theorem

let A be a closed formula in NNF, then A =~ rsk(A) [ ]
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Prenex and Antiprenex Skolem Form Prenex and Antiprenex Skolem Form

Example
consider F = Vx(3yP(x,y) A 3zQ(z)) A Vu(-P(a, u) V -Q(uv)) Definition (Andrew'’s Skolem form)
let A be a rectified sentence in NNF; (refutational) Andrew's Skolem
6 = (P(x () A Q(e())) A Yl -P(5,0) Y ~Q(u) o e ot 2 fatone ( )
Gy = VxP(x,f(x)) A Q(c) AVu(=P(a,u) vV -Q(u))
Gs = VxVu(P(x, h(x, u)) A Q(i(x, u)) A =P(a,u) V =Q(u)) rska(A) = A no existential quantifiers
rska(A—zy){y — f(X)} Vxi,...,Vx, <a3dy

G1 denotes the refutational structural Skolemisation, G, the antiprenex
refutational Skolemisation, and Gz is the prenex refutational

Skolemisation dy B is a subformula of A and Jy is the first existential quantifier

in A
Theorem all x1,...,x, occur free in dy B
0(n)
3 a set of sentences D, with HC(D,) = 2% for the structural
Skolem form D'\, Theorem
let A be a closed formula in NNF, then A = rska(A) [ |

HC(D)) > %2,, for the prenex Skolem form
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Prenex and Antiprenex Skolem Form Inner Skolemisation

Definition (Optimised Skolemisation)
e let A be a sentence in NNF and B =3x;---3Ixx(EAF) a

Example
consider VzVy (3x P(y,x) V Q(y, z)); Andrew's Skolem form is given as subformula of A with FVar(IX(E A F)) = {y1,.. ., yn}
follows: e suppose A = C[B]

vzVy (P(y,f(y)) V Q(y, 2)) e suppose A — Vyy - - - Vy,dxy - - - Ixk E is valid
e we define an optimised Skolemisation step as follows

opt_step(A) =VyE{...,xi = fi(¥),... }AC[F{...,xi = fi(¥),... }]

on the other hand the antiprenex Skolem form is less succinct:

VzVy (P(y,g(z,y)) V Q(y, 2))

where fi, ..., f are new Skolem function symbols
Example Example
consider VyVz 3x(P(y, x) V Q(y, z)), then Andrew’s Skolem form is: consider a subformula of a sentence A

Vy¥z (P(y,h(y, 2)) V Qy, 2)) VxVyVz(R(x,y) A R(x,z) = Ju(R(y, u) AR(z, u)))

we exemplarily assume Vy3uR(y, u) is provable from A; we obtain
R(v.f(y;2))  —R(x,y) vV -R(x,2) VR(z,f(y,2))
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Inner Skolemisation

Theorem
optimised Skolemisation preserves satisfiability

Proof Sketch.
suppose A is satisfiable with some interpretation Z

we extent Z to the Skolem functions such that we obtain for the
extention Z'

T EVYEL .. xi— f(7),...} T =CIF{.. ,x— fi(7),...}]

for this the extra condition is exploited
[ |

Remark

note that in optimised Skolemisation some literals are deleted from clauses
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Definition
e a clause C subsumes clause D, if 3 o such that the multiset of

literals of Co is contained in the multiset of literals of D (denoted
Co C D)

e Cis a condensation of D if C is a proper (multiple) positive or
negative factor of D that subsumes D

Example

consider the clause P(x) vV R(b) vV P(a) V R(z); its condensation is
R(b) v P(a)

NB: condensation forms a strong normalisation technique that is
essential to remove redundancy in clauses

Example
note that the clause R(x, x) V R(y,y) does not subsume R(a, a) J
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Definition
let B =3x(E1 A--- A E;) be a formula
let {1} = FVar(Er) \ {X}
let {21} = FVar(£)\ (Uj<; FYar(5) U {x})
we call ({Z1},...,{Z}) the (free variable) splitting of B

Example
consider Ju(R(y, u) A R(z, u)); its splitting is ({y},{z})

Observation
o let ({Z1},...,{Z}) be a splitting of Ix(Ex A --- A Ey)
e assume each conjunct E; contains at least one of the variables
from X
o ({z1,2},...,{Z:}) is a splitting of IV(Ex A --- A Ep){x; — fi(Z1,V)}
where V are new
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Inner Skolemisation

Definition (Strong Skolemisation)

e let A be a sentence in NNF and B = 3x(E; A - -+ A E;) a subformula
such that A = C[B]

o let ({z1},...,{Z}) be a free variable splitting of B

e a strong Skolemisation step is defined as str_step(A) = C[D] where
D is defined as

VVVz-HVVVgEl{X,' — ﬁ(fl,Wz,...,VVg)}/\“'
"'/\EE{XI"_> f;(zlaféavzf)}

Example

consider the formula ¥xVyVz(R(x,y) A R(x, z) — Ju(R(y, u) A R(z, u)))
strong Skolemisation yields the following clauses

“R(x,y)V=R(x,2) VR(y,f(y,w))  =R(x,y)V-R(x,2) VR(z,f(y, 2))
condensation of the first clause yields: =R(x,y) V R(y, f(y, w))
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Inner Skolemisation Inner Skolemisation

Lemma Assessment
if Ix1 - - - Ixx(E A F) is satisfiable, then the following formula is structural Skolemisation
satisfiable as well e structural (outer) Skolemisation can lead to non-elementary
Ywy - YW E{x; — f(7, W)} A 3wy --- v F{x; — fi(¥, V)} speed-up over prenex Skolemisation
where {y1,...,yn} = FVar(E) \ {x1,...,xk} e structural Skolemisation requires non-trivial formula transformations,

in particular quantifier shiftings

Theorem e how to implement?

strong Skolemisation preserves satisfiability

inner Skolemisation

Proof Sketch. e standard inner Skolemisation techniques are straightforward to
e suppose A is satisfiable implement
e one shows satisfiability of str_step(A) by main induction on A and ¢ opt|m|sec.j .Skolemlsat|on requires proof of A — Vy3XE as
side induction on ¢ pre-condition
o the base case exploits the above lemma e strong Skolemisation is incomparable to optimised Skolemisation, as
) larger, but more general clauses may be produced
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Inner Skolemisation

Exercises (Part I1)

e Optional: Read-up on intuitionistic predicate logic and prove that
the following quantifier shifts are not intuitionistically valid (where x
is free for C)

Vx(A(x) vV C) = (VxA(x) v C)
(VxA(x) = C) — Ix(A(x) — C)
(€ = IA(x)) — Ix(C — A(x))

NB: these are the only quantifier shifts which are not
intuitionistically valid

e Problem 10.14
e Problem 10.15
e Problem 10.16
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