

Automated Theorem Proving

Georg Moser

Department of Computer Science @ UIBK

Summer 2017

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

ummary

Summary of Last Lecture

Definition

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable $\frac{\delta}{\delta(f(x_1,...,x_n))}$ f a Skolem function

- x_1, \ldots, x_n denote all free variables of the formula δ
- Skolem function f must be new on the branch

Theorem

- 1 S be a fair strategy
- **2** *F* be a valid sentence
- **3** *F* has a tableau proof with the following properties:
 - all tableau expansion rules are considered first and follow strategy S
 - a block of atomic closure rules closes the tableau

GM (Department of Computer Science @ UI Automated Theorem Proving

ummary

Reminder: Computational Logic

Lemma

- let $\mathcal{I} = (\mathcal{A}, \ell)$ be an Herbrand interpretation of $\mathcal L$
 - **1** $\forall x F(x)$ is true in \mathcal{I} iff for all $t \in \mathcal{A}$, F(t) is true in \mathcal{I}
 - **2** $\exists x F(x)$ is true in \mathcal{I} iff there exists $t \in \mathcal{A}$ such that F(t) is true in \mathcal{I}

Lemma (Hintikka's Lemma)

if H is first-order Hintikka set with respect to language \mathcal{L} with nonempty set of closed terms then H is satisfiable in Herbrand model (over \mathcal{L})

Notation

Hintikka sets are called sets admitting the closure properties in the lecture notes

Yet Another Constructive Proof of Herbrand's Theorem

Fact

if (\mathcal{A}, ℓ) be an interpretation, F a formula, and x_1, \ldots, x_n denote the set of (free) variables in F; only the values $\ell(x_1), \ldots, \ell(x_n)$ of the environment ℓ are important for the truth value of F

Notation

instead of $(\mathcal{A}, \ell) \models F$ we also write $\mathcal{A} \models F[\ell(x_1), \dots, \ell(x_n)]$

Theorem (Revisited)

set ${\cal G}$ of universal sentences without = is satisfiable iff ${\cal G}$ has a Herbrand model (over ${\cal L})$

Proof. (negation of Herbrand expansion not a tautology) follows from Hintikka's lemma together with: collection of all Herbrand-consistent sets is first-order consistency property, cf. CL GM (Department of Computer Science @ UI) Automated Theorem Proving

Herbrand's Theorem

Corollary

 \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):

1 \exists finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable

2 \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{\neg A \mid A \in S\}$ is valid

Corollary

 $\exists x_1 \cdots \exists x_n G(x_1, \dots, x_n)$ is valid iff there are ground terms t_1^k, \dots, t_n^k , $k \in \mathbb{N}$ and the following is valid

$$G(t_1^1,\ldots,t_n^1)\vee\cdots\vee G(t_1^k,\ldots,t_n^k)$$

82

Assumption

 \mathcal{G} a set of universal sentences (of \mathcal{L}) without =

Definition (revisited)

 $\mathsf{Gr}(\mathcal{G}) = \{ G(t_1, \ldots, t_n) \mid \forall x_1 \cdots \forall x_n G(x_1, \ldots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$

Theorem (revisited)

the following is equivalent

- **1** \mathcal{G} is satisfiable
- **2** *G* has a Herbrand model
- **3** \forall finite $\mathcal{G}_0 \subseteq Gr(\mathcal{G})$, \mathcal{G}_0 has a Herbrand model

Proof.

it remains to show the implication (3) \Rightarrow (1); on the blackboard

M (Department of Computer Science @ UI Automated Theorem Provin

81/1

Herbrand Complexity and Proof Length

Herbrand Complexity and Proof Length

Definition

 $\mathsf{Gr}(\mathcal{G}) = \{ G(t_1, \ldots, t_n) \mid \forall x_1 \cdots \forall x_n G(x_1, \ldots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$

Definition

- let $\ensuremath{\mathcal{C}}$ be an unsatisfiable set of clauses
- $\mathsf{Gr}(\mathcal{C})$ denotes the ground instances of \mathcal{C}
- the Herbrand complexity of ${\mathcal C}$ is:

 $\mathsf{HC}(\mathcal{C}) = \min\{|\mathcal{C}'| \colon \mathcal{C}' \text{ is unsatisfiable and } \mathcal{C}' \subseteq \mathsf{Gr}(\mathcal{C})\}$

Example

consider $C = \{P(x), \neg P(f(x)) \lor \neg P(g(x))\}$ and we see $HC(C) \leq 3$; furthermore all $C' \subseteq Gr(C)$ with $|C'| \leq 2$ are satisfiable: HC(C) = 3

First-Order Resolution

Definition

511	resolution	factoring	
	$\frac{C \lor A D \lor \neg B}{(C \lor D)\sigma}$	$\frac{C \lor A \lor B}{(C \lor A)\sigma}$	
		、	

 σ is a mgu of the atomic formulas A and B

Definition

let C be a set of clauses; define resolution operator Res(C)

- $\mathsf{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}$; $\operatorname{Res}^{n+1}(\mathcal{C}) = \operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}(\operatorname{Res}^{n}(\mathcal{C}))$
- $\operatorname{Res}^*(\mathcal{C}) = \bigcup_{n \ge 0} \operatorname{Res}^n(\mathcal{C})$

М	(Department	of Computer	Science @	UI

Herbrand Complexity and Proof Length

Proof (cont'd).

5 in Γ suppose the last step is a resolution of $E\sigma \lor F\sigma$ from $E \lor A$ and $F \lor \neg B$, where σ is the mgu of A and B

Automated Theorem Proving

- **6** \exists ground substitution τ such that $A\tau = B\tau$
- **7** \exists derivations Γ'_1 , Γ'_2 of $E\tau \lor A\tau$ and $F\tau \lor \neg B\tau$
- **8** $|\Gamma'_1| \leq 2^{2n}; |\Gamma'_2| \leq 2^{2n}$
- 9 then there exists a derivation of $C'_{n+1} = E\tau \vee F\tau$ from $\mathcal{C}' \subseteq Gr(\mathcal{C})$ of length $\leq 2 \cdot 2^{2n} + 1 \leq 2^{2(n+1)}$
- **10** similarly for factoring

Theorem

 \exists a sequence of clause sets C_n , refutable with a resolution refutation of length O(n), such that $HC(C_n) > 2^n$

Theorem

- let Γ be a resolution refutation of a clause set ${\mathcal C}$
- let n denote the length $|\Gamma|$ of this refutation (counting the number of clauses in the refutation)
- then $HC(\mathcal{C}) \leq 2^{2n}$

Proof.

- 1 it suffices to define a suitable instance Γ' of the refutation: for Γ' it is easy to see that $HC(\mathcal{C}) \leq |\Gamma'|$
- 2 we show: let Γ be a derivation of C_n from C with $|\Gamma| \leq n$ \exists ground derivation Γ' of a ground instance C'_n of C_n from $C' \subseteq \operatorname{Gr}(C)$ of length $\leq 2^{2n}$
- 3 we argue inductively
- **4** assuming induction hypothesis, we fix a derivation of length n + 1

GM (Department of Computer Science @ UI Automated Theorem Proving

85/1

Herbrand Complexity and Proof Length

Proof.

1 we define C_n

$$\overset{''}{\mathsf{P}}(\mathsf{a}) \qquad \neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}(x)) \qquad \neg \mathsf{P}(\mathsf{f}^{2^n}(\mathsf{a}))$$

2 the (non-ground) refutation makes use of self-resolvents

$$\frac{\neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}^m(x)) \quad \neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}^m(x))}{\neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}^{2m}(x))}$$

3 this is impossible for a ground refutation

Definition

 $2_0 = 1$ $2_{n+1} = 2^{2_n}$

NB: note that 2_n is a non-elementary function

Theorem

 \exists a (finite) set of clauses C_n such that $HC(C_n) \ge \frac{1}{2} \cdot 2_n$, $n \ge 1$

Statman's Example

Example

consider the following clause set:

$$C_n = ST \cup ID \cup \{p \cdot q \neq p \cdot ((T_n \cdot q) \cdot q)\}$$

$$ST = \{Sxyz = (xz)(yz), Bxyz = x(yz), Cxyz = xzy, |x = x, px = p(qx)\}$$

$$ID = "equality axioms"$$

$$T = (SB)((CB)I)$$

$$T_1 = T$$

$$T_{k+1} = T_kT$$

NB: \cdot is the only function symbol, which is left associative

GM (Department of Computer Science @ UI

Herbrand Complexity and Proof Length

Lemma

 $H_{m+1}(y) \rightarrow H_{m+1}(Ty)$ and $\forall y (H_{m+1}(y) \rightarrow H_{m+1}(Ty)) (= H_{m+2}(T))$ are derivable $(m \ge 0)$

Automated Theorem Proving

Proof.

1
$$\forall x \ (A(x) \rightarrow A(yx)) \rightarrow \forall x(A(x) \rightarrow A(y(yx)))$$
 is derivable
2 using $y(yx) = Tyx$ and setting $A = H_m$ we have
 $H_{m+1}(y) \rightarrow H_{m+1}(Ty) \qquad \forall y \ (H_{m+1}(y) \rightarrow H_{m+1}(Ty))$

Corollary

 $H_2(T), \ldots, H_{n+1}(T)$ are derivable by short proofs

NB: "short" refers to proofs whose length is independent on n

Herbrand Complexity and Proof Length

Lemma

Tyx = y(yx) is derivable

Proof.

$$(\mathsf{SB})((\mathsf{CB})\mathsf{I})yx = (\mathsf{B}y)((\mathsf{CB})\mathsf{I}y)x =$$
$$= (\mathsf{B}y)((\mathsf{B}y)\mathsf{I})x = y((\mathsf{B}y\mathsf{I})x) = y(y(\mathsf{I}x)) = y(yx)$$

Definition

$$H_1(y) = \forall x \ px = p(yx)$$
 $H_{m+1}(y) = \forall x \ (H_m(x) \to H_m(yx))$

Lemma

$$H_1(y) \rightarrow H_1(Ty)$$
 and $\forall y \ (H_1(y) \rightarrow H_1(Ty)) \ (= H_2(T))$ are derivable

GM (Department of Computer Science @ UI Automated Theorem Proving

89/1

Herbrand Complexity and Proof Length

Lemma

Statman's example is unsatisfiable; which can be shown with an informl proof that is linear in n

Proof.

88/1

GM (Department of Computer Science @ UI

Herbrand Complexity and Proof Length

lerbrand Complexity and Proof Lengtl

Exercises (Part I)

Theorem

 \exists clause sets whose refutation in resolution is non-elementarily longer than its refutation in natural deduction

Proof.

- **1** consider Statman's example C_n
- **2** the shortest resolution refutation is $\Omega(2_{n-1})$
- **3** the length of the informal refutation is O(n) and can be formalised in natural deduction

Automated Theorem Proving

Break

- Give a direct proof of the fact that any set G of universal sentences without = is satisfiable iff G has a Herbrand model (over L).
- Problem 6.3
- Problem 10.11

GM (Department of Computer Science @ UI Automated Theorem Proving

Herbrand Complexity and Proof Length

Outline of the Lecture

Early Approaches in Automated Reasoning

Herbrand's theorem for dummies, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, $\ensuremath{\mathsf{Skolemisation}}$, ordered resolution, redundancy and deletion

Automated Reasoning with Equality paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem

GM (Department of Computer Science @ UI Automated Theorem Proving

92/1

How to Skolemise Properly

Definitions

- if $\forall x$ occurs positively (negatively) then $\forall x$ is called strong (weak)
- dual for $\exists x$

Definitions

- a formula is called rectified if different quantifiers bind different variables
- a formula is in negation normal form (NNF), if it does not contain implication, and every negation sign occurs directly in front of an atomic formula

Automated Theorem Proving

GM (Department of Computer Science @ UI

Α

tructural Skolemisation

Structural Skolem Form

Definition

let A be closed, rectified and in NNF we define the mapping rsk as follows:

$$\mathsf{rsk}(A) = \begin{cases} A & \text{no existential quant. in} \\ \mathsf{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- **1** $\exists y$ is the first existential quantifier in A
- **2** $A_{-\exists y}$ denotes A after omission of $\exists y$
- **3** the Skolem function symbol f is fresh

the formula rsk(A) is the (refutational) structural Skolem form of A

NB: generalises to arbitrary formulas, replacing "existential" by "weak"

Inner and Outer (Refutational) Skolemisation

Definition

- let A be a rectified formula and $Q \times G$ a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as Qx <_A Q'y

Definition

- let A be rectified sentence in NNF
- let $\exists xB$ a subformula of A at position p
- let $\{y_1, \ldots, y_k\} = \{y \mid \forall y <_A \exists x\}$ and let $\{z_1, \ldots, z_l\} = \mathcal{FV}ar(\exists xB)$
- $A[B\{x \mapsto f(y_1, \ldots, y_k)\}]$ is obtained by an outer Skolemisation step
- $A[B\{x \mapsto f(z_1, \ldots, z_l)\}]$ is obtained by an inner Skolemisation step

GM (Department of Computer Science @ UI Automated Theorem Proving

Prenex and Antiprenex Skolem Form

Definitions

- let A be a sentence and A' a prenex normal form of A; then rsk(A') is the prenex Skolem form of A
- the antiprenex form of A is obtained my minimising the quantifier range by quantifier shifting rules
- if A' is the antiprenex form of A, then rsk(A') is the antiprenex Skolem form

Definitions (quantifier shifts)

suppose C is free for x

- $\forall x A(x) \land C \equiv \forall x (A(x) \land C)$
- $\forall x A(x) \rightarrow C \equiv \exists x (A(x) \rightarrow C)$
- $\forall x A(x) \land \forall x B(x) \equiv \forall x (A(x) \land B(x))$

Theorem

 $\begin{array}{l} \textit{let A be a closed formula in NNF, then } A \approx \mathsf{rsk}(A) \\ \texttt{GM} (Department of Computer Science @ UI & Automated Theorem Proving \\ \end{array}$

consider $F = \forall x (\exists y \mathsf{P}(x, y) \land \exists z \mathsf{Q}(z)) \land \forall u (\neg \mathsf{P}(\mathsf{a}, u) \lor \neg \mathsf{Q}(u))$

$$\begin{split} G_1 &= \forall x (\mathsf{P}(x,\mathsf{f}(x)) \land \mathsf{Q}(\mathsf{g}(x))) \land \forall u (\neg P(\mathsf{a},u) \lor \neg \mathsf{Q}(u)) \\ G_2 &= \forall x \mathsf{P}(x,\mathsf{f}(x)) \land \mathsf{Q}(\mathsf{c}) \land \forall u (\neg P(\mathsf{a},u) \lor \neg \mathsf{Q}(u)) \\ G_3 &= \forall x \forall u (\mathsf{P}(x,\mathsf{h}(x,u)) \land \mathsf{Q}(\mathsf{i}(x,u)) \land \neg P(\mathsf{a},u) \lor \neg \mathsf{Q}(u)) \end{split}$$

 G_1 denotes the refutational structural Skolemisation, G_2 the antiprenex refutational Skolemisation, and G_3 is the prenex refutational Skolemisation

Theorem

■ ∃ a set of sentences \mathcal{D}_n with $HC(\mathcal{D}'_n) = 2^{2^{2^{O(n)}}}$ for the structural Skolem form \mathcal{D}'_n

Automated Theorem Proving

2 $HC(\mathcal{D}''_n) \ge \frac{1}{2}2_n$ for the prenex Skolem form

Prenex and Antiprenex Skolem Form

GM (Department of Computer Science @ UI

Example

consider $\forall z \forall y \ (\exists x \ P(y, x) \lor Q(y, z))$; Andrew's Skolem form is given as follows:

 $\forall z \forall y \ (\mathsf{P}(y,\mathsf{f}(y)) \lor \mathsf{Q}(y,z))$

on the other hand the antiprenex Skolem form is less succinct:

 $\forall z \forall y \ (\mathsf{P}(y,\mathsf{g}(z,y)) \lor \mathsf{Q}(y,z))$

Example

consider $\forall y \forall z \exists x (P(y, x) \lor Q(y, z))$, then Andrew's Skolem form is:

 $\forall y \forall z \ (\mathsf{P}(y,\mathsf{h}(y,z)) \lor \mathsf{Q}(y,z))$

Definition (Andrew's Skolem form)

let *A* be a rectified sentence in NNF; (refutational) Andrew's Skolem form is defined as follows:

$$\mathsf{sk}_{\mathcal{A}}(\mathcal{A}) = \begin{cases} \mathcal{A} & \text{no existential quantifiers} \\ \mathsf{rsk}_{\mathcal{A}}(\mathcal{A}_{-\exists y})\{y \mapsto f(\vec{x})\} & \forall x_1, \dots, \forall x_n <_{\mathcal{A}} \exists y \end{cases}$$

- $\exists y \ B$ is a subformula of A and $\exists y$ is the first existential quantifier in A
- **2** all x_1, \ldots, x_n occur free in $\exists y B$

Theorem

let A be a closed formula in NNF, then $A \approx \operatorname{rsk}_A(A)$

GM (Department of Computer Science @ UI Automated Theorem Proving

101/

ner Skolemisation

Definition (Optimised Skolemisation)

- let A be a sentence in NNF and B = ∃x₁ · · · ∃x_k(E ∧ F) a subformula of A with FVar(∃x(E ∧ F)) = {y₁, . . . , y_n}
- suppose A = C[B]
- suppose $A \to \forall y_1 \cdots \forall y_n \exists x_1 \cdots \exists x_k E$ is valid
- we define an optimised Skolemisation step as follows

opt_step(A) = $\forall \vec{y} E\{\dots, x_i \mapsto f_i(\vec{y}), \dots\} \land C[F\{\dots, x_i \mapsto f_i(\vec{y}), \dots\}]$ where f_1, \dots, f_k are new Skolem function symbols

Example

consider a subformula of a sentence A

 $\forall x \forall y \forall z (\mathsf{R}(x, y) \land \mathsf{R}(x, z) \to \exists u (\mathsf{R}(y, u) \land \mathsf{R}(z, u)))$

we exemplarily assume $\forall y \exists u R(y, u)$ is provable from A; we obtain

$$\mathsf{R}(y,\mathsf{f}(y,z)) \qquad \neg \mathsf{R}(x,y) \lor \neg \mathsf{R}(x,z) \lor \mathsf{R}(z,\mathsf{f}(y,z))$$

Theorem

optimised Skolemisation preserves satisfiability

Proof Sketch.

- **1** suppose A is satisfiable with some interpretation \mathcal{I}
- 2 we extent ${\mathcal I}$ to the Skolem functions such that we obtain for the extention ${\mathcal I}'$

$$\mathcal{I}' \models \forall \vec{y} E\{\ldots, x_i \mapsto f_i(\vec{y}), \ldots\} \qquad \mathcal{I}' \models C[F\{\ldots, x_i \mapsto f_i(\vec{y}), \ldots\}]$$

3 for this the extra condition is exploited

Remark

note that in optimised Skolemisation some literals are deleted from clauses

Automated Theorem Proving

GM (Department of Computer Science @ UI

nner Skolemisation

Definition

- let $B = \exists \vec{x} (E_1 \land \dots \land E_\ell)$ be a formula
- let $\{\vec{z_1}\} = \mathcal{FV}ar(E_1) \setminus \{\vec{x}\}$
- let $\{\vec{z}_i\} = \mathcal{FV}ar(E_i) \setminus \left(\bigcup_{j < i} \mathcal{FV}ar(E_j) \cup \{\vec{x}\}\right)$
- we call $\langle \{\vec{z}_1\}, \ldots, \{\vec{z}_\ell\} \rangle$ the (free variable) splitting of B

Example

consider $\exists u(\mathsf{R}(y, u) \land \mathsf{R}(z, u))$; its splitting is $\langle \{y\}, \{z\} \rangle$

Observation

- let $\langle \{\vec{z}_1\}, \ldots, \{\vec{z}_\ell\} \rangle$ be a splitting of $\exists \vec{x} (E_1 \land \cdots \land E_\ell)$
- assume each conjunct E_i contains at least one of the variables from \vec{x}
- $\langle \{\vec{z_1}, \vec{z_2}\}, \dots, \{\vec{z_\ell}\} \rangle$ is a splitting of $\exists \vec{v} (E_2 \land \dots \land E_\ell) \{x_i \mapsto f_i(\vec{z_1}, \vec{v})\}$ where \vec{v} are new

ner Skolemisatio

Definition

- a clause C subsumes clause D, if ∃ σ such that the multiset of literals of Cσ is contained in the multiset of literals of D (denoted Cσ ⊆ D)
- *C* is a condensation of *D* if *C* is a proper (multiple) positive or negative factor of *D* that subsumes *D*

Example

consider the clause $P(x) \lor R(b) \lor P(a) \lor R(z)$; its condensation is $R(b) \lor P(a)$

NB: condensation forms a strong normalisation technique that is essential to remove redundancy in clauses

Example

note that the clause $R(x, x) \vee R(y, y)$ does not subsume R(a, a)

GM (Department of Computer Science @ UI Automated Theorem Proving

105/

er Skolemisation

Definition (Strong Skolemisation)

- let A be a sentence in NNF and $B = \exists \vec{x}(E_1 \land \dots \land E_\ell)$ a subformula such that A = C[B]
- let $\langle \{ ec{z_1} \}, \dots, \{ ec{z_\ell} \}
 angle$ be a free variable splitting of B
- a strong Skolemisation step is defined as str_step(A) = C[D] where D is defined as

 $\forall \vec{w}_2 \cdots \forall \vec{w}_\ell E_1\{x_i \mapsto f_i(\vec{z}_1, \vec{w}_2, \dots, \vec{w}_\ell)\} \land \cdots \\ \cdots \land E_\ell\{x_i \mapsto f_i(\vec{z}_1, \vec{z}_2, \dots, \vec{z}_\ell)\}$

Example

106/1

consider the formula $\forall x \forall y \forall z (R(x, y) \land R(x, z) \rightarrow \exists u (R(y, u) \land R(z, u)))$ strong Skolemisation yields the following clauses

 $\neg \mathsf{R}(x,y) \lor \neg \mathsf{R}(x,z) \lor \mathsf{R}(y,\mathsf{f}(y,w)) \qquad \neg \mathsf{R}(x,y) \lor \neg \mathsf{R}(x,z) \lor \mathsf{R}(z,\mathsf{f}(y,z))$ condensation of the first clause yields: $\neg \mathsf{R}(x,y) \lor \mathsf{R}(y,\mathsf{f}(y,w))$

Lemma

if $\exists x_1 \cdots \exists x_k (E \land F)$ is satisfiable, then the following formula is satisfiable as well

 $\forall w_1 \cdots \forall w_k E\{x_i \mapsto f_i(\vec{y}, \vec{w})\} \land \exists v_1 \cdots \exists v_k F\{x_i \mapsto f_i(\vec{y}, \vec{v})\}$ where $\{y_1, \ldots, y_n\} = \mathcal{FV}ar(E) \setminus \{x_1, \ldots, x_k\}$

Theorem

strong Skolemisation preserves satisfiability

Proof Sketch.

- suppose A is satisfiable
- one shows satisfiability of str_step(A) by main induction on A and side induction on ℓ
- the base case exploits the above lemma

SM (Department of Computer Science @ UI Automated Theorem Proving

Inner Skolemisation

Exercises (Part II)

- Optional: Read-up on intuitionistic predicate logic and prove that the following quantifier shifts are not intuitionistically valid (where x is free for C)
 - 1 $\forall x(A(x) \lor C) \rightarrow (\forall xA(x) \lor C)$ 2 $(\forall xA(x) \rightarrow C) \rightarrow \exists x(A(x) \rightarrow C)$

$$2 (\forall x A(x) \to C) \to \exists x (A(x) \to C)$$
$$2 (C \to \exists x A(x)) \to \exists x (C \to A(x))$$

3 $(C \rightarrow \exists x A(x)) \rightarrow \exists x (C \rightarrow A(x))$

NB: these are the only quantifier shifts which are not intuitionistically valid

- Problem 10.14
- Problem 10.15
- Problem 10.16

er Skolemisation

Assessment

structural Skolemisation

- structural (outer) Skolemisation can lead to non-elementary speed-up over prenex Skolemisation
- structural Skolemisation requires non-trivial formula transformations, in particular quantifier shiftings
- how to implement?

inner Skolemisation

- standard inner Skolemisation techniques are straightforward to implement
- optimised Skolemisation requires proof of $A \rightarrow \forall \vec{y} \exists \vec{x} E$ as pre-condition
- strong Skolemisation is incomparable to optimised Skolemisation, as larger, but more general clauses may be produced

GM (Department of Computer Science @ UI Automated Theorem Proving

108/1