Progress in I&TgX typesetting

Cezary Kaliszyk
Universitit Innsbruck

Abstract—The Mizar Mathematical Library is a one of the
largest collections of machine understandable formal proofs
encompassing many areas of today mathematics including results
from algebra, analysis, topology, and lattice theory. The Mizar
system has so far been the only tool able to completely process,
certify, and make use of these developments.

I. INTRODUCTION

OMPUTER certified formal proofs are today one of
the most important techniques used in formal methods.
They are used to guarantee the correctness of compilers [1],
operating systems [2], hardware [3], as well as to certify
mathematical results that involve computation [4] '.
e« We provide an infrastructure for more elegant proofs
(section II);
section II.
o« We formalize all basic algebraic Mizar structures in
Isabelle (Figure 1).

II. STRUCTURES

Every Mizar structure signature is defined as a as set of
assignments. Each assignment is of the form sel — spec,
where sel is a unique structure element label (called selector
in the Mizar language) and spec is the specification of the
type of the respective element of the structure. The signature
of a group is the addLoopStr structure. It is specified in MML
as follows:

struct (ZeroStr,addMagma) addLoopStr (#
carrier -> set,
addF -> BinOp of the carrier,
ZeroF -> Element of the carrier #);

Vincent van Oostrom
Universitit Innsbruck

And example Isabelle formalization is:

definition TheSelectorOf (the - of - 190) where
func the sel of Term — object means \it.
for T be object st [sel, T] in Term holds it = T

REFERENCES

[1] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107-115, 2009.

[2] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive formal verification of an
OS microkernel,” ACM Trans. Comput. Syst., vol. 32, no. 1, p. 2, 2014.

[3] J. Harrison, “Floating-point verification,” J. UCS, vol. 13, no. 5, pp. 629—
638, 2007. doi: 10.3217/jucs-013-05-0629

[4] G. Gonthier, “The four colour theorem: Engineering of a formal proof,” in
Computer Mathematics, 8th Asian Symposium, ASCM 2007, ser. LNCS,
D. Kapur, Ed., vol. 5081. Springer, 2008, p. 333.

IPart of the EWA course.

carrier

multMagma

Y
[ZeroStr]

[addMagma]

Figure 1. Lattice of the basic algebraic structures



APPENDIX
A. File processing

TgX produces output by glueing together boxes. Each letter
yields a box, and boxes for letters are glued together horizon-
tally to generate the box for a word, etc.. In turn, lines are
glued together vertically to form bigger boxes, until the page
is full, the big box is output, and the process starts anew.

To add some detail to this (but omitting more advanced
features), a box has essentially three dimensions: height, depth,
and width. The height is for ‘ordinary’ letters like a and k, and
the depth specifies how much a letter extends below the base
line. Height and depth sum up to total height.

When TEX processes a file it always is in one of three
processing modes, each of which comes in two flavours:
(restricted) horizontal, (restricted) vertical, and (display) math.
When processing a paragraph TgXgoes/is in horizontal mode
glueing letters together, aligning them along their base line,
into words and in the end deciding on how to break the
lines such that the formatted paragraph looks nice, using
stretchable and shrinkable glue between words for the for-
matting/outlining. TEX is in vertical mode when stacking such
paragraphs on top of each other, again with shrinkable and
stretchable glue between then. Entering math mode (see be-
low) makes TgX forget about the notion of word and processes
letters instead as individual variables (with spacing appropriate
for those, but inappropriate for words).

The above process corresponds quite closely to how type-
setters would set type manually.

B. Math mode

The (false) equation ;.
math mode. The same but using TEX math mode ) . i
("H (Same output, different way to generate.)

Now in display math mode

n
> it =

=1

in IATEX, and the same in TX

2t

As a rule of thumb: use the I4TgX-commands when avail-
able; TgX-commands may easily mess up the ‘invariants’ and

(n+l)n

1 i = using IATEX (inline)

2

n+1

‘data structures’ I&TgX-processing depends on. (For instance,
TgX’s double-dollar to enter display math mode, does not work
well with the fleqn option to amsmath; that is meant to display
math aligned to the left, but only affects IS[EX-display math.)

C. Bibliography

TgX produces its output after a single pass. To allow for
(forward) references, labels (generated by the label command)
are stored in an auxiliary file (extension aux), which serves
as (additional) input for the next time TgX is run. Similarly,
citations (generated by the cite command) are stored in the

auxiliary file. This can then serve as input for the bibtex
command which takes that file, a file of bibliography data

(extension bib), and a bibliography style file (extension bst), as
input, to generate the bibliography (extension bbl) containing
the cited works, as found in the bibliograph data, and formatted
according to the bibliography style file. This bibliography is
then incorporated the next time TgX is run.

D. Commands

TgX allows you to define your own commands, simplify-
ing both reuse and uniform change in case of express10ns
occurring more than once. For instance, > ., i* = ("21)
and > i% = @ are obtained by using the same KTEX
definition twice (see the source).

Commands/deﬁnitions can be parametrised: Y. ,i* =
("+1)" and E 2 (kH)k are both obtained by instanti-
atlng the same TEX deﬁmtlon with i, n, respectively j, k.

E. Some further links

o The definitive source on TgX is the TEX-book (paper).

o Detexify for searching for symbols you can draw.

e The Comprehensive I&TEX Symbol List. More symbols.
Stackexchange has answers to many common TgX and IKTEX
questions. For instance,

e On the modes TEgX is in while processing a file;

e On positioning of floats; and

e On the seven classes of math symbols TgX has.

(Was not presented in class, but useful to know. Each
class comes with its own spacing. For instance, if you
want to use the letter R as a relation, then you should
assign ‘relation-class’ status to the symbol resulting in
this (see the source): 1 R 2, to express that R relates 1
to 2. Otherwise spacing is wrong: 1R2, and output ugly.


https://www.youtube.com/watch?v=F1qlSGcsJn4
http://www-cs-faculty.stanford.edu/~uno/abcde.html
http://detexify.kirelabs.org/classify.html
http://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf
https://tex.stackexchange.com/questions/13177/what-are-vertical-and-horizontal-modes#13182
https://tex.stackexchange.com/questions/39017/how-to-influence-the-position-of-float-environments-like-figure-and-table-in-lat/39020
https://tex.stackexchange.com/questions/38982/what-is-the-difference-between-mathbin-vs-mathrel

	Introduction
	Structures
	References
	Appendix
	File processing
	Math mode
	Bibliography
	Commands
	Some further links


