
The Relation between
Source Code,

Documentation
and

Testing

Ling-Wei Wu Thomas Wohlfarter

University of Innsbruck
Summer Semester 2017

Lecture:
Introduction to Scientific Working

June 1, 2017

Contents

1 Introduction 1

2 Source Code and Documentation 1

3 Source Code and Testing 2

4 Conclusion 3
4.1 Overview . 4

5 Future work 4

Source Code, Documentation and Testing are often considered as impor-
tant as the article in "Unholy Trinity of Software Development". However,
what is the relationship among three of them? Should they be separated in
different files or is it better to keep them close to each other? Should we use
code generators? Which option is more convenient? Is it really necessary
to document and test the source code of a project? Based on this paper,
"Unholy Trinity of Software Development", [1] it will explore answers of the
mentioned questions. In this article, "Unholy Trinity of Software Develop-
ment", there is a conversation between the computer scientist, George V.
Neville-Neil alias "Kode Vicious", and a software developer, who is asking
KV about his opinion by some related questions.

1 Introduction

There are two kinds of software developers. The first kind of develops document and test
their code strictly and carefully. The other kind of developers for whom documentation
and testing of code is just a pain in the neck. The second group sees the increasing
effort of writing a program. Regardless of these arguments, these two components be-
long to a software project as the actual source code itself. However, as every software
developer knows, this is a controversial issue and worthy to explore. How these three key
components of software development relate to each other? In the first section, we will
concentrate on the relation between the documentation and source code. In the second
part, the issue will focus on the testing issue of source code. As the previous section,
there will be some arguments for and against separating testing from the code. The last
section in this paper, there will be a conclusion of the topics that were discussed before.
In the end, we provide an overview of the argumentations in Table 1 and Table 2 based
on precious sections discussed.

2 Source Code and Documentation

There are many reasons which provide support documentations of the source code. The
most important one would probably be the simplified cooperation between different soft-
ware developers. When working in a big software development company or a huge de-
veloping team, it is very likely that any programmer is not the only one who needs to
see his or her implementation. Many developers are working together on one project.
Documenting the code helps other programmers to understand the source code. Also the
service and refactoring process of software is simplified with a good written documenta-
tion. A software project often takes a lot of time until it can be delivered to the customer.
During the period, the decisions have to be made by the implementer, who very possibly
and easily forgets important details when there is no documentation throughout [4]. Also
the tests of a program have to be described in its process with documentation. However,
documentation does not automatically lead to a better software project. Documentation
can be as useless rather than useful. There are some rules for writing good documenta-

1

tions which are not redundant or unreadable [2], [5].

The software developer in the paper [1] claims, that some of his coworkers refuse to
write documentations inside the source file. They argue that documentations make the
code unclear when programming, because the lines used for documentations reduce the
overview of the programming environment. "Kode Vicious" counters the argument with
modern programming environments and text editors which have special features. For ex-
ample, the feature, so-called code folding, which every modern editor offers, would break
the argument with the less space problem. Nevertheless, sometimes much documentation
also leads to different problems. For instance, the readability could be reduced. Since
there is less contrast between documentation and source code, important comments could
be ignored. As mentioned above, documentation is not always useful. Source code could
possibly be written in a way that it is self-describing and this seems to make documen-
tation redundant. This aspect would also be mentioned from the coworkers in the paper
who like their documentation in a different file or even in another different directory.

In addition, the good reason, why the source code and its documentation should be
located near each other, is because of making less effort, especially when developers are
updating or refactoring the code. When the functionality of a program needs to be
changed, the programmer may have to rewrite classes or functions. This would mean
that the documentation also has to be changed. Therefore, having the documentation in
the source file or in the same directory would be more convenient than updating in two
different files, which may be also located in different directories. Another less important
reason would be stated in the following. Software developers, who look into the directo-
ries of a program at the first time, have to get an overview of the programs structure first.
Searching the documentation at a different location from the source code which should
be documented can cause some struggles or troubles for the programmer. When devel-
opers need to find the right documentation for the corresponding right code, it is simpler
that in the beginning, just putting the code and documentation together in one file. The
documentation of a function usually has the variables and types described. When the
programmer skims through the documentation and reads the variable, it is easier for him
or her to switch to the code, which is usually located below. So the programmer gets a
better view of how the code is written and how the code is documented. In the other
word, when the documentation is located in a complete different directory or far away
from the source code, it would be irritating because the files have to link to each other.
It would make updating or refactoring just more complicated and inefficient when paths
have to be set to the two corresponding files.

3 Source Code and Testing

Definitely, testing for the source code is not a fewer important component as the docu-
mentation. Tests ensure that a program behaves the correct way. Writing tests makes
a guarantee not only for the implementer but also for the customers who pay money for

2

the software and expect that the software works appropriately. Like the documentation,
testing can be separated from the source code. Testing could be located in the source file
or in a complete different directory. At the same time, testing also could be redundant
when it is not done correctly [3].

Testing can probably be a bit easier to separate from the code than documentation.
In the following, we firstly propose some advantages of separating testing and the code.
When developers have to test a function or a class, they have to think in the very dif-
ferent way because they were implementing the source code. In a software project, the
code implementer and the tester sometimes have different tasks. The programmer of
the source code does not test her or his own code. That is because the tester has a
different point of view. This kind of cooperation makes it easier to find bugs or logical
mistakes in the source code while two persons see the program from two aspects. Some
programmers and computer scientists [7] even suggest to write the tests before writing
the source code. This would make every component of the source code more independent.
Another point of view against inline testing is the low contrast between the actual code
and the test part. This could lead to confusion and reduced readability although tests are
normal signed with a special kind of syntax. Tests can also be linked to its correspond-
ing source code [6] with tags. The number of software tests is an indicator of stability
and resistance. The more parts of a program are tested, the more stable the program is.
However, when the software delivers to the customers, they do not need to see these tests
of the actual program. While the customers use the software, they just need it works
correctly and precisely. Therefore, testing is not necessary to be put into the source
code. It is also easier to have them separated from the source code. Readability is a big
issue when it comes to inline tests. Sometimes tests can be a lot larger than the code,
which should be tested. Having them in the source file would reduce the readability fatal.

We could also find one strong argument supporting tests in the source file as well as
documentation. Having testing and the code separated makes the tests easier to get
outdated. Changing the source code means the developer sometimes need to update the
tests at the same time. If they are separated, updating the tests has more chance to be
forgotten.

4 Conclusion

When it comes to the question "Should documentation be separated from the source
code?", there are some proponents and some opponent. Both sides have strong and
weak argumentation (Table 1). When evaluating these aspects, we consider the point
of view that documentation should be in the source file. It makes it simpler for every
personnel who has to work on the program or use it. As researching this topic, there are
much more proponents to find than opponents. Most of the critics are generally against
documentation. Nevertheless, as every software developer knows, source code has to
be documented no matter where the documentation located in. When it is asked to

3

separate tests from source code, we come out a different conclusion. There are nearly no
arguments supporting inline testing in the source code found (Table 2). Tests should be
located in an extra file. "Kode Vicous" from the paper "The Unholy Trinity of Software
Development" [1] has an similar point of view in this topic.

4.1 Overview

In this overview, we provide two tables, which compare documentation and testing in-
cluded "+" or excluded "-" in the source files, based on the previous discussion.

keywords + -
reduced view ×

reduced readability ×
simple updating ×
not as convenient ×

no searching ×
paths to docs ×

Table 1: Documentation

keywords + -
simple updating ×
specific tester job ×
better readability ×

Table 2: Testing

5 Future work

There are already some tools like Doxgen, which help to separate documentation from
source code. Other tools link documentation and source code with tags, so that it is not
that inconvenient as mentioned previously. There are more new, modern text editors and
new features developed constantly, which significantly simplify the programming process.
Consequently, in nearly furture, we assume that there will be more tools developed
with good managements of software developments. Untill then our controversial issue of
separating documentation or tests from code is not a topic to argue over anymore. With
these future tools, everyone can decide by his or her own.

4

References

[1] George Neville-Neil, 2016, The Unholy Trinity of Software Development

[2] Java, SQL AND JOOQ, 2013, The Golden Rules of Code Documentation

[3] Code To Joy, 2008, The Golden Rule of Testing and JUnit Assumptions

[4] Dennis Brandl, 2011, Engineering and IT Insight: Keep documentation in sync with
code

[5] Douglas Kramer, API Documentation from Source Code Comments: A Case Study
of Javadoc

[6] Dietmar Winkler, Stefan Biffl, Johannes Bergsmann, Software Quality. The Future
of Systems- and Software Development, 8th Edition

[7] Ashfaque Ahmed,Bhanu Prasad, Foundations of Software Engineering

5

