
Heterogeneous Computing

Nathanael Huber
01518376

Benjamin Walch
01518922

June 2, 2017



Abstract

Speed, flexibility and energy efficiency became important things (if not the
most important things) in developing new computing components. How-
ever, with computers of today, it is not possible to satisfy all factors equally.
If the main goal is speed, then you either have losses in flexibility or energy
consumption. If the main goal is energy efficiency, there will be speed re-
ductions. The same applies for flexibility.
Heterogeneous computer systems decrease or close the gap between these
factors.

This paper gives an introduction about heterogeneous computing. In
particular, we explain what it is and have a look at the hardware options
of today. Challenges for both the software and the hardware are discussed,
and in a short outlook we learn how heterogeneous computing will affect
software development in the future.



1 Introduction

A heterogeneous system is a parallel system which consists of different com-
puting nodes, each with its own advantages and drawbacks. In such a sys-
tem, multiple nodes are combined to get all advantages of each. There-
fore it’s the opposite of a homogeneous system, consisting of similar cores
(single-core systems are always homogeneous). Heterogeneous systems be-
came more common at the beginning of parallel programming and will be
replaced by heterogeneous systems in the future.

Zahran [1] distinguishes 3 types of heterogeneity:

The first type consists of cores with the same capabilities but different
DVFS (dynamic voltage and frequency scaling). That means computing
effects them differently, which changes their behavior.

The second type are Cores with different architectural capabilities. For
example superscalar processors are of this type1.

The third type of heterogeneity computing nodes contain cores with dif-
ferent execution models. Several different types of nodes exist here, which
are explained later. Examples are GPU’s and CPU’s.

Processing units aren’t the only systems which can be heterogeneous,
another example are memory modules like caches (SRAM), volatile memory
(DRAM) and nonvolatile memory (MRAM, STT-RAM, PCM, ReRAM).
In the following section, we will keep the focus on computing nodes with
different execution models.

2 Computing Nodes

Bacon [3] mentions that there are two options where hardware can influence
computing performance: There are GPPs (general-purpose processors) on
one end of the spectrum and ASICs (application-specific integrated circuits)
on the other.

Field Programmable Gate Arrays (FPGAs) is a technology which exists
between those two extremes.

1Superscalar processors can execute multiple instructions per clock cycle, even with
only a single core, this is called instruction-level parallelism[2]

1



2.1 Graphics Processing Unit

For Singh [4], a GPU is the most popular heterogeneous computing resource
today. It provides a high aggregate memory bandwidth and has the ability to
perform many more data-parallel operations than a conventional processor.

Expressed differently, the GPU operates using a single-instruction, mul-
tiple data execution model. A good example for this would be multiplying
a constant with each element of a large matrix, where a GPU is the true
winner compared to a CPU.

2.2 Field Programmable Gate Arrays

Marchal [5] defines FPGAs as an array of logic blocks (cells) placed in an in-
frastructure of interconnections, which can be programmed at three distinct
levels.

In other words, FPGAs are small circuits which can be programmed to
implement a certain function. The main advantages of this technology are,
beside their outstanding performance2, that these circuits are configurable,
either once or multiple times, meaning that this units have a (limited) level
of flexibility. It’s fact that everything what can be done with software, can
also be implemented with hardware. The software solution provides you
with flexibility on the one hand, on the other hand a hardware solution is a
lot faster. As a result, we can say that FPGAs decrease or close the gap in
computing between flexibility and performance.

Consider a conventional GPP used to calculate some complex operations.
While GPPs are highly programmable, they are often inefficient in terms of
power and performance. FPGAs instead, can be configured or programmed
at hardware-side for specific tasks, which means that they don’t have as
much flexibility, but provide a lot more efficiency.

2.3 Automata Processors

We know that FPGAs can be programmed and therefore it is obvious that
other technologies were built on top of it. We are talking about an other
model, the Automata Processor, which is built using FPGAs. An Automata
Processor is a hardware-based accelerator of non-deterministic finite au-
tomata (NFA) [6]. A good example for such a non-deterministic finite au-
tomata is a regular expression, where a higher performance from an AP can
be expected than using a traditional core or a GPU.

2in terms of execution time

2



3 Hardware Challenges

The main problem here is the bottleneck between the processing unit and the
memory (as it can bee seen in figure 1), while this effects single-core systems
too, this is especially significant within heterogeneous systems because of the
memory they have to share. Doing so requires a memory hierarchy which
reduces interference between the different cores, and deals efficiently with
the different requirements of each [1].

This was caused, because processing units benefited the most of research
done, in this area, and therefore followed Moore’s Law3 until a few years
ago, while memory did not.

Other challenges are the interconnection between different cores and
memory modules and the efficient distribution of the workload between the
processors.

Figure 1: Generic heterogeneous system[1]

3Moore’s Law states that the number of transistors in a dense integrated circuit doubles
approximately every two years [7].

3



4 Software Challenges

Heterogeneous Computing, requires programmers to think about certain
new aspects:

• Productivity: Applicators need to be split into multiple small threads
(or processes), which should be assigned in consideration of advantages
and drawbacks of cores. Functions have to adapt to the availability of
Systems like CPU’s, GPU’s or FPGA’s. All this decreases the perfor-
mance of a programmer and could be solved without such disadvantage
by a new programming model [1] [4].

• Scalability: Heterogeneous Systems need to be scalable, the perfor-
mance of a application should increase if more cores are added. There
is of course a limit as seen in figure 2 where the same application was
tested on two different GPUs and a CPU. By increasing the cores at
each test run, the CPU didn’t improve after reaching a kernel size
above 40, while the GPU’s did.

• Reliability: If the hardware or system software does the error-handling,
the programmer will be more productive [1], but the programmer could
handle faults more specific and efficient.

• Portability: Applications should run on different heterogeneous sys-
tems, independent of the existence of certain components.

• Interconnection: How should the different cores and memory hierarchy
modules be connected?

4



Figure 2: Performance Improvement from Single Source Mapped to Multiple
Targets [4].

5 Outlook

To make the best use of the opportunities provided by heterogenous comput-
ing nodes will require to revisit the whole computing stack. Computation
is now much cheaper than memory access [1]. Compilers will need to learn
how to use heterogeneous nodes. A different programming language and a
very different model of execution is needed in order to keep programming
efficient, because current models focus mainly on CPU’s. There are some
options like OpenCL (Open Computing Language) for example which are
heading in the right direction. The new model needs to efficiently map the
same computation onto several different computing elements like GPU’s or
FPGA’s. The Accelerator system already provides this and can be used in
C, C++, or any language that supports a C calling interface, e.g. C#, F#,
or Haskell [4]. It improves computation because the programmer needs no
knowledge about the underlying architecture, the Accelerator system can
adapt algorithms accordingly.

Heterogeneous computing is already there, and there is no question about
that this technology will affect future hardware implementations for com-
puters.

5



References

[1] M. Zahran, “Heterogenous Computing: Here to stay,” Communications
of the ACM, vol. 60, no. 3, pp. 42–45, 2017.

[2] M. Johnson, Superscalar microprocessor design. Prentice Hall, 1991.

[3] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA Programming for the
Masses,” Communications of the ACM, vol. 11, no. 2, 2013.

[4] S. Singh, “Computing without Processors,” Communications of the
ACM, vol. 54, no. 8, 2011.

[5] P. Marchal, “Field Programmable Gate Arrays,” Communications of the
ACM, vol. 42, no. 2, 1999.

[6] M. Nourian, X. Wang, X. Yu, W. chun Feng, and M. Becchi, “Demys-
tifying automata processing: GPUs, FPGAs or Micron’s AP?,” in Pro-
ceedings of the International Conference on Supercomputing, p. 1, ACM
New York, June 2017.

[7] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, Apr. 1965.

6


