
Responsiveness, Energy Efficiency, and Data

Usage: The Future of Mobile Web Applications

Alen Luković

June 2, 2017

1 Introduction

During the last decade, smartphones have become many people’s favorite choice
of electronic device allowing their users to connect to and participate in the world
wide web. Checking news, posting and updating one’s social media accounts,
even writing messages and calling each other are only very few of many possible
examples manifesting today’s mobile web’s importance and our dependence on
it. However, with our dependence growing, the mobile web and its applications
providing the most possible easy interfaces guaranteeing access to it naturally
has to face growing challenges. With mobile web traffic increasing and, at least
in some places in the world, exceeding desktop web traffic[BYRZ16], several
concerns regarding its responsiveness, energy efficiency, and data usage (often
shortened as ”RED”)[BYRZ16] have to be raised. This particular work aims
at answering the question which challenges the mobile web regarding RED cur-
rently faces and is going to face by briefly explaining these concepts, examining
their contemporary importance, and elaborating shortly on possible solutions.

2 Responsiveness

Whenever a web browser – regardless if it is a desktop or mobile browser –
tries to display a web page with all its features, it has to load, fetch, and eval-
uate objects, such as HTML, CSS, JavaScript, and images. These objects may
consist of other objects the web browser has to load, fetch, and evaluate, and
so on – evidently, loading a web page is, put simply, resolving a dependency
graph. However, most web pages do not give away their dependency graphs to
the web browser completely. Therefore, in order to not violate any dependency
constraint the web browser may not know about, conservative assumptions re-
garding these dependencies are made, resulting in web pages being displayed
more slowly[NGMB16]. Furthermore, in many places in the world, connecting
to the world wide web with a smartphone and its mobile version of desktop web
browsers results in bigger delays, since, in addition to resolving a web page’s
dependency graph, the data transfer manifests itself to be slower. Conclusively,

1



if slow connections to the world wide web should not contribute additionally
to the time a web page needs in order to be displayed, elaborating on these
dependency graphs and their resolution seems reasonable.

In order to understand any possible improvements regarding responsiveness,
understanding fundamentally how a web page is loaded is essential. First of all,
the web browser parses the HTML tags and constructs a so called ”Document
Object Model” (DOM) tree, with each node representing an HTML tag, and the
tree representing the hierarchical structure of the HTML tags. Then, the web
browser constructs a so called ”render tree”, consisting of all DOM nodes which
are going to be displayed. A so called ”layout tree” for which the previously
constructed render tree functions as its foundation is additionally constructed
in order to determine the web page’s layout. Finally, the layout tree is traversed
and the web page is displayed.[NGMB16]

Difficulties may occur whenever CSS and JavaScript objects in particular have
to be loaded, fetched, and evaluated. While CSS may only block the construc-
tion of render and layout trees just for a moment, JavaScript is capable of
blocking the construction of DOM trees, since JavaScript may execute writing
operations upon the current HTML file. Therefore, because the web browser
knows that the future HTML file may differ from the current HTML file, it
precautionally blocks the parsing of the HTML file, consequently resulting in
bigger delays. In general, blocking is assumed to be necessary whenever a cer-
tain state of uncertainty may be reached. However, these uncertainties turn out
to be less constrictive than the web browser believes they are.[NGMB16] Since
introducing the ideas how to take advantage of these circumstances in detail
goes beyond this work’s scope, I am going to introduce existing solutions and
present their results shortly.

”Scout”, a measurement infrastructure, is capable of automatically tracking
fine–grained and less obvious data dependencies. It rewrites HTML files and
JavaScript codes in order to create more accurate dependency graphs. There-
fore, when the web browser tries to display the according web page, it will
succeed faster because of the new dependency graph. When tested, the amount
of fine–grained dependencies, represented by additional edges in a graph, in-
creased by 29.8% at the median, while 86.6% of all web pages had less so called
”slack nodes” which are irrelevant and solely contribute to bigger delays. An-
other contribution, ”Polaris”, uses Scout’s new dependency graphs and performs
dynamic observations of the network’s condition in order to determine when
to load certain objects in order to optimize web page loading time. Results
show that Polaris is capable of reducing web page loading time by 34% at the
median.[NGMB16]

2



3 Energy Efficiency

As obvious as before, energy efficiency’s importance regarding mobile web ap-
plications must not be underestimated, for a smartphone’s battery ultimately
determines whether a mobile web application is actually viable or not. However,
energy efficiency and its concerns have mostly been delegated onto hardware and
operating system manufacturers. Therefore, introducing solutions contributing
to energy efficiency on programming language level seems to represent a direc-
tion filled with lots of potential.[ZR16]

One of the fundamental ideas with which energy efficiency on programming lan-
guage level is possible is the introduction of so called ”user Quality-of-Service
(QoS) expectations”.[ZR16] User QoS expectations mean that certain expecta-
tions users have regarding the quality of whatever mobile web application they
currently use should be regarded and somehow integrated into the development
of software. However, similar to responsiveness, elaborating on this idea in de-
tail goes beyond this work’s scope. Therefore, I am only going to hint on certain
aspects of this particular approach, and, finally, present some research results.

Put simply, user QoS expectations enable the software developer to influence
his or her mobile web application’s energy consumption depending on whether
the application’s user, for example, taps his or her touchscreen, moves his or
her finger across it, or does nothing at all. Depending on the action of the ap-
plication’s user, certain expectations regarding energy efficiency may be fueled
and applied, and in addition to particular programming language extensions,
software developers are enabled to contribute to their software’s most possibly
efficient energy management. When tested, some researchers even managed to
save approximately 29.2% to 66.0% energy in comparison to Android’s ”Inter-
active” governor.[ZR16]

4 Data Usage

Even though it may not seem evident at first, data usage already has a certain
importance, and is going to have an even much bigger one in the future. In
emerging markets, where mobile web traffic has already exceeded desktop web
traffic[BYRZ16], but access to the world wide web is not as spread as it is, for
example, in most of Europe and North America, seemingly insurmountable ob-
stacles, such as high costs of data and desktop versions of web pages becoming
inefficient when displayed on smartphones and other mobile devices, prevents
the population from unrestricted access to the world wide web. Therefore, com-
pressing data efficiently in order to simplify data transfer and reduce its costs
is obviously going to result in more and more people being able to participate
in the world wide web.[ABC+15]

In order to elaborate on the fundamental ideas within this work’s scope, I briefly

3



present ”Flywheel”, an HTTP proxy server which aims at compressing data as
efficient as possible in order to decrease the amount of data transfered no-
ticeably. Developed by Google, Flywheel is embedded within Google Chrome
auomatically. On average, world wide web content passing through the proxy
server is compressed by 58%, and 50% by the median. Images behave extraor-
dinarily, since they are compressed to approximately 1⁄3 of their original size
(66%) on average, being also responsible for 85% of the data size benefit. Other
significant data size reductions are observable regarding CSS (52%), JavaScript
(41%), HTML (38%), and plain text (20%), on overage.[ABC+15]

5 Conclusion

RED, its concepts, and its current results seem very promising regarding the
future of mobile web applications. Responsiveness is going to make web pages
easier accessible, energy efficiency is going to make mobile web applications more
viable, and data usage is not only going to contribute further to responsiveness,
but also make the world wide web accessible to and, most important, more
affordable for people in emerging markets who have not yet participated in the
world wide web at all. Last, but not least, introducing solutions regarding
RED’s concerns is definitely going to affect the world’s economy heavily. For
example, an one second delay when loading a web page costs Amazon $1.6
billion in annual sales lost[BYRZ16], and energy inefficiency is one of the main
reasons for negative application reviews, with 55% of mobile web application
users claiming to uninstall an application which uses too much energy[ZR16].
Additionally burdened with economic aspects, introducing and developing RED
should be one of the main concerns of software developers, for it is going to affect
our use of the world wide web sustainably.

References

[ABC+15] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Co-
gan, Ben Greenstein, Shane McDaniel, Michael Piatek, Colin Scott,
Matt Welsh, and Bolian Yin. Flywheel: Google’s data compression
proxy for the mobile web. In NSDI, volume 15, pages 367–380, 2015.

[BYRZ16] Peter Bailis, Jean Yang, Vijay Janapa Reddi, and Yuhao Zhu. Re-
search for practice: web security and mobile web computing. Com-
munications of the ACM, 60(1):50–53, 2016.

[NGMB16] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakr-
ishnan. Polaris: Faster page loads using fine-grained dependency
tracking. In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16). USENIX Association, 2016.

[ZR16] Yuhao Zhu and Vijay Janapa Reddi. Greenweb: language extensions
for energy-efficient mobile web computing. In Proceedings of the 37th

4



ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 145–160. ACM, 2016.

5


